リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「自然環境に調和した太陽エネルギー利用を可能とするPV/Tソーラーパネルに関する研究 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

自然環境に調和した太陽エネルギー利用を可能とするPV/Tソーラーパネルに関する研究 (本文)

寺島, 康平 慶應義塾大学

2022.03.23

概要

持続可能な開発目標(SDGs:Sustainable Development Goals)が採択され,持続可能な社会の達成に向けた取り組みが世界的に加速している.その中でも脱炭素社会の実現は重要な課題として認識されており,パリ協定にて地球の気温上昇を産業革命前に比べて 2.0 ºC未満に抑制することが目標とされている.このような社会情勢から,現在再生可能エネルギーとして太陽光発電の普及が加速しており,世界における太陽光発電容量は 2050 年に 4.6TW を上回る見込みである.しかしその一方で,現在の太陽電池の変換効率は良くても 20 %程度であり,残りの 80 %が外気温+30 °C 程度の高温の熱に変換されて大気を加熱し,環境に影響を及ぼす可能性がある.一方で,太陽電池は温度が 1 K 上昇するごとに発電量が 0.5 %程度低下するため,太陽電池を低温に保つことで高効率な発電が可能となる.また一般家庭におけるエネルギー使用では,熱需要が全体の 56.2 %を占めており,熱供給をいかに行うかが省エネルギーの観点から重要となる.
そこで本研究では,太陽電池(PV)と集熱器(T)を組み合わせた PV/T ソーラーパネルの開発を行った.このパネルは太陽エネルギーを熱・電力に高効率に変換し,環境への熱負荷を削減することが可能である.本論文では,以下の研究成果について記述する.

(1) 自然環境調和型 PV/T ソーラーパネルの開発
減圧沸騰集熱装置と太陽電池を組み合わせた新たな概念のPV/Tソーラーパネルを開発し,その性能を実験的に検証した.開発した PV/T ソーラーパネルは,夏季において太陽エネルギーの 71.3 %を電力と 40 °C の温水として変換可能であり,市販の PV パネルの表面温度が約 60 °C まで上昇するのに対し,開発した PV/T ソーラーパネルは約 45 °C まで抑制できることを示した.

(2) 自然環境に調和した日射利用を可能とする実用的かつ包括的な CIS PV/T ソーラーパネルの開発
新たに開発した扁平管型凝縮器および CIS PV モジュールを用いて,全ての機能を PV パネルとほぼ同じ面積に包括的に組み込んだ,実用的な PV/T ソーラーパネルを開発し,その性能を実験的に確認した.このパネルは,小型化を実現しながら,夏季に太陽エネルギーの 73.5 %を変換可能で,環境への熱放射も通常の PV パネルと比較して 20 °C 程度抑制可能であることを示した.

(3) 自然環境調和型 PV/T ソーラーパネルの導入による ZEH への貢献
自然環境調和型 PV/T ソーラーパネルの導入により,4 人の家族構成の戸建住宅における一年間のエネルギー需要を賄える熱電供給設備のシステムデザインを試み,ゼロ・エネルギー・ハウス(ZEH)の可能性をモンテカルロ法を用いたシミュレーション計算により検証した.このシステムは PV/T ソーラーパネルの導入面積が 24 m2,PV パネルの導入面積が 8m2 のときに,住宅の 98.8%のエネルギーを太陽エネルギーのみで供給でき,太陽電池単体を導入した場合と比較して,環境熱負荷エクセルギーを 49.1 %削減できることを示した.

この論文で使われている画像

参考文献

[1] 環境省, “気候変動に関する政府間パネル(IPCC)第6次評価報告書第I作業部会報告 書(自然科学的根拠)の公表について”,http://www.env.go.jp/press/109850.html. [accessed 2022/2/1].

[2] 外務省, “2020 年以降の枠組み:パリ協定”, https://www.mofa.go.jp/mofaj/ic/ch/page1w_000119.html. [accessed 2022/2/1].

[3] 黒川浩助,田中良,伊藤雅一, “中規模・大規模太陽光発電システム”, オーム社, 2016.

[4] IEA, “Technology Roadmap Solar Photovoltaic Energy - 2014 edition” https://iea.blob.core.windows.net/assets/e78cd964-9859-48c8-89b5-81fb4a1423b3/TechnologyR oadmapSolarPhotovoltaicEnergy_2014edition.pdf. [accessed 2022/2/1].

[5] 経済産業省資源エネルギー庁, “「令和 2 年度エネルギーに関する年次報告」(エネルギ ー白書 2021)”,https://www.enecho.meti.go.jp/about/whitepaper/2021/html/index.html. [accessed 2022/2/1].

[6] WHO, “Housing and health guidelines”, https://www.who.int/publications/i/item/9789241550376 [accessed 2022/2/1].

[7] Umishio, W., Ikaga, T, Fujino, Y., Ando, S., Kubo, T., Nakajima, Y., Hoshi, T., Suzuki, M., Kario, K., Yoshimura, T., Yoshino, T., Murakami, S., “Disparities of indoor temperature in winter: A cross sectional analysis of the Nationwide Smart Wellness Housing Survey in Japan”, Indoor Air 30(6), p.1317-1328, 2020.

[8] Terashima, K., Seya, A., Sato, H., Ikaga, T., “A new concept of transpiration cooling system for creating a cooling air society,” Global Renewable Energy Proceedings, https://www.jstage.jst.go.jp/article/gre/1/0/1_315/_article/-char/ja, 2018.

[9] Kuniyoshi, N., Takatsuka, A., Sato, H., Kojima, M., “Possibility of ejector cycle for cooling in SDGs,” Proceedings of the International Workshop on Environmental Engineering 2019, pp. 199-200, 2019.

[10] 外務省, “Japan SDGs Action Platform”, https://www.mofa.go.jp/mofaj/gaiko/oda/sdgs/about/index.html. [accessed 2022/2/1].

[11] 外務省, “パリ協定”,https://www.mofa.go.jp/mofaj/ila/et/page24_000810.html. [accessed 2022/2/1].

[12] 環境省, “国連気候変動枠組条約第 26 回締約国会議(COP26),京都議定書第 16 回締 約国会合(CMP16)パリ協定第3回締約国会合(CMA3)について【10/31~11/12 イ ギリス・グラスゴー】”,http://www.env.go.jp/earth/26cop2616cmp16cma10311112.html. [accessed 2022/2/1].

[13] 首相官邸, “温室効果ガスの削減目標及び緊急事態宣言等についての会見”, https://www.kantei.go.jp/jp/99_suga/statement/2021/0422kaiken.html. [accessed 2022/2/1].

[14] 経済産業省, “2050 年カーボンニュートラルに伴うグリーン成長戦略”, https://www.meti.go.jp/press/2020/12/20201225012/20201225012.html. [accessed 2022/2/1].

[15] 環境省, “地球温暖化対策推進法の成立・改正の経緯”, https://www.env.go.jp/earth/ondanka/keii.html. [accessed 2022/2/1].

[16] 文部科学省, “「カーボンニュートラル達成に貢献する大学等コアリション」の設立に ついて”,https://www.mext.go.jp/b_menu/houdou/mext_00678.html. [accessed 2022/2/1].

[17] 経済産業省資源エネルギー庁, “エネルギー基本計画について”, https://www.enecho.meti.go.jp/category/others/basic_plan/. [accessed 2022/2/1].

[18] 一般社団法人日本建築学会, “日本建築学会 気候非常事態宣言”, https://www.aij.or.jp/jpn/databox/2021/210120.pdf. [accessed 2022/2/1].

[19] 一般社団法人日本建築学会,“日本建築学会 SDGs 宣言”, https://www.aij.or.jp/jpn/databox/2021/AIJ-SDGs.pdf. [accessed 2022/2/1].

[20] 国土交通省, “改正建築物省エネ法”,https://www.mlit.go.jp/jutakukentiku/shoenehou.html. [accessed 2022/2/1].

[21] IBEC 建築省エネ機構, “CASBEE における SDGs 試行版の公開と意見募集”, https://www.ibec.or.jp/CASBEE/CASBEE_opinion/index.html. [accessed 2022/2/1].

[22] 国土交通省, “住宅:住生活基本計画(全国計画)”, https://www.mlit.go.jp/jutakukentiku/house/jutakukentiku_house_tk2_000032.html. [accessed 2022/2/1].

[23] 国土交通省, “住宅:脱炭素社会に向けた住宅・建築物の省エネ対策等のあり方検討会”, https://www.mlit.go.jp/jutakukentiku/house/jutakukentiku_house_tk4_000188.html. [accessed 2022/2/1].

[24] Tian, W., Wang,Y., Xie, Y., Wu, D., Zhu, L., Ren J, “Effect of building integrated photovoltaics on microclimate of urban canopy layer”, Building and Environment 42, pp. 1891-1901, 2007.

[25] Taha, H, “The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas”, Solar Energy 91, pp. 358-367, 2013.

[26] Cortes, A., Murashita, Y., Matsuo, T., Kondo, A., Shimadera, H., Inoue, Y., “Numerical evaluation of the effect of photovoltaic cell installation on urban thermal environment”, Sustainable Cities and Society 19, pp. 250-258, 2015.

[27] Nemet, G.F, “Net Radiative Forcing from Widespread Deployment of Photovoltaics”, Environ. Sci. Technol 43, pp. 2173–2178, 2009.

[28] A. S. D. R. T. W. C. Scherba, “Modeling impacts of roof reflectivity, integrated photovoltaic panels and green roof systems on sensible heat flux into the urban environment”, Building and Environment 46, pp. 2542-2551, 2011.

[29] Brito, M.C., “Assessing the Impact of Photovoltaics on Rooftops and Facades in the Urban Micro-Climate”, energies 13(11) 2717, 2020.

[30] Turney, D., Fthenakis, V., “Environmental impacts from the installation and operation of large-scale solar power plants”, Renewable and Sustainable Energy Reviews 15, pp. 3261–3270, 2011.

[31] Masson, V., Bonhomme, M., Salagnac, J., Briottet, X., Lemonsu, A., “Solar panels reduce both global warming and urban heat island”, Frontiers in Environmental Science 2(14), pp. 1-10, 2014.

[32] Burg, B.R., Ruch, P., Paredes S., Michel B., “Effects of radiative forcing of building integrated photovoltaic systems in different urban climates”, Solar Energy 147, pp. 399-405, 2017.

[33] Pham, J.V., Baniassadi, A., Brown, K.E., Heusinger, J., Sailor, D.J., “Comparing photovoltaic and reflective shade surfaces in the urban environment: Effects on surface sensible heat flux and pedestrian thermal comfort”, Urban Climate 29, 100500, 2019.

[34] Berardi, U., Graham, J., “Investigation of the impacts of microclimate on PV energy efficiency and outdoor thermal comfort”, Sustainable Cities and Society 62, 102402, 2020.

[35] Yang, L., Gao, X., Lv, F., Hui, X., Ma, L., Hou, X., “Study on the local climatic effects of large photovoltaic solar farms in desert areas”, Solar Energy 144, pp. 244–253, 2017.

[36] Barron-Gafford, G.A., Minor, R.L., Allen, N.A., Cronin, A.D., Brooks, A.E., Pavao-Zuckerman, M.A., “The photovoltaic heat island effect: Larger solar power plants increase local temperatures”, Scientific reports 6, 35070, 2016.

[37] Sathe, T.M., Dhoble, A.S., “A review on recent advancements in photovoltaic thermal techniques”, Renewable and Sustainable Energy Reviews 76, pp. 645-672, 2017.

[38] Sultan, S.M., Ervine Efzan, M.N., “Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications”, Solar Energy 173, pp. 939-954, 2018.

[39] Herez, A., Hage, H.E., Lemenand, T., Ramadan, M., Khaled, M., “Review on photovoltaic/thermal hybrid solar collectors: Classifications applications and new systems”, Solar Energy 207, pp. 1321-1347, 2020.

[40] Brötje, S., Kirchner M., Giovannetti, F., “Performance and heat transfer analysis of uncovered photovoltaic-thermal collectors with detachable compound”, Solar Energy 170, pp. 406-418, 2018.

[41] Hou, L., Quan, Z., Zhao, Y., Wang, L., Wang, G., “An experimental and simulative study on a novel photovoltaic-thermal collector with micro heat pipe array (MHPA-PV/T)”, Energy and Buildings 124, pp. 60-69, 2016.

[42] Makki, A., Omer, S., Sabir, H., “Advancements in hybrid photovoltaic systems for enhanced solar cells performance”, Renewable and Sustainable Energy Reviews 41, pp. 658-684, 2015.

[43] Moradgholi, M., Nowee, S.M., Farzaneh, A., “Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic/thermal system”, Solar Energy 164, pp. 243-250, 2018.

[44] Wang, Z., Qiu, F., Yang, W., Zhao, X., Mei, S., “Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires”, Applied Energy 170, pp. 314-323, 2016.

[45] Gang, P., Huide, F., Huijuan, Z., Jie, J., “Performance study and parametric analysis of a novel heat pipe PV/T system”, Energy 37(1), pp. 384-395, 2012.

[46] Hu, M., Zheng, R., Pei, G., Wang, Y., Li, J., Ji, J., “Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe”, Applied Thermal Engineering 106, pp. 651-660, 2016.

[47] Yuan, W., Li, Z., Zhou, F., Ren, X., Zhao, X., Liu, S., “Comparison study of the performance of two kinds of photovoltaic/thermal (PV/T) systems and a PV module at high ambient temperature”, Energy 2018, pp. 1153-1161, 2018.

[48] Modjinou, M., Ji, J., Yuan, W., Zhou, F., “A numerical and experimental study of micro-channel heat pipe solar photovoltaics thermal system”, Applied Energy 206, pp. 708-722, 2017.

[49] Modjinou, M., Ji, J., Yuan, W., Zhou, F., Holliday, S., Waqas, A., Zhao, X., “Performance comparison of encapsulated PCM PV/T, microchannel heat pipe PV/T and conventional PV/T systems”, Energy 166, pp. 1249-1266, 2019.

[50] Zhang, T., Yan, Z.W., Xiao, L., Fu, H.D., Pei, G., Ji, J., “Experimental study and design sensitivity analysis of a heat pipe photovoltaic/thermal system”, Applied Thermal Engineering 162, 114318, 2019.

[51] Chen, H., Zhang, L., Jie, P., Xiong, Y., Xu, P., Zhai, H., “Performance study of heat-pipe solar photovoltaic/thermal heat pump system”, Applied Energy 190, pp. 960-980, 2017.

[52] Hui, L., Tin-Tai, C., Jie, J., “Building-integrated heat pipe photovoltaic/thermal system for use in Hong Kong”, Solar Energy 155, pp. 1084-1091, 2017.

[53] Zhang, P., Rong, X., Yang, X., Zhang, D., “Design and performance simulation of a novel hybrid PV/T-air dual source heat pump system based on a three-fluid heat exchanger”, Solar Energy, 191, pp. 505-517, 2019.

[54] Wu, S.Y, Zhang, Q.L., Xiao, L., Guo, F.H., “A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation”, Energy and Buildings 43(12), pp. 3558-3567, 2011.

[55] Jouhara, H., Milko, J., Danielewicz, J., Sayegh, M.A., Szulgowska-Zgrzywa, M., Ramos, J.B., Lester, S.P., “The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material”, Energy 108, pp. 148-154, 2016.

[56] Fujisawa, T., Tani, T., “Annual exergy evaluation on photovoltaic-thermal hybrid collector”, Solar Energy Materials and Solar Cells 47, pp. 135-148, 1997.

[57] Tripanagnostopoulos, Y., Nousia, T.H., Souliotis, M., Yianoulis, P., “Hybrid photovoltaic/thermal solar systems”, Solar Energy 72(3), pp. 217–234, 2002.

[58] Chow, T.T., Pei, G., Fong, K.F., Lin, Z., Chan, A.L.S., Ji, J., “Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover”, Applied Energy 86, p. 310–316, 2009.

[59] Kim, J.H., Kim, J.T., “Comparison of electrical and thermal performances of glazed and unglazed PVT collectors”, International Journal of Photoenergy, 957847, 2012.

[60] Yazdanifard, F., Ebrahimnia-Bajestan, E., Ameri, M., “Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime”, Renewable Energy 99, pp. 295-306, 2016.

[61] Kazemian, A., Hosseinzadeh, M., Sardarabadi, M., Passandideh-Fard, M., “Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study”, Solar Energy 173, p. 1002–1010, 2018.

[62] Pang, W., Cui, Y., Zhang, Q., Yu, H., Zhang, X., Zhang, Y., Yan, H., “Comparative investigation of performances for HIT-PV and PVT systems”, Solar Energy 179, pp. 37-47, 2019.

[63] 濱田祐行, “減圧沸騰を利用した高効率集熱パネルの熱輸送特性に関する実験的研究”, 慶應義塾大学理工学研究科開放環境科学専攻,修士論文, 2002.

[64] 岡田瑠美, “蒸散と減圧沸騰を利用した都市の熱汚染緩和型設備に関する基礎的研究”, 慶應義塾大学理工学研究科開放環境科学専攻,修士論文, 2008.

[65] 花岡宏明, “減圧沸騰パネルを用いた熱供給デバイスに関する研究”, 慶應義塾大学理 工学研究科開放環境科学専攻,修士論文, 2007.

[66] 日本規格協会, “JIS A 4112: 太陽集熱器”,2011. https://kikakurui.com/a4/A4112-2011-01.html. [accessed 2021/11/17].

[67] Mellor, A., Alvarez, D. A., Guarracino, I., Ramos, A., Lacasta, A.R., Llin, L.F., Murrell, A.J., Paul, D.J., Chemisana, D., Markides, C.N., Ekins-Daukes, N.J., “Roadmap for the next-generation of hybrid photovoltaic-thermal solar energy collectors”, Solar Energy 174, p. 386–398, 2018.

[68] EQUISTAR, “Ethyl Alcohol Handbook”, 2003. http://www.itecref.com/pdf/Ethyl_Alcohol_Handook_Equistar.pdf. [accessed 2021/11/17].

[69] Islam. M.A., Kassim, N.M., Alkahtani, A.A., Amin, N., “Assessing the Impact of Spectral Irradiance on the Performance of Different Photovoltaic Technologies”, Solar Radiation - Measurements, Modeling and Forecasting for Photovoltaic Solar Energy Applications, DOI: 10.5772/intechopen.96697, 2021.

[70] Peng, J., Lu, L., Yang, H., “Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems”, Renewable and Sustainable Energy Reviews 19, pp. 255-274, 2013.

[71] Tahri, A., Slivestre, S., Tahri, F., Benlebna, S., Chouder, A., “Analysis of thin film photovoltaic module under outdoor long term exposure in semi-arid climate conditions”, Solar Energy 157, pp. 587-595, 2017.

[72] Boukortt, N.E.I, Patane, S., Abdulraheem, Y.M., “Numerical investigation of CIGS thin-film solar cells”, Solar Energy 204, pp. 440-447, 2020.

[73] Ji, J., Han, J., Chow, T., Yi, H., Lu, J., He, W., Sun, W., “Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/water-heating collector system”, Energy and Buildings 38(12), pp. 1380-1387, 2006.

[74] Tiwari, S., Tiwari, G.N., “Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer”, Solar Energy 138, pp. 128-136, 2016.

[75] Xiang, B., Yuan, Y., Ji Y., Cao, X., Zhou, J., “Thermal and electrical performance of a novel photovoltaic-thermal road”, Solar Energy 199, pp. 1-18, 2020.

[76] Vats, K., Tomar, V., Tiwari, G.N., “Effect of packing factor on the performance of a building integrated semitransparent photovoltaic thermal (BISPVT) system with air duct”, Energy and Buildings 53, pp. 159-165, 2012.

[77] Kumar, R., Rosen, M.A., “Performance evaluation of a double pass PV/T solar air heater with and without fins”, Applied Thermal Engineering 31(8-9), pp. 1402-1410, 2011.

[78] Rejeb O., Dhaou, H., Jemni, A., “A numerical investigation of a photovoltaic thermal (PV/T) collector”, Renewable Energy 77, pp. 43-50, 2015.

[79] Cordray, D.R., Kaplan. L.R., Woyciesjes, P.M., Kozak, T.F., “Solid - liquid phase diagram for ethylene glycol + water”, Fluid Phase Equilibria 117 (1-2), pp. 146-152, 1996.

[80] He, W., Chow, T.T., Ji, J., Lu, J.P., Pei, G., Chan, L., “Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water”, Applied Energy 83, pp. 199-210, 2006.

[81] Chow, T.T., He, W., Ji, J., “Hybrid photovoltaic-thermosyphon water heating system for residential application”, Solar Energy 80, pp. 298-306, 2006.

[82] Chow, T.T., He, W., Ji, J., “An experimental study of facade-integrated photovoltaic/water-heating system”, Applied Thermal Engineering 27, pp. 37-45, 2007.

[83] Ji, J., Lu, J.P., Chow,T.T., He,W., Pei, G., “A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation”, Applied Energy 84, pp. 222-237, 2007.

[84] Pei, G., Fu, H., Zhang, T., Ji, J., “A numerical and experimental study on a heat pipe PV/T system”, Solar Energy 85, pp. 911-921, 2011.

[85] Pei, G., Fu, H., Zhu, H., Ji, J., “Performance study and parametric analysis of a novel heat pipe PV/T system”, Energy 37, pp. 384-395, 2012.

[86] Zhang, X., Zhao, X., Shen, J., Hu, X., Liu, X., XU, J., “Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system”, Solar Energy 97, pp. 551-568, 2013.

[87] Zhang, X., Zhao, X., Xu, J., Yu, X., “Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system”, Applied Energy 102, pp. 1229-1245, 2013.

[88] Deng, Y., Quan, Z., Zhao, Y., Wang, L., Liu, Z., “Experimental research on the performance of household-type photovoltaic–thermal system based on micro-heat-pipe array in Beijing”, Energy Conversion and Management 106, pp. 1039-1047, 2015.

[89] Zhang, B., Lv, J., Yang, H., Li, T., Ren, S., “Performance analysis of a heat pipe PV/T system with different circulation tank capacities”, Applied Thermal Engineering 87, pp. 89-97, 2015.

[90] Hooshmand, P., Shafii, M.B., Roshandel, R., “An experimental study of a solar hybrid system to produce freshwater from waste heat of photovoltaic module by using thermosyphon heat pipes”, Energy Conversion and Management 158, pp. 9-22, 2018.

[91] Zhang, T., Yan, Z., Pei, G., Zhu, Q., Ji, J., “Experimental optimization on the volume-filling ratio of a loop thermosyphon photovoltaic/thermal system”, Renewable Energy 143, pp. 233-242, 2019.

[92] Chen, H., Gong, Y., Wei, P., Nie, P., Xiong, Y., Wang, C., “Experimental Study on the Performance of a Phase Change Slurry-Based Heat Pipe Solar Photovoltaic/Thermal Cogeneration System”, International Journal of Photoenergy, 9579357, 2019.

[93] Souliotis, M., Arnaoutakis, N., Panaras, G., Kavga, A., Papaefthimiou, S., “Experimental study and Life Cycle Assessment (LCA) of Hybrid Photovoltaic/Thermal (PV/T) solar systems for domestic applications”, Reneable Energy 126, pp. 708-723, 2018.

[94] Bigorajski, J., Chwieduk, D., “Analysis of a micro photovoltaic/thermal e PV/T system operation in moderate climate”, Renewable Energy 137, pp. 127-136, 2019.

[95] Gagliano, A., Tina, G.M., Aneli, S., Nizetic, S., “Comparative assessments of the performances of PV/T and conventional solar plants”, Journal of Cleaner Production 219, pp. 304-315, 2019.

[96] Lazzarin, R., Noro, M., “Photovoltaic/Thermal (PV/T)/ground dual source heat pump: Optimum energy and economic sizing based on performance analysis”, Energy & Buildings 211, 109800, 2020.

[97] Zabnienska-Gora, A., Khordehgah, Jouhara, H., “Annual performance analysis of the PV/T system for the heat demand of a low-energy single-family building”, Renewable Energy 163, pp. 1923-1931, 2021.

[98] 気象庁, “過去の気象データ検索”, https://www.data.jma.go.jp/obd/stats/etrn/index.php?prec_no=44&block_no=47662&year=&m onth=&day=&view=p1. [accessed 2021/11/17].

[99] 一般社団法人 20 年先を見据えた日本の高断熱住宅研究会, “HEAT20 外皮性能グレー ド”,http://www.heat20.jp/grade/ . [accessed 2021/11/17].

[100] NHK 放送文化研究所, “国民生活時間調査” 2015, 2015.

[101] 河野佑輔, “地域特性を表現可能な住人行動に基づいた住宅エネルギー消費推定に関 する研究”, 慶應義塾大学理工学研究科開放環境科学専攻, 修士論文, 2011.

[102] Panasonic, “住宅用パワーコンディショナー”, https://sumai.panasonic.jp/solar/high_pc.html. [accessed 2021/11/17].

[103] Notton G., Cristofari, C., Mattei, M., Poggi, P., “Modelling of a double-glass photovoltaic module using finite differences”, Applied Thermal Engineering 25, pp. 2854-2877, 2005.

[104] Duffie J.A., Beckman W.A., “Solar engineering of thermal processes. 2nd ed. NewYork”, John Wiley & Sons, 1991.

[105] Chen, H., Zhang, H., Li, M., Liu, H., Huang, J., “Experimental investigation of a novel LCPV/T system with microchannel heat pipe array”, Renewable Energy 115, pp. 773-782, 2018.

[106] 三菱, “家庭用三菱エコキュート仕様表”, https://www.mitsubishielectric.co.jp/home/diahot/ecocute/pdf/spec.pdf. [accessed 2021/11/17].

[107] 三菱, “三菱ヒートポンプ式温水システムエコヌクール”, https://www.mitsubishielectric.co.jp/home/econucool/product/econucool_leo/lineup.html. [accessed 2021/11/17].

[108] ダイキン, “ルームエアコン製品ラインナップ”, https://www.daikinaircon.com/roomaircon/products/r_series/index.html. [accessed 2021/11/17].

[109] 高田秋一,川原孝七, “クーリングタワー”, 財団法人省エネルギーセンター, 2003, pp. 40-63.

[110] 日本機械学会, “伝熱工学”, 丸善株式会社, 2005, pp. 183-213.

[111] 株式会社サンジュニア, “太陽熱給湯システム”, https://www.sunjunior.co.jp/products/1212/. [accessed 2021/11/17].

[112] SANSO, “DC ブラシレスポンプ”, http://www.sanso-elec.co.jp/product/inverter_pump/catalogpd22-1/. [accessed 2021/11/17].

[113] 資源エネルギー庁, “火力発電について”, https://www.env.go.jp/council/06earth/y0613-11/ref04.pdf. [accessed 2021/11/17].

[114] 海洋生物環境研究所・日本エヌ・ユー・エス株式会社, “平成 22 年度国内外における 発電所等からの温排水による環境影響に係る調査業務報告書”, https://www.city.ishikari.hokkaido.jp/uploaded/attachment/12445.pdf. [accessed 2021/11/17].

[115] ASHRAE, Measurement of Energy, Demand, and Water Savings, ASHRAE Guideline 14-2014, 2014.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る