リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Laser-driven multi-MeV high-purity proton acceleration via anisotropic ambipolar expansion of micron-scale hydrogen clusters」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Laser-driven multi-MeV high-purity proton acceleration via anisotropic ambipolar expansion of micron-scale hydrogen clusters

Jinno, Satoshi Kanasaki, Masato Asai, Takafumi Matsui, Ryutaro Pirozhkov, Alexander S. Ogura, Koichi Sagisaka, Akito Miyasaka, Yasuhiro Nakanii, Nobuhiko Kando, Masaki Kitagawa, Nobuko Morishima, Kunihiro Kodaira, Satoshi Kishimoto, Yasuaki Yamauchi, Tomoya Uesaka, Mitsuru Kiriyama, Hiromitsu Fukuda, Yuji 京都大学 DOI:10.1038/s41598-022-18710-x

2022.10.12

概要

Multi-MeV high-purity proton acceleration by using a hydrogen cluster target irradiated with repetitive, relativistic intensity laser pulses has been demonstrated. Statistical analysis of hundreds of data sets highlights the existence of markedly high energy protons produced from the laser-irradiated clusters with micron-scale diameters. The spatial distribution of the accelerated protons is found to be anisotropic, where the higher energy protons are preferentially accelerated along the laser propagation direction due to the relativistic effect. These features are supported by three-dimensional (3D) particle-in-cell (PIC) simulations, which show that directional, higher energy protons are generated via the anisotropic ambipolar expansion of the micron-scale clusters. The number of protons accelerating along the laser propagation direction is found to be as high as 1.6 ±0.3 × 10⁹/MeV/sr/shot with an energy of 2.8 ±1.9 MeV, indicating that laser-driven proton acceleration using the micron-scale hydrogen clusters is promising as a compact, repetitive, multi-MeV high-purity proton source for various applications.

この論文で使われている画像

参考文献

1. Danson, C. N. et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 7, e54 (2019).

2. Prencipe, I. et al. Targets for high repetition rate laser facilities: Needs, challenges and perspectives. High Power Laser Sci. Eng. 5, e17 (2017).

3. Wagner, F. et al. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett. 116, 205002 (2016).

4. Kim, I. J. et al. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses. Phys. Plasmas23, 070701 (2016).

5. Higginson, A. et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun.9, 724 (2018).

6. Borghesi, M. et al. Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas9, 2214–2220 (2002).

7. Romagnani, L. et al. Dynamics of electric fields driving the laser acceleration of multi-MeV protons. Phys. Rev. Lett. 95, 195001 (2005).

8. Roth, M. et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436–439 (2001).

9. Fernández, J. et al. Fast ignition with laser-driven proton and ion beams. Nucl. Fusion 54, 054006 (2014).

10. Ledingham, K. W. D., Singhal, R. P., McKenna, P. & Spencer, I. Laser induced nuclear physics and applications. Nucl. Phys. A 752, 633c (2005).

11. Bulanov, S. & Khoroshkov, V. Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453–456 (2002).

12. White, T. G. et al. Observation of inhibited electron–ion coupling in strongly heated graphite. Sci. Rep. 2, 889 (2012).

13. Dromey, B. et al. Picosecond metrology of laser-driven proton bursts. Nat. Commun. 7, 10642 (2016).

14. Daido, H., Nishiuchi, M. & Pirozhkov, A. S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401 (2012).

15. Macchi, A., Borghesi, M. & Passoni, M. Ion acceleration by superintense laser–plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013).

16. Costa Fraga, R. A. et al. Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser–plasma generation. Rev. Sci. Instrum. 83, 025102 (2012).

17. Polz, J. et al. Efficient laser-driven proton acceleration from a cryogenic solid hydrogen target. Sci. Rep. 9, 16534 (2019).

18. Bedacht, S. Laser-driven ion acceleration with cryogenic hydrogen targets. GSI Sci. Rep. 2013 PNI-PP-11, 192 (2014).

19. Garcia, S. et al. Continuous production of a thin ribbon of solid hydrogen. Laser Part. Beams 32, 569 (2014).

20. Margarone, D. et al. Proton acceleration driven by a nanosecond laser from a cryogenic thin solid-hydrogen ribbon. Phys. Rev. X6, 041030 (2016).

21. Kraft, S. D. et al. First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target. Plasma Phys. Control. Fusion 60, 044010 (2018).

22. Girard, A. et al. Cryogenic hydrogen targets for proton beam generation with ultra-intense lasers. IOP Conf. Series Mater. Sci. Eng.502, 012160 (2019).

23. Kim, J. B. et al. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments. Rev. Sci. Instrum. 87, 11E328 (2016).

24. Gauthier, M. et al. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target. Rev. Sci. Instrum. 87, 11D827 (2016).

25. Gauthier, M. et al. High repetition rate, multi-MeV proton source from cryogenic hydrogen jets. Appl. Phys. Lett. 111, 114102 (2017).

26. Obst, L. et al. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets. Sci. Rep. 7, 10248 (2017).

27. Sylla, F. et al. Development and characterization of very dense submillimetric gas jets for laser-plasma interaction. Rev. Sci. Instrum.83, 033507 (2012).

28. Chen, S. N. et al. Collimated protons accelerated from an overdense gas jet irradiated by a 1 μm wavelength high-intensity short- pulse laser. Sci. Rep. 7, 13505 (2017).

29. Singh, P. K. et al. Electrostatic shock acceleration of ions in near-critical-density plasma driven by a femtosecond petawatt laser.Sci. Rep. 10, 18452 (2020).

30. Haberberger, D. et al. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys. 8, 95 (2012).

31. Jinno, S. et al. Characterization of micron-size hydrogen clusters using Mie scattering. Opt. Express 25, 18775 (2017).

32. Jinno, S. et al. Micron-size hydrogen cluster target for laser-driven proton acceleration. Plasma Phys. Control. Fusion 60, 044021 (2018).

33. Ditmire, T. et al. High intensity laser absorption by gases of atomic clusters. Phys. Rev. Lett. 78, 3121 (1997).

34. Tajima, T., Kishimoto, Y. & Downer, M. C. Optical properties of cluster plasma. Phys. Plasmas 6, 3759 (1999).

35. Kishimoto, Y. et al. High energy ions and nuclear fusion in laser–cluster interaction. Phys. Plasmas 9, 589 (2002).

36. Fennel, T. et al. Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 82, 1973 (2010).

37. Iwata, N. et al. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime. Phys. Plasmas 23, 063115 (2016).

38. Smith, R. A. et al. Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments. Rev. Sci. Instrum. 69, 3798 (1998).

39. Sakabe, S. et al. Generation of high-energy protons from the coulomb explosion of hydrogen clusters by intense femtosecond laser pulses. Phys. Rev. A 69, 023203 (2004).

40. Symes, D. R. et al. Anisotropic explosions of hydrogen clusters under intense femtosecond laser irradiation. Phys. Rev. Lett. 98, 123401 (2007).

41. Grieser, S. et al. Nm-sized cryogenic hydrogen clusters for a laser-driven proton source. Rev. Sci. Instrum. 90, 043301 (2019).

42. Aurand, B. et al. Study of the parameter dependence of laser-accelerated protons from a hydrogen cluster source. New J. Phys. 2, 033025 (2020).

43. Matsui, R., Fukuda, Y. & Kishimoto, Y. Quasimonoenergetic proton bunch acceleration driven by hemispherically converging collisionless shock in a hydrogen cluster coupled with relativistically induced transparency. Phys. Rev. Lett. 122, 014804 (2019).

44. Kiriyama, H. et al. High-contrast high-intensity repetitive petawatt laser. Opt. Lett. 43, 2595 (2018).

45. Pirozhkov, A. S. et al. Approaching the diffraction-limited, bandwidth-limited petawatt. Opt. Express 25, 20486 (2017).

46. Kanasaki, M. et al. Correction method for the energy spectrum of laser-accelerated protons measured by CR-39 track detectors with stepwise energy filters. High Energy Density Phys. 37, 100852 (2020).

47. Kuramitsu, Y. et al. Robustness of large-area suspended graphene under interaction with intense laser. Sci. Rep. 12, 2346 (2022).

48. Even, U. The Even-Lavie valve as a source for high intensity supersonic beam. EPJ Tech. Instrum. 2, 17 (2015).

49. Kanasaki, M. et al. The precise energy spectra measurement of laser-accelerated MeV/n-class high-Z ions and protons using CR-39 detectors. Plasma Phys. Control. Fusion 58, 034013 (2016).

50. Asai, T. et al. Application of nuclear emulsions for the identification of multi-MeV protons in laser ion acceleration experiments.High Energy Density Phys. 32, 44 (2019).

51. Tukey, J. W. Exploratory Data Analysis (Addison-Wesley, 1977).

52. Fukuda, Y. et al. Structure and dynamics of cluster plasmas created by ultrashort intense laser fields. Phys. Rev. A 73, 031201(R) (2006).

53. Matsui, R., Fukuda, Y. & Kishimoto, Y. Dynamics of the boundary layer created by the explosion of a dense object in an ambient dilute gas triggered by a high power laser. Phys. Rev. E 100, 013203 (2019).

54. Kishimoto, Y. et al. A paradigm of kinetic simulation including atomic and relaxation processes: A sudden event in a lightning process. J. Plasma Phys. 72, 971 (2006).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る