リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization of molecular signatures of intestinal epithelial cells in a mouse model of colitis.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization of molecular signatures of intestinal epithelial cells in a mouse model of colitis.

如澤, 浩樹 東京大学 DOI:10.15083/0002004338

2022.06.22

概要

【Introduction】
Inflammatory bowel diseases (IBDs) including ulcerative colitis (UC) and Crohn’s disease (CD) are characterized by chronic inflammation involving intestinal tissue damage. Although their etiology remains unclear, recent studies indicate that intestinal epithelial cells (IECs) forming the mucosal surface of the intestine, which governs interactions between the luminal microbiota and the underlying lamina propria, play a key role in IBD pathogenesis. For example, a recent study has shown that transcriptional signatures for IECs from patients with IBD were significantly altered compared to those from non-IBD controls. Interestingly, genes that were upregulated in the IECs of IBD patients included pro-inflammatory mediators. Moreover, these transcriptional alterations were maintained in the intestinal epithelial stem cell (IESC) compartment. These findings support the hypothesis that IESCs are altered to a pro-inflammatory mediator secreting phenotype and contribute to the development of chronic inflammation, the pathology of human IBD. Furthermore, IBD increases the risk of developing colitis-associated cancer (CAC), suggesting the involvement of altered IESCs in the development of CAC. In this study, I analyzed the transcriptional alterations in IESCs during colitis using organoid culture technology enabling the maintenance of IESCs in vitro and investigated the molecular mechanism that induces the transcriptional alterations in IESCs along with the influence of IESC alteration on the pathogenesis of colitis and CAC in mice.

【Results and discussion】
First, to analyze the transcriptional alterations in IESCs during colitis, I established several organoids from IESCs of untreated mice (control organoids) and DSS-treated mice, a model of colitis (DSS organoids) (Figure 1A). Then, I performed DNA microarray analysis of the control and DSS organoids. Many genes were found to be differentially expressed (Figure 1B). In particular, pro-inflammatory mediators including Saa3 and Lrg1 were highly upregulated in DSS organoids compared to those in control organoids (Figure 1C). To identify the genes responsible for the induction of these pro- inflammatory mediators, I compared the transcriptional profiles and found that the transcription factor C/EBPδ is highly upregulated in the DSS organoids compared to that in control organoids. Gene knockdown and forced expression in organoids demonstrated that C/EBPδ is responsible for the induction of several pro-inflammatory mediators(Figure 2). These results suggest that C/EBPδ may contribute to the enhancement of colitis through induction of pro-inflammatory mediators in IESCs.
To verify this possibility, I treated WT and C/EBPδ KO mice with 2.5% DSS and examined their colitis susceptibility by monitoring the loss of body weight, which indicates intestinal tissue damage and inflammation. I found that DSS-treated WT and C/EBPδ KO mice were similarly affected by the DSS administration. However, body weight recovery after withdrawal of DSS was significantly promoted in C/EBPδ KO mice with a reduced number of infiltrated leukocytes including monocytes and eosinophils, which are essential for DSS-colitis (Figure 3). These findings suggest that C/EBPδ is important for delaying recovery from DSS-induced colitis, likely by prolongation of inflammatory response. Furthermore, transcriptional profiling of organoids isolated from DSS- treated WT and C/EBP δ KO mice demonstrated that transcriptional induction of pro-inflammatory mediators including Saa3 and Lrg1 was dependent on C/EBPδ at least in organoids. Together these results support a key function of C/EBPδ in the alteration of IESCs to a pro-inflammatory mediator-secretory phenotype during DSS-colitis. Furthermore, I found that the number of colorectal tumors in AOM/DSS-treated C/EBPδ KO mice was significantly reduced compared to that in wild type mice, accompanied by a reduction in expression of pro-inflammatory mediators in tumor cells. These findings support the hypothesis that IESCs that are reprogrammed
to the pro-inflammatory mediator- secretory phenotype in a C/EBPδ- dependent manner prolong intestinal inflammation and promote CAC development in mice (Figure 4).

この論文で使われている画像

参考文献

[1] D. C. Rubin, A. Shaker, and M. S. Levin, “Chronic intestinal inflammation: Inflammatory bowel disease and colitis-associated colon cancer,” Front. Immunol., vol. 3, no. MAY, pp. 1–10, 2012.

[2] W. Qiu, B. Wu, X. Wang, M. E. Buchanan, M. D. Regueiro, D. J. Hartman, R. E. Schoen, J. Yu, and L. Zhang, “PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice,” J. Clin. Invest., vol. 121, no. 5, pp. 1722–1732, 2011.

[3] R. Okumura and K. Takeda, “Roles of intestinal epithelial cells in the maintenance of gut homeostasis,” Exp. Mol. Med., vol. 49, no. 5, p. e338, 2017.

[4] J. M. Allaire, S. M. Crowley, H. T. Law, S. Y. Chang, H. J. Ko, and B. A. Vallance, “The Intestinal Epithelium: Central Coordinator of Mucosal Immunity,” Trends Immunol., vol. 39, no. 9, pp. 677–696, 2018.

[5] L. W. Peterson and D. Artis, “Intestinal epithelial cells: Regulators of barrier function and immune homeostasis,” Nat. Rev. Immunol., vol. 14, no. 3, pp. 141–153, 2014.

[6] A. Ramachandran, M. Madesh, and K. A. Balasubramanian, “Apoptosis in the intestinal epithelium: Its relevance in normal and pathophysiological conditions,” J. Gastroenterol. Hepatol., vol. 15, no. 2, pp. 109–120, 2000.

[7] S. U. Seo, N. Kamada, R. Muñoz-Planillo, Y. G. Kim, D. Kim, Y. Koizumi, M. Hasegawa, S. D. Himpsl, H. P. Browne, T. D. Lawley, H. L. T. Mobley, N. Inohara, and G. Núñez, “Distinct Commensals Induce Interleukin-1β via NLRP3 Inflammasome in Inflammatory Monocytes to Promote Intestinal Inflammation in Response to Injury,” Immunity, vol. 42, no. 4, pp. 744–755, 2015.

[8] K. Croitoru and P. Zhou, “T-cell-induced mucosal damage in the intestine,” Curr. Opin. Gastroenterol., vol. 20, no. 6, pp. 581–586, 2004.

[9] M. Schnoor, “Inflammatory Mediators Contributing to Intestinal Epithelial Cell Apoptosis and Barrier Disruption in IBD,” J. Clin. Cell. Immunol., vol. 01, no. S3, 2012.

[10] T. Goretsky, R. Dirisina, P. Sinh, N. Mittal, E. Managlia, D. B. Williams, D. Posca, H. Ryu, R. B. Katzman, and T. A. Barrett, “P53 mediates TNF-induced epithelial cell apoptosis in IBD,” Am. J. Pathol., vol. 181, no. 4, pp. 1306–1315, 2012.

[11] K. Atarashi, T. Tanoue, M. Ando, N. Kamada, Y. Nagano, S. Narushima, W. Suda, A. Imaoka, H. Setoyama, T. Nagamori, E. Ishikawa, T. Shima, T. Hara, S. Kado, T. Jinnohara, H. Ohno, T. Kondo, K. Toyooka, E. Watanabe, S. I. Yokoyama, S. Tokoro, H. Mori, Y. Noguchi, H. Morita, I. I. Ivanov, T. Sugiyama, G. Nuñez, J. G. Camp, M. Hattori, Y. Umesaki, and K. Honda, “Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells,” Cell, vol. 163, no. 2, pp. 367–380, 2015.

[12] J. Kempski, L. Brockmann, N. Gagliani, and S. Huber, “TH17 cell and epithelial cell crosstalk during inflammatory bowel disease and carcinogenesis,” Front. Immunol., vol. 8, no. OCT, pp. 1–8, 2017.

[13] N. Planell, J. J. Lozano, R. Mora-Buch, M. C. Masamunt, M. Jimeno, I. Ordás, M. Esteller, E. Ricart, J. M. Piqué, J. Panés, and A. Salas, “Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations,” Gut, vol. 62, no. 7, pp. 967–976, 2013.

[14] I. Dotti, R. Mora-Buch, E. Ferrer-Picón, N. Planell, P. Jung, M. C. Masamunt, R. F. Leal, J. Martín de Carpi, J. Llach, I. Ordás, E. Batlle, J. Panés, and A. Salas, “Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis,” Gut, p. gutjnl-2016-312609, 2016.

[15] D. G. Lee, J. W. Woo, S. K. Kwok, M. La Cho, and S. H. Park, “MRP8 promotes Th17 differentiation via upregulation of IL-6 production by fibroblast-like synoviocytes in rheumatoid arthritis,” Exp. Mol. Med., vol. 45, no. 4, pp. e20-9, 2013.

[16] S. Wang, R. Song, Z. Wang, Z. Jing, S. Wang, and J. Ma, “S100A8/A9 in inflammation,” Front. Immunol., vol. 9, no. JUN, 2018.

[17] J. Gálvez, “Role of Th17 Cells in the Pathogenesis of Human IBD,” ISRN Inflamm., vol. 2014, pp. 1–14, 2014.

[18] Y. Fujita, A. Khateb, Y. Li, R. Tinoco, T. Zhang, H. Bar-Yoseph, M. A. Tam, Y. Chowers, E. Sabo, S. Gerassy-Vainberg, E. Starosvetsky, B. James, K. Brown, S. S. Shen- Orr, L. M. Bradley, P. A. Tessier, and Z. A. Ronai, “Regulation of S100A8 Stability by RNF5 in Intestinal Epithelial Cells Determines Intestinal Inflammation and Severity of Colitis,” Cell Rep., vol. 24, no. 12, p. 3296–3311.e6, 2018.

[19] N. Lügering, R. Stoll, T. Kucharzik, K.W. Schmid, G. Rohlmann, G. Burmeister, C. Sorg, W. Domschke, “Immunohistochemical distribution and serum levels of the Ca2+-binding proteins MRP8, MRP14 and their heterodimeric form MRP8/14 in Crohn’s disease,” Digestion, vol. 56, no. 5, pp. 406–414, 1995.

[20] D. Foell, H. Wittkowski, and J. Roth, “Monitoring disease activity by stool analyses: From occult blood to molecular markers of intestinal inflammation and damage,” Gut, vol. 58, no. 6, pp. 859–868, 2009.

[21] M. Yousefi, L. Li, and C. J. Lengner, “Hierarchy and Plasticity in the Intestinal Stem Cell Compartment,” Trends Cell Biol., vol. 27, no. 10, pp. 753–764, 2017.

[22] B. K. Koo, D. E. Stange, T. Sato, W. Karthaus, H. F. Farin, M. Huch, J. H. Van Es, and H. Clevers, “Controlled gene expression in primary Lgr5 organoid cultures,” Nat. Methods, vol. 9, no. 1, pp. 81–83, 2012.

[23] D. Dutta, I. Heo, and H. Clevers, “Disease Modeling in Stem Cell-Derived 3D Organoid Systems,” Trends Mol. Med., vol. 23, no. 5, pp. 393–410, 2017.

[24] T. A. Ullman and S. H. Itzkowitz, “Intestinal inflammation and cancer,” Gastroenterology, vol. 140, no. 6, pp. 1807–1816, 2011.

[25] J. Terzić, S. Grivennikov, E. Karin, and M. Karin, “Inflammation and Colon Cancer,” Gastroenterology, vol. 138, no. 6, pp. 2101–2114, 2010.

[26] K. Wang, K. Wang, and M. Karin, “The IL-23 to IL-17 cascade inflammation- related cancers The IL-23 to IL-17 cascade in inflammation-related cancers,” no. October, 2015.

[27] V. De Simone, F. Pallone, G. Monteleone, and C. Stolfi, “Role of TH17 cytokines in the control of colorectal cancer.,” Oncoimmunology, vol. 2, no. 12, p. e26617, 2013.

[28] X. Zhang, F. Ai, X. Li, X. She, N. Li, A. Tang, Z. Qin, Q. Ye, L. Tian, G. Li, S. Shen, and J. Ma, “Inflammation-induced S100A8 activates Id3 and promotes colorectal tumorigenesis,” Int. J. Cancer, vol. 137, no. 12, pp. 2803–2814, 2015.

[29] L. Duan, R. Wu, L. Ye, H. Wang, X. Yang, Y. Zhang, X. Chen, G. Zuo, Y. Zhang, Y. Weng, J. Luo, M. Tang, Q. Shi, T. He, and L. Zhou, “S100A8 and S100A9 Are Associated with Colorectal Carcinoma Progression and Contribute to Colorectal Carcinoma Cell Survival and Migration via Wnt/β-Catenin Pathway,” PLoS One, vol. 8, no. 4, pp. 1–13, 2013.

[30] N. Barker, R. A. Ridgway, J. H. Van Es, M. Van De Wetering, H. Begthel, M. Van Den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature, vol. 457, no. 7229, pp. 608–611, 2009.

[31] S. Wirtz, C. Neufert, B. Weigmann, and M. F. Neurath, “Chemically induced mouse models of intestinal inflammation,” Nat. Protoc., vol. 2, no. 3, pp. 541–546, 2007.

[32] K. Balamurugan and E. Sterneck, “The many faces of C/EBPδ and their relevance for inflammation and cancer,” Int. J. Biol. Sci., vol. 9, no. 9, pp. 917–933, 2013.

[33] D. P. Ramji and P. Foka, “CCAAT/enhancer-binding proteins: structure, function and regulation.,” Biochem. J., vol. 365, no. Pt 3, pp. 561–75, 2002.

[34] F. Moore, I. Santin, T. C. Nogueira, E. N. Gurzov, L. Marselli, P. Marchetti, and D. L. Eizirik, “The transcription factor C/EBP delta has anti-apoptotic and anti- inflammatory roles in pancreatic beta cells,” PLoS One, vol. 7, no. 2, 2012.

[35] T. C. Hour, Y. L. Lai, C. I. Kuan, C. K. Chou, J. M. Wang, H. Y. Tu, H. T. Hu, C. S. Lin, W. J. Wu, Y. S. Pu, E. Sterneck, and A. M. Huang, “Transcriptional up-regulation of SOD1 by CEBPD: A potential target for cisplatin resistant human urothelial carcinoma cells,” Biochem. Pharmacol., vol. 80, no. 3, pp. 325–334, 2010.

[36] S. Banerjee, N. Aykin-Burns, K. J. Krager, S. K. Shah, S. B. Melnyk, M. Hauer- Jensen, and S. A. Pawar, “Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction,” Free Radic. Biol. Med., vol. 99, pp. 296– 307, 2016.

[37] J. Wang, T. R. Sarkar, M. Zhou, S. Sharan, D. A. Ritt, T. D. Veenstra, D. K. Morrison, A.-M. Huang, and E. Sterneck, “CCAAT/enhancer binding protein delta (C/EBP , CEBPD)-mediated nuclear import of FANCD2 by IPO4 augments cellular response to DNA damage,” Proc. Natl. Acad. Sci., vol. 107, no. 37, pp. 16131–16136, 2010.

[38] S. A. Pawar, L. Shao, J. Chang, W. Wang, R. Pathak, X. Zhu, J. Wang, H. Hendrickson, M. Boerma, E. Sterneck, D. Zhou, and M. Hauer-Jensen, “C/EBPδ deficiency sensitizes mice to ionizing radiation-induced hematopoietic and intestinal injury,” PLoS One, vol. 9, no. 4, pp. 1–11, 2014.

[39] S. Banerjee, S. K. Shah, S. B. Melnyk, R. Pathak, M. Hauer-Jensen, and S. A. Pawar, “Cebpd Is Essential for Gamma-Tocotrienol Mediated Protection against Radiation-Induced Hematopoietic and Intestinal Injury.”

[40] S. Serada, M. Fujimoto, F. Terabe, H. Iijima, S. Shinzaki, S. Matsuzaki, T. Ohkawara, R. Nezu, S. Nakajima, T. Kobayashi, S. E. Plevy, T. Takehara, and T. Naka, “Serum leucine-rich alpha-2 glycoprotein is a disease activity biomarker in ulcerative colitis,” Inflamm. Bowel Dis., vol. 18, no. 11, pp. 2169–2179, 2012.

[41] S. Shinzaki, K. Matsuoka, H. Iijima, S. Mizuno, S. Serada, M. Fujimoto, N. Arai, N. Koyama, E. Morii, M. Watanabe, T. Hibi, T. Kanai, T. Takehara, and T. Naka, “Leucine-rich Alpha-2 glycoprotein is a serum biomarker of mucosal healing in ulcerative colitis,” J. Crohn’s Colitis, vol. 11, no. 1, pp. 84–91, 2017.

[42] J. L. Ather, K. Ckless, R. Martin, K. L. Foley, B. T. Suratt, J. E. Boyson, K. A. Fitzgerald, R. A. Flavell, S. C. Eisenbarth, and M. E. Poynter, “Serum Amyloid A Activates the NLRP3 Inflammasome and Promotes Th17 Allergic Asthma in Mice,” J. Immunol., vol. 187, no. 1, pp. 64–73, 2011.

[43] T. Vogl, T. Pap, J. Roth, T. Vogl, A. Stratis, V. Wixler, T. Völler, S. Thurainayagam, S. K. Jorch, S. Zenker, A. Dreiling, D. Chakraborty, M. Fröhling, P. Paruzel, C. Wehmeyer, S. Hermann, O. Papantonopoulou, C. Geyer, K. Loser, M. Schäfers, S. Ludwig, and M. Stoll, “Autoinhibitory regulation of S100A8 / S100A9 alarmin activity locally restricts sterile inflammation Find the latest version : Autoinhibitory regulation of S100A8 / S100A9 alarmin activity locally restricts sterile inflammation,” J. Clin. Invest., vol. 128, no. 5, pp. 1852–1866, 2018.

[44] B. Papp, S. Sabri, J. Ernst, and K. Plath, “Article Cooperative Binding of Transcription Factors Orchestrates Reprogramming,” Cell, vol. 168, no. 3, pp. 1–18, 2017.

[45] B. Nashun, P. W. Hill, and P. Hajkova, “Reprogramming of cell fate: epigenetic memory and the erasure of memories past,” EMBO J., vol. 34, no. 10, pp. 1296–1308, 2015.

[46] V. Litvak, S. A. Ramsey, A. G. Rust, D. E. Zak, K. A. Kennedy, A. E. Lampano, M. Nykter, I. Shmulevich, and A. Aderem, “Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals.,” Nat. Immunol., vol. 10, no. 4, pp. 437–43, 2009.

[47] B. Chassaing, J. D. Aitken, M. Malleshappa, and M. Vijay-Kumar, “Dextran sulfate sodium (DSS)-induced colitis in mice,” Curr. Protoc. Immunol., no. SUPPL.104, pp. 1–14, 2014.

[48] J. Rustenhoven, E. L. Scotter, D. Jansson, D. T. Kho, R. L. Oldfield, P. S. Bergin, E. W. Mee, R. L. M. Faull, M. A. Curtis, S. E. Graham, T. I. H. Park, and M. Dragunow, “An anti-inflammatory role for C/EBPδ in human brain pericytes,” Sci. Rep., vol. 5, p. 12132, 2015.

[49] K. Leucht, M. Krebs, C. Ploner, A. Villunger, M. Fried, G. Rogler, and M. Hausmann, “Knock-out of BCL-2 Interacting Mediator of Cell Death (BIM) Decreases Apoptosis in Intestinal Epithelial Cells and Ameliorates Acute DSS Colitis,” Gastroenterology, vol. 140, no. 5, p. S-648, May 2011.

[50] Y. A. Wen, X. Li, T. Goretsky, H. L. Weiss, T. A. Barrett, and T. Gao, “Loss of PHLPP protects against colitis by inhibiting intestinal epithelial cell apoptosis,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1852, no. 10, pp. 2013–2023, 2015.

[51] M. Hausmann, K. Leucht, C. Ploner, S. Kiessling, A. Villunger, H. Becker, C. Hofmann, W. Falk, M. Krebs, S. Kellermeier, M. Fried, J. Schölmerich, F. Obermeier, and G. Rogler, “BCL-2 modifying factor (BMF) is a central regulator of anoikis in human intestinal epithelial cells,” J. Biol. Chem., vol. 286, no. 30, pp. 26533–26540, 2011.

[52] E. R. M. Eckhardt, J. Witta, J. Zhong, R. Arsenescu, V. Arsenescu, Y. Wang, S. Ghoshal, M. C. de Beer, F. C. de Beer, and W. J. S. de Villiers, “Intestinal Epithelial Serum Amyloid A Modulates Bacterial Growth In Vitro and Pro-Inflammatory Responses in Mouse Experimental Colitis.,” BMC Gastroenterol., vol. 10, pp. 1–9, 2010.

[53] I. Bassukas, G. Gaitanis, K. Katsanos, D. Christodoulou, E. Tsianos, and C. Vlachos, “Psoriasis and inflammatory bowel disease: links and risks,” Psoriasis Targets Ther., vol. Volume 6, pp. 73–92, 2016.

[54] R. Matsumoto, Y. Sugimoto, K. Kabashima, R. Matsumoto, T. Dainichi, S. Tsuchiya, T. Nomura, and A. Kitoh, “Epithelial TRAF6 drives IL-17 – mediated psoriatic inflammation Find the latest version : Epithelial TRAF6 drives IL-17 – mediated psoriatic inflammation,” vol. 3, no. 15, 2018.

[55] A. Deguchi, T. Tomita, T. Omori, A. Komatsu, U. Ohto, S. Takahashi, N. Tanimura, S. Akashi-Takamura, K. Miyake, and Y. Maru, “Serum amyloid A3 binds MD- 2 to activate p38 and NF-κB pathways in a MyD88-dependent manner.,” J. Immunol., vol. 191, no. 4, pp. 1856–64, 2013.

[56] J. M. Ehrchen, C. Sunderkotter, D. Foell, T. Vogl, and J. Roth, “The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer,” J. Leukoc. Biol., vol. 86, no. 3, pp. 557–566, 2009.

[57] S. S. Cao, E. M. Zimmermann, B. M. Chuang, B. Song, A. Nwokoye, J. E. Wilkinson, K. A. Eaton, and R. J. Kaufman, “The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice,” Gastroenterology, vol. 144, no. 5, p. 989–1000.e6, 2013.

[58] C. F. Krieglstein, W. H. Cerwinka, F. S. Laroux, J. W. Salter, J. M. Russell, G. Schuermann, M. B. Grisham, C. R. Ross, and D. N. Granger, “Regulation of Murine Intestinal Inflammation by Reactive Metabolites of Oxygen and Nitrogen,” J. Exp. Med., vol. 194, no. 9, pp. 1207–1218, 2001.

[59] T. Namba, K. I. Tanaka, Y. Ito, T. Ishihara, T. Hoshino, T. Gotoh, M. Endo, K. Sato, and T. Mizushima, “Positive role of CCAAT/enhancer-binding protein homologous protein, a transcription factor involved in the endoplasmic reticulum stress response in the development of colitis,” Am. J. Pathol., vol. 174, no. 5, pp. 1786–1798, 2009.

[60] T. Tanaka, N. Yoshida, T. Kishimoto, and S. Akira, “Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene.,” EMBO J., vol. 16, no. 24, pp. 7432–43, 1997.

[61] H. Miyoshi and T. S. Stappenbeck, “In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture,” Nat. Protoc., vol. 8, no. 12, pp. 2471– 2482, 2013.

[62] D. Shiokawa, A. Sato, H. Ohata, M. Mutoh, S. Sekine, M. Kato, T. Shibata, H. Nakagama, and K. Okamoto, “The Induction of Selected Wnt Target Genes by Tcf1 Mediates Generation of Tumorigenic Colon Stem Cells,” Cell Reports, vol. 19, no. 5, pp. 981–994, 2017.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る