リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「New Insights on Structures Forming the Lignin-Like Fractions of Ancestral Plants」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

New Insights on Structures Forming the Lignin-Like Fractions of Ancestral Plants

Rencoret, Jorge Gutiérrez, Ana Marques, Gisela del Río, José C. Tobimatsu, Yuki Lam, Pui Ying Pérez-Boada, Marta Ruiz-Dueñas, Francisco Javier Barrasa, José M. Martínez, Angel T. 京都大学 DOI:10.3389/fpls.2021.740923

2021

概要

In the present work, lignin-like fractions were isolated from several ancestral plants –including moss (Hypnum cupressiforme and Polytrichum commune), lycophyte (Selaginella kraussiana), horsetail (Equisetum palustre), fern (Nephrolepis cordifolia and Pteridium aquilinum), cycad (Cycas revoluta), and gnetophyte (Ephedra fragilis) species– and structurally characterized by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. Py-GC/MS yielded marker compounds characteristic of lignin units, except in the H. cupressiforme, P. commune and E. palustre “lignins, ” where they were practically absent. Additional structural information on the other five samples was obtained from 2D-NMR experiments displaying intense correlations signals of guaiacyl (G) units in the fern and cycad lignins, along with smaller amounts of p-hydroxyphenyl (H) units. Interestingly, the lignins from the lycophyte S. kraussiana and the gnetophyte E. fragilis were not only composed of G- and H-lignin units but they also incorporated significant amounts of the syringyl (S) units characteristic of angiosperms, which appeared much later in plant evolution, most probably due to convergent evolution. The latter finding is also supported by the abundance of syringol derivatives after the Py-GC/MS analyses of these two samples. Regarding lignin structure, β−O−4′ alkyl-aryl ethers were the most abundant substructures, followed by condensed β−5′ phenylcoumarans and β−β′ resinols (and dibenzodioxocins in the fern and cycad lignins). The highest percentages of alkyl-aryl ether structures correlated with the higher S/G ratio in the S. Kraussiana and E. fragilis lignin-like fractions. More interestingly, apart from the typical monolignol-derived lignin units (H, G and S), other structures, assigned to flavonoid compounds never reported before in natural lignins (such as amentoflavone, apigenin, hypnogenol B, kaempferol, and naringenin), could also be identified in the HSQC spectra of all the lignin-like fractions analyzed. With this purpose, in vitro synthesized coniferyl-naringenin and coniferyl-apigenin dehydrogenation polymers were used as standards. These flavonoids were abundant in H. cupressiforme appearing as the only constituents of the moss lignin-like fraction (including 84% of dimeric hypnogenol B) and their abundance decreased in those of S. Kraussiana (with amentoflavone and naringenin representing 14% of the total aromatic units), and the two ancient gymnosperms (0.4–1.2%) and ferns (0–0.7%).

この論文で使われている画像

参考文献

pathway – Another brick in the wall. ACS Sustain. Chem. Eng. 8, 4997–5012.

doi: 10.1021/acssuschemeng.0c01109

del Río, J. C., Rencoret, J., Gutiérrez, A., Lan, W., Kim, H., and Ralph,

J. (2021). “Lignin Monomers Derived from the Flavonoid and

Hydroxystilbene Biosynthetic Pathways,” in Recent Advances in Polyphenol

Research Vol. 7, eds J. D. Reed, V. A. P. de Freitas, and S. Quideau

(Hoboken: John Wiley & Sons Ltd), 177–206. doi: 10.1002/978111954

5958.ch7

del Río, J. C., Rencoret, J., Prinsen, P., Martínez, A. T., Ralph, J., and Gutiérrez,

A., (2012). Structural characterization of wheat straw lignin as revealed by

analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food

Chem. 60, 5922–5935. doi: 10.1021/jf301002n

Erickson, M., and Miksche, G. E. (1974). On the occurrence of lignin or

polyphenols in some mosses and liverworts. Phytochemistry 13, 2295–2299.

doi: 10.1016/0031-9422(74)85042-9

Espiñeira, J. M., Novo Uzal, E., Gómez Ros, L. V., Carrión, J. S., Merino, F., Ros

Barceló, A., et al. (2011). Distribution of lignin monomers and the evolution

of lignification among lower plants. Plant Biol. 13, 59–68. doi: 10.1111/j.14388677.2010.00345.x

Banks, J. A. (2009). Selaginella and 400 million years of separation. Annu. Rev.

Plant Biol. 60, 223–238. doi: 10.1146/annurev.arplant.59.032607.092851

Bateman, R. M. (1996). “Nonfloral homoplasy and evolutionary scenarios in living

and fossil land plants,” in Homoplasy; The Recurrence Of Similarity In Evolution,

eds M. J. Sanderson and L. Hufford (Cambridge, Massachusetts: Academic

Press), 91–130. doi: 10.1016/b978-012618030-5/50006-x

Björkman, A. (1956). Studies on finely divided wood. Part I. Extraction of lignin

with neutral solvents. Sven. Papperstidn 13, 477–485.

Clayton, W. A., Albert, N. W., Thrimawithana, A. H., McGhie, T. K., Deroles,

S. C., Schwinn, K. E., et al. (2018). UVR8-mediated induction of flavonoid

biosynthesis for UVB tolerance is conserved between the liverwort Marchantia

polymorpha and flowering plants. Plant J. 96, 503–517. doi: 10.1111/tpj.14044

Davies, K. M., Jibran, R., Zhou, Y., Albert, N. W., Brummell, D. A., Jordan, B. R.,

et al. (2020). The evolution of flavonoid biosynthesis: a bryophyte perspective.

Front. Plant Sci. 11:7. doi: 10.3389/fpls.2020.00007

del Río, J. C., Rencoret, J., Gutierrez, A., Elder, T., Kim, H., and Ralph, J.

(2020). Lignin monomers from beyond the canonical monolignol biosynthetic

Frontiers in Plant Science | www.frontiersin.org

12

October 2021 | Volume 12 | Article 740923

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Rencoret et al.

Lignin-Like Fractions of Ancestral Plants

Evtuguin, D. V., Neto, C. P., Silva, A. M. S., Domingues, P. M., Amado, F. M. L.,

Robert, D., et al. (2001). Comprehensive study on the chemical structure of

dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food Chem.

49, 4252–4261. doi: 10.1021/jf010315d

Fujimoto, A., Matsumoto, Y., Chang, H. M., and Meshitsuka, G. (2005).

Quantitative evaluation of milling effects on lignin structure during the

isolation process of milled wood lignin. J. Wood Sci. 51, 89–91. doi: 10.1007/

s10086-004-0682-7

Geiger, H., Seeger, T., Zinsmeister, H. D., and Frahm, J.-P. (1997). The occurrence

of flavonoids in arthrodontous mosses-an account of the present knowledge.

J. Hattori. Bot. Lab. 83, 273–308.

Grotewold, E. (2006). The Science of Flavonoids. New York, NY USA: Springer

Science and Business Media, Inc. doi: 10.1007/0-387-28822-8

Imperato, F. (1996). Kaempferol 3-O-(5”-feruloylapioside) from Pteridium

aquilinum. Phytochemistry 43, 1421–1423. doi: 10.1016/S0031-9422(96)00

428-1

Jermy, A. C. (1990). “Selaginellaceae,” in Pteridophytes and Gymnosperms. The

Families and Genera of Vascular Plants, eds K. U. Kramer and P. S. Green

(Berlin, Heidelberg: Springer Berlin Heidelberg), 39–45. doi: 10.1007/978-3662-02604-5_11

Jin, Z., Matsumoto, Y., Tange, T., Akiyama, T., Higuchi, M., Ishii, T., et al.

(2005). Proof of the presence of guaiacyl-syringyl lignin in Selaginella

tamariscina. J. Wood Sci. 51, 424–426. doi: 10.1007/s10086-005-0

725-8

Jin, Z., Matsumoto, Y., Tange, T., and Iiyama, K. (2007a). Structural characteristics

of lignin in primitive pteridophytes: Selaginella species. J. Wood Sci. 53, 412–

418. doi: 10.1007/s10086-006-0872-6

Jin, Z., Shao, S., Katsumata, K. S., and Iiyama, K. (2007b). Lignin characteristics

of peculiar vascular plants. J. Wood Sci. 53, 520–523. doi: 10.1007/s10086-0070891-y

Kenrick, P., and Crane, P. R. (1997). The origin and early evolution of plants on

land. Nature 389, 33–39. doi: 10.1038/37918

Kim, H., Padmakshan, D., Li, Y., Rencoret, J., Hatfield, R. D., and Ralph, J. (2017).

Characterization and elimination of undesirable protein residues in plant cell

wall materials for enhancing lignin analysis by solution-state Nuclear Magnetic

Resonance spectroscopy. Biomacromolecules 18, 4184–4195. doi: 10.1021/acs.

biomac.7b01223

Lam, P. Y., Lui, A. C. W., Yamamura, M., Wang, L., Takeda, Y., Suzuki, S.,

et al. (2019). Recruitment of specific flavonoid B-ring hydroxylases for two

independent biosynthesis pathways of flavone-derived metabolites in grasses.

New Phytol. 223, 204–219. doi: 10.1111/nph.15795

Lam, P. Y., Tobimatsu, Y., Takeda, Y., Suzuki, S., Yamamura, M., Umezawa,

T., et al. (2017). Disrupting flavone synthase II alters lignin and improves

biomass digestibility. Plant Physiol. 174, 972–985. doi: 10.1104/pp.16.0

1973

Lan, W., Lu, F., Regner, M., Zhu, Y., Rencoret, J., Ralph, S. A., et al. (2015). Tricin,

a flavonoid monomer in monocot lignification. Plant Physiol. 167, 1284–1295.

doi: 10.1104/pp.114.253757

Lan, W., Rencoret, J., Lu, F., Karlen, S. D., Smith, B. G., Harris, P. J., et al. (2016b).

Tricin-lignins: occurrence and quantitation of tricin in relation to phylogeny.

Plant J. 88, 1046–1057. doi: 10.1111/tpj.13315

Lan, W., Morreel, K., Lu, F., Rencoret, J., del Río, J. C., Voorend, W.,

et al. (2016a). Maize tricin-oligolignol metabolites and their implications

for monocot lignification. Plant Physiol. 171, 810–820. doi: 10.1104/pp.16.0

2012

Logan, K. J., and Thomas, B. A. (1985). Distribution of lignin derivatives

in plants. New Phytol. 99, 571–585. doi: 10.1111/j.1469-8137.1985.tb0

3685.x

Moawad, A., Hetta, M., Zjawiony, J. K., Ferreira, D., and Hifnawy, M. (2014). Two

new dihydroamentoflavone glycosides from Cycas revoluta. Nat. Prod. Res. 28,

41–47. doi: 10.1080/14786419.2013.832675

Moawad, A., Hetta, M., Zjawiony, J. K., Jacob, M. R., Hifnawy, M., Marais, J. P. J.,

et al. (2010). Phytochemical investigation of Cycas circinalis and Cycas revoluta

leaflets: moderately active antibacterial biflavonoids. Planta Med. 76, 796–802.

doi: 10.1055/s-0029-1240743

Nakabayashi, T. (1955). Isolation of astragalin and isoquercitrin from bracken,

Pteridium aquilinum. J. Agric. Chem. Soc. Japan 19, 104–109. doi: 10.1080/

03758397.1955.10857273

Frontiers in Plant Science | www.frontiersin.org

Nawawi, D. S., Syafii, W., Akiyama, T., and Matsumoto, Y. (2016). Characteristics

of guaiacyl-syringyl lignin in reaction wood in the gymnosperm

Gnetum gnemon L. Holzforschung 70, 593–602. doi: 10.1515/hf-20150107

Negm, W. A., Ibrahim, A. E. R. S., Abo El-Seoud, K. A., Attia, G. I., and Ragab,

A. E. (2016). A new cytotoxic and antioxidant amentoflavone monoglucoside

from Cycas revoluta Thunb growing in Egypt. J. Pharm. Sci. Res. 8, 343–350.

Nimz, H. H., and Tutschek, R. (1977). Kohlenstoff-13-NMR-Spektren von

Ligninen, 7. Zur Frage des Ligningehalts von Moosen (Sphagnum magellanicum

Brid.). Holzforschung 31, 101–106. doi: 10.1515/hfsg.1977.31.4.101

Novo-Uzal, E., Pomar, F., Gómez Ros, L. V., Espiñeira, J. M., and Ros Barceló, A.

(2012). “Chapter 9 - Evolutionary History of Lignins,” in Lignins: Biosynthesis,

Biodegradation and Bioengineering, eds L. Jouanin and C. Lapierre (Cambridge,

Massachusetts: Academic Press), 309–350. doi: 10.1016/B978-0-12-416023-1.

00009-4

Qian, Y., Qiu, X., and Zhu, S. (2015). Lignin: a nature-inspired sun blocker

for broad-spectrum sunscreens. Green Chem. 17, 320–324. doi: 10.1039/

c4gc01333f

Ralph, J., and Hatfield, R. D. (1991). Pyrolysis-GC-MS characterization of

forage materials. J. Agric. Food Chem. 39, 1426–1437. doi: 10.1021/jf00008

a014

Ralph, J., Lapierre, C., and Boerjan, W. (2019). Lignin structure and its engineering.

Curr. Opin. Biotechnol. 56, 240–249. doi: 10.1016/j.copbio.2019.02.019

Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F.,

et al. (2004). Lignins: natural polymers from oxidative coupling of 4hydroxyphenylpropanoids. Phytochem. Rev. 3, 29–60. doi: 10.1023/B:PHYT.

0000047809.65444.a4

Raven, J. A. (1984). Physiological correlates of the morphology of early vascular

plants. Bot. J. Linn. Soc. 88, 105–126. doi: 10.1111/j.1095-8339.1984.tb01566.x

Rencoret, J., del Río, J. C., Nierop, K. G. J., Gutiérrez, A., and Ralph, J. (2016). Rapid

Py-GC/MS assessment of the structural alterations of lignins in genetically

modified plants. J. Anal. Appl. Pyrolysis 121, 155–164. doi: 10.1016/j.jaap.2016.

07.016

Rencoret, J., Marques, G., Serrano, O., Kaal, J., Martínez, A. T., del Río, J. C.,

et al. (2020). Deciphering the unique structure and acylation pattern of

Posidonia oceanica lignin. ACS Sustain. Chem. Eng. 8, 12521–12533. doi: 10.

1021/acssuschemeng.0c03502

Rencoret, J., Prinsen, P., Gutiérrez, A., Martínez, A. T., and del Río, J. C. (2015).

Isolation and structural characterization of the milled wood lignin, dioxane

lignin, and cellulolytic lignin preparations from brewer’s spent grain. J. Agric.

Food Chem. 63, 603–613. doi: 10.1021/jf505808c

Rencoret, J., Ralph, J., Marques, G., Gutiérrez, A., Martínez, A. T., and del Río,

J. C. (2013). Structural characterization of lignin isolated from coconut (Cocos

nucifera) coir fibers. J. Agric. Food Chem. 61, 2434–2445. doi: 10.1021/jf30

4686x

Ros, L. V. G., Gabaldón, C., Pomar, F., Merino, F., Pedreño, M. A., and Barceló,

A. R. (2007). Structural motifs of syringyl peroxidases predate not only the

gymnosperm-angiosperm divergence but also the radiation of tracheophytes.

New Phytol. 173, 63–78. doi: 10.1111/j.1469-8137.2006.01898.x

Setyawan, A. D. (2019). Review: natural products from Genus Selaginella

(Selaginellaceae). Nusant. Biosci. 3, 44–58. doi: 10.13057/nusbiosci/n030107

Sievers, H., Burkhardt, G., Becker, H., and Zinsmeister, H. D. (1992). Hypnogenols

and other dihydroflavonols from the moss Hypnum cupressiforme.

Phytochemistry 31, 3233–3237. doi: 10.1016/0031-9422(92)83482-E

Swamy, R. C., Kunert, O., Schühly, W., Bucar, F., Ferreira, D., Rani, V. S.,

et al. (2006). Structurally unique biflavonoids from Selaginella chrysocaulos

and Selaginella bryopteris. Chem. Biodivers. 3, 405–414. doi: 10.1002/cbdv.

200690044

Tobimatsu, Y., Takano, T., Kamitakahara, H., and Nakatsubo, F. (2008). Studies

on the dehydrogenative polymerizations of monolignol β-glycosides. Part 3:

horseradish peroxidase–catalyzed polymerizations of triandrin and isosyringin.

J. Wood Chem. Technol. 28, 69–83. doi: 10.1080/02773810802124787

Weng, J. K., Akiyama, T., Ralph, J., and Chapple, C. (2011). Independent

recruitment of an O-methyltransferase for syringyl lignin biosynthesis in

Selaginella moellendorffii. Plant Cell 23, 2708–2724. doi: 10.1105/tpc.110.

081547

Weng, J. K., and Chapple, C. (2010). The origin and evolution of lignin

biosynthesis. New Phytol. 187, 273–285. doi: 10.1111/j.1469-8137.2010.03327.x

13

October 2021 | Volume 12 | Article 740923

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Rencoret et al.

Lignin-Like Fractions of Ancestral Plants

Weng, J. K., Li, X., Stout, J., and Chapple, C. (2008). Independent origins of

syringyl lignin in vascular plants. Proc. Natl. Acad. Sci. U. S. A. 105, 7887–7892.

doi: 10.1073/pnas.0801696105

Weng, J. K., and Noel, J. P. (2013). Chemodiversity in Selaginella: a reference

system for parallel and convergent metabolic evolution in terrestrial plants.

Front. Plant Sci. 4:119. doi: 10.3389/fpls.2013.00119

Xie, M., Zhang, J., Tschaplinski, T. J., Tuskan, G. A., Chen, J. G., and

Muchero, W. (2018). Regulation of lignin biosynthesis and its role in

growth-defense tradeoffs. Front. Plant Sci. 9:1427. doi: 10.3389/fpls.2018.0

1427

Yamaguchi, L. F., and Kato, M. J. (2012). Diurnal and seasonal changes in

biflavonoids biosynthesis in Araucaria angustifolia needles. Glob. J. Biochem.

3, 1–7.

Yu, S., Yan, H., Zhang, L., Shan, M., Chen, P., Ding, A., et al. (2017).

A review on the phytochemistry, pharmacology, and pharmacokinetics of

amentoflavone, a naturally-occurring biflavonoid. Molecules 22:299. doi: 10.

3390/molecules22020299

Frontiers in Plant Science | www.frontiersin.org

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Rencoret, Gutiérrez, Marques, del Río, Tobimatsu, Lam,

Pérez-Boada, Ruiz-Dueñas, Barrasa and Martínez. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice. No

use, distribution or reproduction is permitted which does not comply with these terms.

14

October 2021 | Volume 12 | Article 740923

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る