リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「大腸炎におけるアセチルコリン受容体を介した抗炎症作用の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

大腸炎におけるアセチルコリン受容体を介した抗炎症作用の解析

山下, 綾 東京大学 DOI:10.15083/0002006393

2023.03.24

概要

[課程-2]
審査の結果の要旨
氏名 山下 綾
本研究は大腸炎におけるアセチルコリン受容体を介した抗炎症作用の機序を明らかにす
るため、潰瘍性大腸炎の in vivo および in vitro の疾患モデルである IL-10-/-マウスと樹状細
胞-腸管オルガノイド共培養系を用い、アセチルコリン受容体刺激薬であるニコチンの投与
が腸炎に与える影響の解析を試みたものであり、下記の結果を得ている。

1.

大腸上皮細胞、大腸粘膜固有層樹状細胞、骨髄由来樹状細胞(bone marrow dendritic
cells; BMDC)には α7nAChR が発現していることがフローサイトメトリー法により示
された。

2.

IL-10-/-マウスは杯細胞の減少と炎症細胞浸潤を伴う大腸炎を発症したが、ニコチン投
与により杯細胞の回復と炎症細胞浸潤の抑制を伴って腸炎が改善することが大腸病理
像から示された。炎症細胞のうち、特に樹状細胞(CD11c 陽性細胞)やマクロファー
ジ(F4/80 陽性細胞)が減少することが、免疫組織染色や大腸粘膜固有層白血球のフロ
ーサイトメトリー法により示された。IL-10-/-マウスの腸炎において、アセチルコリン
受容体刺激が腸炎を抑制することが示され、腸上皮と抗原提示細胞がその標的細胞で
ある可能性が示唆された。

3.

樹状細胞-腸管オルガノイド共培養系では、樹状細胞により上皮幹細胞の杯細胞への
分化が障害され、オルガノイドの cyst 様変形が生じ、定量的 PCR 法では杯細胞のマー
カーである MUC2 遺伝子の発現低下を認めた。ニコチン投与により杯細胞への分化障
害が抑制されることが、cyst 様変形率の低下と MUC2 発現量の改善から示され、共培
養がアセチルコリン受容体刺激の腸炎抑制効果を検証可能な実験系であると考えられ
た。樹状細胞あるいは腸管オルガノイドの α7nAchR をノックアウトした共培養ではニ
コチンの効果は消失し、共培養系において樹状細胞と腸上皮の両方がアセチルコリン
受容体刺激の標的細胞である事が示された。

4.

樹状細胞特異的に α7nAChR を欠損する IL-10-/-マウスはコントロールと比較して早期
に腸炎を発症することが大腸病理像と定量的 PCR 法により示された。樹状細胞の内因
性アセチルコリンシグナルが IL-10-/-マウスの腸炎の発症・進展に抑制的に関与する可
能性が示唆された。

以上、本論文は IL10-/-マウスと樹状細胞-腸管オルガノイド共培養系において、アセチル
コリン受容体刺激が腸炎を抑制する機序の解析から、樹状細胞と腸上皮が腸炎におけるア
セチルコリンシグナルの標的細胞であることを明らかにした。本研究はこれまで未詳であ
った、腸管局所の微小環境におけるアセチルコリンの抗炎症作用の解明に貢献をなすと考
えられる。
よって本論文は博士(医学)の学位請求論文として合格と認められる。

この論文で使われている画像

参考文献

1. Jimmy Z Liu, Suzanne van Sommeren, Hailiang Huang, Siew C Ng, Rudi Alberts, Atsushi

Takahashi, Stephan Ripke, James C Lee, Luke Jostins, Tejas Shah, Shifteh Abedian, Jae Hee

Cheon, Judy Cho, Naser E Daryani, Lude Franke, Yuta Fuyuno, Ailsa Hart, Ramesh C Juyal,

Garima Juyal, Won Ho Kim, Andrew P Morris, Hossein Poustchi, William G Newman, Vandana

Midha, Timothy R Orchard, Homayon Vahedi, Ajit Sood, Joseph J Y Sung, Reza Malekzadeh,

Harm-Jan Westra, Keiko Yamazaki, Suk-Kyun Yang, International Multiple Sclerosis Genetics

Consortium, International IBD Genetics Consortium, Jeffrey C Barrett, Andre Franke, Behrooz Z

Alizadeh, Miles Parkes, Thelma B K, Mark J Daly, Michiaki Kubo, Carl A Anderson, Rinse K

Weersma. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and

highlight shared genetic risk across populations. Nat Genet; 47: 979–989, 2015

2. Katrina M de Lange, Loukas Moutsianas, James C Lee, Christopher A Lamb, Yang Luo,

Nicholas A Kennedy, Luke Jostins, Daniel L Rice, Javier Gutierrez-Achury, Sun-Gou Ji, Graham

Heap, Elaine R Nimmo, Cathryn Edwards, Paul Henderson, Craig Mowat, Jeremy Sanderson,

Jack Satsangi, Alison Simmons, David C Wilson, Mark Tremelling, Ailsa Hart, Christopher G

Mathew, William G Newman, Miles Parkes, Charlie W Lees, Holm Uhlig, Chris Hawkey, Natalie

J Prescott, Tariq Ahmad, John C Mansfield, Carl A Anderson, Jeffrey C Barrett. Genome-wide

association study implicates immune activation of multiple integrin genes in inflammatory bowel

disease. Nat Genet; 49: 256–261, 2017

3. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP,

Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL,

Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L,

Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A,

61

Boucher G, Brand S, Büning C, Cohain A, Cichon S, D'Amato M, De Jong D, Devaney KL,

Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R,

Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH,

Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G,

Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott

NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms

LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga

C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H. International

IBD Genetics Consortium (IIBDGC), Silverberg MS, Annese V, Hakonarson H, Brant SR,

Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S,

Barrett JC, Cho JH. Host-microbe interactions have shaped the genetic architecture of

inflammatory bowel disease. Nature; 491:119-124, 2012

4. Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G, Domingues FS,

Albrecht M, Nothnagel M, Ellinghaus D, Sina C, Onnie CM, Weersma RK, Stokkers PC,

Wijmenga C, Gazouli M, Strachan D, McArdle WL, Vermeire S, Rutgeerts P, Rosenstiel P,

Krawczak M, Vatn MH; IBSEN study group, Mathew CG, Schreiber S. Sequence variants in

IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nature

Genetics; 40: 1319-1323, 2008

5. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, Treuting P, Siewe L, Roers A,

Henderson WR Jr, Muller W, Rudensky AY. Regulatory T cell-derived interleukin-10 limits

inflammation at environmental interfaces. Immunity; 28: 546–558, 2008

6. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop

chronic enterocolitis. Cell; 75: 263–274, 1993

62

7. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C,

Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa

S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki

H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the

differentiation of colonic regulatory T cells. Nature; 504: 446-450, 2013

8. Nicholas Arpaia, Clarissa Campbell, Xiying Fan, Stanislav Dikiy, Joris van der Veeken, Paul

deRoos, Hui Liu, Justin R. Cross, Klaus Pfeffer, Paul J. Coffer, Alexander Y. Rudensky.

Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.

Nature; 504: 451–455, 2013

9. Heimesaat MM, Bereswill S, Fischer A, Fuchs D, Struck D, Niebergall J, Jahn HK, Dunay IR,

Moter A, Gescher DM, Schumann RR, Göbel UB, Liesenfeld O. Gram-negative bacteria

aggravate murine small intestinal Th1-type immunopathology following peroral infection with

Toxoplasma gondii. J Immunol; 177: 8785-95, 2006

10. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA,

Swidsinski A, Beaugerie L, Colombel JF. High prevalence of adherent-invasive Escherichia coli

associated with ileal mucosa in Crohn’s disease. Gastroenterol; 127: 412-421, 2004

11. Johnson GJ, Cosnes J, Mansfield JC. Smoking cessation as primary therapy tomodify the

course of Crohn’s disease. Aliment Pharmacol Ther; 21: 921-931, 2005

12. Aldhous MC, Drummond HE, Anderson N, Baneshi MR, Smith LA, Arnott ID, Satsangi J.

Smoking habit and load influence age at diagnosis and disease extent in ulcerative colitis. Am J

Gastroenterol; 102: 589-597, 2007

13. Boyko EJ, Perera DR, Koepsell TD, Keane EM, Inui TS. Effects of cigarette smoking on the

clinical course of ulcerative colitis. Scand J Gastroenterol; 23: 1147-1152, 1988

14. Mokbel M, Carbonnel F, Beaugerie L, Gendre JP, Cosnes J. Effect of smoking on the

63

long-term course of ulcerative colitis. Gastroenterol Clin Biol; 22: 858-862, 1998

15 Cosnes J. Tobacco and IBD: relevance in the understanding of disease mechanisms and

clinical practice. Best Pract Res Clin Gastroenterol; 18: 481–96, 2004

16. Srivastava ED, Russell MAH, Feyerabend C, Williams GT, Masterton JG, Rhodes J.

Transdermal nicotine in active ulcerative colitis. Eur J Gastroenterol Hepatol; 3:875–878, 1991

17. Guslandi M, Tittobello A. Steroid-sparing effect of transdermal nicotine in ulcerative colitis. J

Clin Gastroenterol; 18: 347–348, 1994

18. Rupert D. Pullan, John Rhodes, Subramanian Ganesh, Venk Mani, John S. Morris, Geraint T.

Williams, Robert G. Newcombe, Michael Russell, Colin Feyerabend, Gareth Thomas, Urbain

Sawe. Transdermal nicotine for active ulcerative colitis. N Engl J Med; 330: 811–815, 1994

19. Sandborn WJ, Tremaine WJ, Offord KP, Lawson GM, Petersen BT, Batts KP, Croghan IT,

Dale LC, Schroeder DR, Hurt RD. Transdermal nicotine for mildly to moderately active

ulcerative colitis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med;

126:364–371, 1997

20. Hana Florian, Andreas Meier, Serge Gauthier, Stanley Lipschitz, Yunzhi Lin, Qi Tang, Ahmed

A Othman, Weining Z Robieson, Laura M Gault. Efficacy and Safety of ABT-126 in Subjects

with Mild-to-Moderate Alzheimer's Disease on Stable Doses of Acetylcholinesterase Inhibitors:

A Randomized, Double-Blind, Placebo-Controlled Study. J Alzheimers Dis; 51(4): 1237-47,

2016

21. Robert Freedman 1, Ann Olincy, Robert W Buchanan, Josette G Harris, James M Gold, Lynn

Johnson, Diana Allensworth, Alejandrina Guzman-Bonilla, Bettye Clement, M Patricia Ball, Jay

Kutnick, Vicki Pender, Laura F Martin, Karen E Stevens, Brandie D Wagner, Gary O Zerbe,

Ferenc Soti, William R Kem. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J

Psychiatry; 165(8): 1040-7, 2008

64

22. J R Ingram, P Routledge, J Rhodes, R W Marshall, D C Buss, B K Evans, C Feyerabend, G A

O Thomas. Nicotine enemas for treatment of ulcerative colitis: a study of the pharmacokinetics

and adverse events associated with three doses of nicotine. Aliment Pharmacol Ther; 20(8):

859-65, 2004

23. Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, Kamochi H, Suzuki N.

Nicotine inhibits the production of proinflammatory mediators in human monocytes by

suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity

through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol; 146: 116–123, 2006

24. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ,

Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE. Stimulation of the

vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway.

Nat Immunol; 6: 844–851, 2005

25. Kawashima K, Yoshikawa K, Fujii YX, Moriwaki Y, Misawa H.Expression and function of

genes encoding cholinergic components in murine immune cells. Life Sci; 80: 2314–2319, 2007

26. Koval LM, Yu Lykhmus O, Omelchenko DM, Komisarenko SV, Skok MV. The role of alpha7

nicotinic acetylcholine receptors in B lymphocyte activation. Ukr Biokhim Zh; 81: 5–11, 2009

27. Razani-Boroujerdi S, Boyd RT, Dávila-García MI, Nandi JS, Mishra NC, Singh SP,

Pena-Philippides JC, Langley R, Sopori ML. T cells express alpha7-nicotinic acetylcholine

receptor subunits that require a functional TCR and leukocyte-specific protein tyrosine kinase for

nicotine-induced Ca2+ response. J Immunol; 179: 2889–2898, 2007

28. Su X, Matthay MA, Malik AB. Requisite role of the cholinergic alpha7 nicotinic

acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung

inflammatory injury. J Immunol;184: 401–410, 2010

29. Yamamoto T, Kodama T, Lee J, Utsunomiya N, Hayashi S, Sakamoto H, Kuramoto H,

65

Kadowaki M. Anti-allergic role of cholinergic neuronal pathway via alpha7 nicotinic ACh

receptors on mucosal mast cells in a murine food allergy model. PLoS One; 9: e85888, 2014

30. Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S. Noradrenergic and peptidergic

innervation of lymphoid tissue. J Immunol; 135:755s-765s,1985

31. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad

N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response

to endotoxin. Nature; 405: 458–462, 2000

32. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa

L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an

essential regulator of inflammation. Nature; 421: 384-388, 2003

33. Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Wang H, Metz C,

Miller EJ, Tracey KJ, Ulloa L. Cholinergic agonists inhibit HMGB1 release and improve survival

in experimental sepsis. Nat Med; 10: 1216–1221, 2004

34. Tracey, K.J. Reflex control of immunity. Nat Rev Immunol; 9: 418−428, 2009.

35. Sun P, Zhou K, Wang S, Li P, Chen S, Lin G, Zhao Y, Wang T. Involvement of

MAPK/NF-kappaB signaling in the activation of the cholinergic anti-inflammatory pathway in

experimental colitis by chronic vagus nerve stimulation. PLoS One; 8: e69424, 2013

36. Bertrand D, Lee CH, Flood D, Marger F, Donnelly-Roberts D. Therapeutic potential of

alpha7 nicotinic acetylcholine receptors. Pharmacol Rev; 67: 1025–1073, 2015

37. Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog

Neurobiol; 74: 363–396, 2004

38. Su X, Matthay MA, Malik AB. Requisite role of the cholinergic alpha7 nicotinic

acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung

inflammatory injury. J Immunol; 184:401–410, 2010

66

39. Nugent FW, Roy MA. Duodenal Crohn’s disease: an analysis of 89 cases. Am J

Gastroenterol; 84: 249–254, 1989

40. Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. The vagus nerve: a

tonic inhibitory influence associated with inflammatory bowel disease in a murine model.

Gastroenterology;131: 1122–1130, 2006

41. Chatterjee PK, Al-Abed Y, Sherry B, Metz CN. Cholinergic agonists regulate JAK2/STAT3

signaling to suppress endothelial cell activation. Am J Physiol Physiol; 297: C1294–C306, 2009

42. AlSharari SD, Bagdas D, Akbarali HI, Lichtman PA, Raborn ES, Cabral GA, Carroll FI,

McGee EA, Damaj MI. Sex Differences and Drug Dose Influence the Role of the α7 Nicotinic

Acetylcholine Receptor in the Mouse Dextran Sodium Sulfate-Induced Colitis Model. Nicotine

Tob Res; 19: 460–468, 2017

43. Eliakim R, Fan QX, Babyatsky MW. Chronic nicotine administration differentially alters

jejunal and colonic inflammation in interleukin-10 deficient mice. Eur J Gastroenterol Hepatol;

14: 607-14, 2002

44. Cailotto C, Costes LM, van der Vliet J, van Bree SH, van Heerikhuize JJ, Buijs RM,

Boeckxstaens GE. Neuroanatomical evidence demonstrating the existence of the vagal

anti‐inflammatory reflex in the intestine. Neurogastroenterol Motil; 24: 191-200, e93, 2012

45. Nemethova A, Michel K, Gomez-Pinilla PJ, Boeckxstaens GE, Schemann M. Nicotine

attenuates activation of tissue resident macrophages in the mouse stomach through the beta2

nicotinic acetylcholine receptor. PLoS One; 8: e79264, 2013

46. Matteoli G, Gomez‐Pinilla PJ, Nemethova A, Di GM, Cailotto C, van Bree SH, Michel K,

Tracey KJ, Schemann M, Boesmans W, Vanden Berghe P, Boeckxstaens GE. A distinct vagal

anti‐inflammatory pathway modulates intestinal muscularis resident macrophages independent of

the spleen. Gut; 63: 938-948, 2014

67

47. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta

M, Ashok M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L. Splenectomy inactivates the cholinergic

antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med; 203:

1623-1628, 2006

48. Yang WL, Frucht H. Cholinergic receptor up-regulates COX-2 expression and prostaglandin

E2 production in colon cancer cells. Carcinogenesis; 21:1789–1793, 2000

49. Gustafsson JK, Ermund A, Johansson ME, Schütte A, Hansson GC, Sjövall H. An ex vivo

method for studying mucus formation, properties, and thickness in human colonic biopsies and

mouse small and large intestinal explants. Am J Physiol Gastrointest Liver Physiol; 302:

G430-438, 2012

50. Birchenough GM, Nyström EE, Johansson ME, Hansson GC. A sentinel goblet cell guards

the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science; 352: 1535-1542, 2016

51. McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD,

Miller MJ. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine.

Nature; 483: 345-349, 2012

52. Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Expression

and Function of the Cholinergic System in Immune Cells. Front Immunol; 8: 1085, 2017

53. Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K.

Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci; 134: 1-21,

2017

54. Ihara S, Hirata Y, Serizawa T, Suzuki N, Sakitani K, Kinoshita H, Hayakawa Y, Nakagawa H1,

Ijichi H, Tateishi K, Koike K. TGF-β Signaling in Dendritic Cells Governs Colonic Homeostasis

by Controlling Epithelial Differentiation and the Luminal Microbiota. J Immunol; 196:

4603-4613, 2016

68

55. Ihara S, Hirata Y, Hikiba Y, Yamashita A, Tsuboi M, Hata M, Konishi M, Suzuki N, Sakitani

K, Kinoshita H, Hayakawa Y, Nakagawa H, Ijichi H, Tateishi K, Koike K. Adhesive Interactions

between Mononuclear Phagocytes and Intestinal Epithelium Perturb Normal Epithelial

Differentiation and Serve as a Therapeutic Target in Inflammatory Bowel Disease. J Crohns

Colitis;12: 1219-1231, 2018

56. N L Benowitz, P Jacob 3rd. Daily intake of nicotine during cigarette smoking. Clin Pharmacol

Ther; 35(4): 499-504, 1984

57. Janne Hukkanen 1, Peyton Jacob 3rd, Neal L Benowitz. Metabolism and disposition kinetics

of nicotine. Pharmacol Rev; 57(1): 79-115, 2005

58. Inaba K, Swiggard WJ, Steinman RM, Romani N, Schuler G, Brinster C. Isolation of

Dendritic Cells. Curr Protoc Immunol; 86:3.7.1-3.7.19, 2009

59. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A,

Kujala P, Peters PJ, Clevers H. Single Lgr5 stem cells build crypt-villus structures in vitro

without a mesenchymal niche. Nature; 459: 262–265, 2009

60. Caterina M Hernandez, Ibdanelo Cortez, Zhenglin Gu, José O Colón-Sáez, Patricia W Lamb,

Maki Wakamiya, Jerrel L Yakel, and Kelly T Dineley. Research tool: validation of floxed α7

nicotinic acetylcholine receptor conditional knockout mice using in vitro and in vivo approaches.

J Physiol; 592(Pt 15): 3201–3214, 2014

61. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM,

Sartor RB. Resident enteric bacteria are necessary for development of spontaneous colitis and

immune system activation in interleukin-10-deficient mice. Infect Immun; 66: 5224–5231, 1998

62. Jane L Benjamin, Charlotte R H Hedin, Andreas Koutsoumpas, Siew C Ng, Neil E McCarthy,

Natalie J Prescott, Pedro Pessoa-Lopes, Christopher G Mathew, Jeremy Sanderson, Ailsa L Hart,

Michael A Kamm, Stella C Knight, Alastair Forbes, Andrew J Stagg, James O Lindsay, Kevin

69

Whelan. Smokers with active Crohn's disease have a clinically relevant dysbiosis of the

gastrointestinal microbiota. Inflamm Bowel Dis; 18: 1092–1100, 2012

63. Hui Wang, Jun-Xing Zhao, Nan Hu, Jun Ren, Min Du, Mei-Jun Zhu. Side-stream smoking

reduces intestinal inflammation and increases expression of tight junction proteins. World J

Gastroenterol; 18: 2180–2187, 2012

64. Amy R. Sapkota, Sibel Berger, Timothy M. Vogel. Human Pathogens Abundant in the

Bacterial Metagenome of Cigarettes. Environ Health Perspect; 118: 351–356, 2010

65. Luc Biedermann, Karin Brülisauer, Jonas Zeitz, Pascal Frei, Michael Scharl, Stephan R

Vavricka, Michael Fried, Martin J Loessner, Gerhard Rogler, Markus Schuppler. Smoking

cessation alters intestinal microbiota: insights from quantitative investigations on human fecal

samples using FISH. Inflamm Bowel Dis; 20: 1496–1501, 2014

66. Luc Biedermann, Jonas Zeitz,Jessica Mwinyi, Eveline Sutter-Minder, Ateequr Rehman,

Stephan J. Ott, Claudia Steurer-Stey, Anja Frei, Pascal Frei, Michael Scharl, Martin J. Loessner,

Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in

Humans. PLoS One; 8: e59260, 2013

67. Koichi Tomoda, Kaoru Kubo, Kazuo Hino, Yasunori Kondoh, Yasue Nishii, Noriko Koyama,

Yoshifumi Yamamoto, Masanori Yoshikawa, Hiroshi Kimura. Branched-chain amino acid-rich

diet improves skeletal muscle wasting caused by cigarette smoke in rats. J Toxicol Sci; 36:

261–266, 2014

68. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the

two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S

A; 105: 15064-15069, 2008

69. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB,

Büller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AW. Muc2-deficient mice

70

spontaneously develop colitis, indicating that MUC2 is critical for colonic protection.

Gastroenterology; 131: 117-29, 2006

70. van der Post S, Jabbar KS, Birchenough G, Arike L, Akhtar N, Sjovall H, Johansson MEV,

Hansson GC. Structural weakening of the colonic mucus barrier is an early event in ulcerative

colitis pathogenesis. Gut; 68: 2142-2151, 2019

71. Johansson ME, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, Ghishan FK,

Carvalho FA, Gewirtz AT, Sjövall H, Hansson GC. Bacteria penetrate the normally impenetrable

inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut;

63: 281-291, 2014

72. Gersemann M, Becker S, Kübler I, Koslowski M, Wang G, Herrlinger KR, Griger J, Fritz P,

Fellermann K, Schwab M, Wehkamp J, Stange EF. Differences in goblet cell differentiation

between Crohn's disease and ulcerative colitis. Differentiation; 77: 84-94, 2009

73. Jenny K Gustafsson, Anna Ermund, Malin E V Johansson, André Schütte, Gunnar C Hansson,

Henrik Sjövall. An ex vivo method for studying mucus formation, properties, and thickness in

human colonic biopsies and mouse small and large intestinal explants. Am J Physiol Gastrointest

Liver Physiol; 302(4): G430-8, 2012

74. Sophie Laffont, Karima R R Siddiqui, Fiona Powrie. Intestinal inflammation abrogates the

tolerogenic properties of MLN CD103+ dendritic cells.

Eur J Immunol; 40(7): 1877-83, 2010

75. Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, Von Andrian

UH. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature; 424:

88-93, 2003

76. Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G, Förster R, Agace

WW. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective

T cell homing. J Exp Med; 202: 1063-73, 2005

71

77. Jan Hendrik Niess, Guido Adler. Enteric flora expands gut lamina propria CX3CR1+

dendritic cells supporting inflammatory immune responses under normal and inflammatory

conditions. J Immunol; 184(4): 2026-37, 201078. Bain CC, Schridde A. Origin, Differentiation,

and Function of Intestinal Macrophages. Front Immunol; 9: 2733, 2018

79. De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N,

Voytyuk I, Schmidt I, Boeckx B, Dierckx de Casterlé I, Baekelandt V, Gonzalez Dominguez E,

Mack M, Depoortere I, De Strooper B, Sprangers B, Himmelreich U, Soenen S, Guilliams M,

Vanden Berghe P, Jones E, Lambrechts D, Boeckxstaens G. Self-Maintaining Gut Macrophages

Are Essential for Intestinal Homeostasis. Cell; 175: 400-415, e13, 2018

80. Alkhattabi N, Todd I, Negm O, Tighe PJ, Fairclough LC. Tobacco smoke and nicotine

suppress expression of activating signaling molecules in human dendritic cells. Toxicology

Letters; 299: 40-46, 2018

81. Dror S Shouval, Jodie Ouahed, Amlan Biswas, Jeremy A Goettel , Bruce H Horwitz,

Christoph Klein , Aleixo M Muise, Scott B Snapper. Interleukin 10 receptor signaling: master

regulator of intestinal mucosal homeostasis in mice and humans. Adv Immunol; 122: 177-210,

2014

82. Shakir D AlSharari, Deniz Bagdas, Hamid I Akbarali, Patraic A Lichtman, Erinn S Raborn,

Guy A Cabral, F Ivy Carroll, Elizabeth A McGee, M Imad Damaj. Sex Differences and Drug

Dose Influence the Role of the α7 Nicotinic Acetylcholine Receptor in the Mouse Dextran

Sodium Sulfate-Induced Colitis Model. Nicotine Tob Res; 19(4): 460-468, 2017

72

謝辞

本論文の作成に当たり、懇切なるご指導ならびにご鞭撻を賜りました、東京大学大学

院医学系研究科 消化器内科学

小池和彦教授に謹んで御礼を申し上げます。

また、本研究の遂行にあたり多大なるご協力を賜りました、東京大学医科学研究所

端ゲノム医学分野 平田喜裕准教授に深く感謝申し上げます。

その他、様々な点でご協力、ご指導頂きました東京大学消化器内科の先生方に感謝申

し上げます。

73

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る