リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Frequency-stabilized laser at telecom wavelength for astro-comb application」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Frequency-stabilized laser at telecom wavelength for astro-comb application

池田 幸平 横浜国立大学 DOI:info:doi/10.18880/00013937

2021.06.17

概要

原子や分子の量子準位に基づいて周波数が決まる時間・周波数標準は計測や通信の分野に欠かせない存在であり、GPS(Global Positioning System; 全地球測位システム)をはじめとする幅広い応用へとつながっている[1,2]。レーザーの誕生により、研究の対象はマイクロ波領域から光領域へと拡張され、分光学の発展や計測技術の進歩も相まって、時間・周波数標準の精度は年々向上されている。国際単位系(SI: International System of Units)の一つである「秒」の定義変遷の歴史を振り返ると、1956年までは地球の自転(不確かさ:10-7)、1956年~1967年までは地球の公転(不確かさ:10-9)に基づいていたが、1967年から現在の「秒はセシウム133原子の基底状態の2つの超微細準位間の遷移に対応する放射の9192631770周期の持続時間である」という定義が採択され、マイクロ波領域の原子放射(不確かさ:10-16)に基づいて秒が決定されるようになっている[3,4,5]。時間・周波数標準の高精度化に向けた研究は現在でも活発に続いており、近年の光時計の飛躍的成果によって現在では不確かさ10-18の精度が達成されているため、将来的には原子やイオンの光遷移による再定義が検討されている。

高精度な時計を実現するという応用以外にも時間・周波数標準は様々な物理量を決定する際に役立っており、その代表的なものが「長さ」である。長さの単位であるメートルは、「光が真空中を1/299792458秒間に進む行程の長さ」と定義されている。長さ計測ではゲージブロックなどの長さ標準器が必要になる。その長さ標準器は周波数安定化レーザーとトレーサブルになっており、干渉測定に使用した周波数安定化レーザーの真空波長をもとに屈折率補正を行うことで校正されている。しかし、定義に沿って忠実に長さ計測を行おうとすると、干渉計の基準となる周波数安定化レーザーは、1次標準であるセシウム原子周波数標準を基に絶対周波数測定を行わなければならず、非常に手間がかかる作業となる。そこで、国際度量衡委員(CIPM)は、「勧告された放射リスト」と呼ばれる周波数安定化レーザーのリストを作成し、定期的にその周波数値を勧告している。勧告された周波数安定化レーザーはメートルの定義を実現するための具体的な方法としてそのまま使うことが承認されている。表1-1に2017年現在、CIPMが勧告している周波数安定化レーザーとその周波数および不確かさのリストの抜粋を示す。

この論文で使われている画像

参考文献

[1] T. Udem, R. Holzwarth and T. W. Hänsch, "Optical frequency metrology," Nature 416(6877), 233–237 (2002).

[2] F.-L. Hong, "Optical frequency standards for time and length applications," Meas. Sci. Technol. 28(1), 012002 (2017).

[3] V. Gerginov, N. Nemitz, S. Weyers, R. Schröder, D. Griebsch , R. Wynands, “ Uncertainty evaluation of the caesium fountain clock PTB-CSF2, ” Metrologia, 47(1), 65–79 (2009).

[4] K. Szymaniec, S. E. Park, G. Marra , W. Chałupczak, “First accuracy evaluation of the NPL-CsF2 primary frequency standard,” Metrologia, 47(4), 363–376 (2010).

[5] J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, R. Li, K. Gibble, A. Clairon , S. Bize, “Progress in atomic fountains at LNE-SYRTE,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 59(3), 391–409 (2012).

[6] 洪 鋒雷, “秒の再定義に向けての原子時計の新しい進展「秒の二次表現」,” 日本物理学会誌, 第 65 巻, pp. 80-88 (2010).

[7] S. Gerstenkorn , P. Luc, “Atlas Du Spectre D’ Absorption de la Molecule D’ Iode,” Editions de CNRS, Paris (1978).

[8] J. Ye, L. Robertsson, S. Picard, L.-S. Ma , J. L. Hall, “Absolute frequency atlas of molecular I/sub 2/ lines at 532 nm,” IEEE Trans. Instrum. Meas. 48(2), 544-549 (1999).

[9] T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2002), ” Metrologia 40,103-133 (2003).

[10] J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister , J. Ye, “Stabilization and frequency measurement of the I/sub 2/-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48(2), 583-588 (1998).

[11] 尾藤洋一, 平井亜紀子, 吉森秀明, 洪鋒雷, 大苗敦, 岩崎茂雄 , 瀬田勝男, “3 本 の安定化レーザを用いた長尺ブロックゲージ干渉計の開発,” 精密工学会誌 Vol. 68, No. 4 (2002).

[12] T. Schuldt, S. Saraf, A. Stochino, K. Doringshoff, S. Buchman, G. D. Cutler, J. Lipa, S. Tan, J. Hanson, B. Jaroux, C. Braxmaier, N. Gurlebeck, S. Herrmann, C. Lammerzahl, A. Peters, A. Alfauwaz, A. Alhussien, B. Alsuwaidan, T. A. Saud, H. Dittus, U. Johann, S. P. Worden , R. L. Byer, “Testing Special Relativity in Space Using High Performance Optical Frequency References,” IFCS-EFTF (2015).

[13] K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik , A. Peters, “Iodine Frequency Reference on a Sounding Rocket,” Phy. Rev. Appl. 11, 054068 (2019).

[14] S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766-768 (2002).

[15] F. Keilmann, C. Gohle , R. Holzwarth, “Time-domain mid-infrared frequencycomb spectroscopy,” Opt. Lett. 29, 1542-1544 (2004).

[16] I. Coddington, I. Coddington, W. C. Swann , N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100, 013902 (2008).

[17] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt , T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).

[18] K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire and M. A. Krainak, "Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide," Appl. Opt. 50(7), 1047–1056 (2011).

[19] S. Droste, G. Ycas, B. R. Washburn, I. Coddington , N. R. Newbury, “Optical Frequency Comb Generation based on Erbium Fiber Lasers,” Nanophotonics 5(2), 196–213 (2016).

[20] H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi , M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).

[21] R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003), ” Metrologia 42(4), 323–325 (2005).

[22] https://www.bipm.org/en/publications/mises-en-pratique/standardfrequencies.html.

[23] K. Nakagawa, M. d. Labachelerie, Y. Awaji , M. Kourogi, “Accurate optical frequency atlas of the 1.5-m bands of acetylene,” J. Opt. Soc. Am. B 13(12), 2708–2714 (1996).

[24] A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai , B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition, ” IEEE Trans. Instrum. Meas. 48(2), 563-566 (1999).

[25] A. Pesatori, M. Norgia, V. Calabrese, G. Galzerano, E. Bava , C. Svelto, “Optical Frequency Standard by HI Doppler-Broadened Absorption and External-Cavity Laser Diode at 1.541 m,”IEEE Trans. Instrum. Meas. 57(8) (2008).

[26] M. Yoshida, K. Yoshida, K. Kasai , M. Nakazawa, “1.55 m hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized modelocked fiber laser,” Opt. Express 24(21), 24287-24296 (2016).

[27] J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard , M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/25D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).

[28] J. Ye, S. Swartz, P. Jungner , J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21(16), 1280–1282 (1996).

[29] S. Saraf, P. Berceau, A. Stochino, R. Byer , J. Lipa, “Molecular frequency reference at 1.56  m using a 12C16O overtone transition with the noiseimmune cavity-enhanced optical heterodyne molecular spectroscopy method,” Opt. Lett. 41(10), 2189-2192 (2016).

[30] F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli , H. Matsumoto, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28(23), 2324–2326 (2003).

[31] M. Takamoto, F.-L. Hong, R. Higashi , H. Katori, “An optical lattice clock,” Nature 435, 321 (2005).

[32] 武者満, “高精度光ファイバリンクを用いた Sr 光格子時計の計測,” レーザー研 究, 第 38 巻, 第 7, pp. 505-511 (2010).

[33] V. Leonhardt, J. H. Chow , J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M (2006).

[34] J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart , D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb twophoton transitions,”Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).

[35] K. P. Huber , G. Herzberg, Spectra and Molecular Structure IV. Constants of Diatomic Molecules, D. van Nostrand, 1979.

[36] B. Bodermann, M. Klug, H. Knöckel, E. Tiemann, T. Trebst , H. R. Telle, “Frequency measurement of I2 lines in the NIR using Ca and CH4 optical frequency standards,” Appl. Phys. B 67, (1998).

[37] W.-Y. Cheng, L. Chen, T. H. Yoon, J. L. Hall , J. Ye, “Sub-Doppler moleculariodine transitions near the dissociation limit (523-498 nm),” Opt. Lett. 27(8), 571-573 (2002).

[38] J. Vigué, M. Broyer , J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2 B state I. - Theory,” J. Physique 42, 937-947 (1981).

[39] J. Vigué, M. Broyer , J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2 B state II. - Experiments on natural and hyperfine predissociation,” J. Physique 42, 949-959 (1981).

[40] J. Wallerand, L. Robertsson, L.-S. Ma , M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser,” Metrologoa 43, 294-298 (2006).

[41] C. J. Bordé, G. Camy , B. Decomps, “Measurement of the recoil shift of saturation resonances of 127I2 at 5145 Å: A test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20(1), 254–268 (1979).

[42] F. du Burck, C. Daussy, A. Amy-Klein, A. N. Goncharov, O. Lopez, C. Chardonnet , J.-P. Wallerand, “Frequency measurement of an Ar/sup +/ laser stabilized on narrow lines of molecular iodine at 501.7 nm,” IEEE Trans. Instrum. Meas. 54, 754-8 (2005).

[43] J. J. Snyder, R. K. Raj, D. Bloch , M. Ducloy, “High-sensitivity nonlinear spectroscopy using a frequency-offset pump,” Opt. Lett. 5, 163-165 (1980).

[44] J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7(11), 537–539 (1982).

[45] L. Hollberg, L.-S. Ma, M. Hohenstatt , J. L. Hall, “Precision measurements by optical heterodyne techniques,” SPIE 426, 91-98 (1983).

[46] G. Camy, C. J. Bordé , M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41(5), 325–330 (1982).

[47] R. K. Raj, D. Bloch, J. J. Snyder, G. Camy , M. Ducloy, “High frequency optically heterodyned saturation spectroscopy via resonant degenerate fourwave mixing,” Phys. Rev. Lett. 44, 1251-1254 (1980).

[48] F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae , H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235, 377-385 (2004).

[49] T. Preuschoff, M. Schlosser , G. Birkl, “ Optimization strategies for modulation transfer spectroscopy applied to laser stabilization,”Opt. Express 26(18), 24010-24019 (2018).

[50] L.-S. Ma , J.-L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: Toward improved working standards, ” IEEE J. Quantum. Electron. 26, 2006-2012 (1990).

[51] M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida , H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter, ” IEEE J. Quantum Electron. 39(10), 1327–1333 (2003).

[52] T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong , T. W. Hänsch, “Efficient 494mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).

[53] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer , M. Loncar, “ Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides, ” Optica 5(11),1438-1441 (2018).

[54] L. Chang, Y. Li, N. Volet, L. Wang, J. Peters , J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).

[55] A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. CamachoGonzalez , S. Fathpour, “Actively-monitored periodic-poling in thin film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%W-1cm-2 ,” Opt. Express 27(18), 25920–25930 (2019).

[56] T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong , K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0- 1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).

[57] K. Iwakuni, S. Okubo, S. Tadanaga, H. Inaba, A. Onae, F.-L. Hong , H. Sasada, “Broadband frequency comb,” Opt. Lett. 41, 3980-3983 (2016).

[58] K. Hitachi, A. Ishizawa, T. Nishikawa, M. Asobe , T. Sogawa, “Carrierenvelope offset locking with a 2f -to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide,” Opt. Express 22(2), 1629–1635 (2014).

[59] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).

[60] C. Philippe, E. Chea, Y. Nishida, F. d. Burck , O. Acef, “Efficient third harmonic generation of a CW-fibered 1.5 m laser diode,” Appl. Phys. B 122(10), 265 (2016).

[61] K. Yoshii, J. Nomura, K. Taguchi, Y. Hisai , F.-L. Hong, “Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation,” Phys. Rev. Appl. 11(5), 054031 (2019).

[62] C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez , P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).

[63] Y. Bitou, K. Sasaki, H. Inaba, F.-L. Hong , A. Onae, “Rubidium-stabilized diode laser for high-precision interferometer,” Opt. Eng. 43(4), 900–903 (2004).

[64] C. Philippe, D. Holleville, R. L. Targat, P. Wolf, T. Leveque, R. L. Goff, E. Martaud , O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).

[65] J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. L. Targat, P.-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F.-X. Esnault , T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).

[66] R. J. Jones, W.-Y. Cheng, K. W. Holman, L. Chen, J. L. Hall , J. Ye, “Absolutefrequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597-601 (2002).

[67] M. L. Eickhoff , J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44(2), 155–158 (1995).

[68] S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura , H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA), paper STu3P.1 (2018).

[69] T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae , F.-L. Hong, “Compact iodine-stabilized laser operating at 531 nm with stability at the 10-12 level and using a coin-sized laser module,” Opt. Express 23(16), 20749–20759 (2015).

[70] J. Nomura, K. Yoshii, Y. Hisai , F.-L. Hong, “Precision spectroscopy and frequency stabilization using coin-sized laser modules,” J. Opt. Soc. Am. B 36(3), 631–637 (2019).

[71] J. E. Decker , J. R. Petelsky, “Uncertainty evaluation for the measurement of the gauge blocks by optical interferometry,” Metrologia 34(6), 479–493 (1997).

[72] “https://www.nao.ac.jp/research/project/epd.html”.

[73] G. Chang, C.-H. Li, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth , F. X. Kärtner, “Optimization of filtering schemes for broadband astro-combs,” Opt. Express 20(22), 24987-25013 (2012).

[74] G. Chang, C.-H. Li, D. F. Phillips, R. L. Walsworth , F. X. Kärtner, “Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers,” Opt. Express 18(12), 12736-12747 (2010).

[75] R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. S. J. Russell, T. W. Hänsch, R. Holzwarth , T. Udem, “Nonlinear amplification of side-modes in frequency combs,” Opt. Express 21(10), 11670- 11687 (2013).

[76] T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. L. Curto, T. W. Hänsch, R. Holzwarth , T. Udem, “ High-precision calibration of spectrographs,” MNRAS, vol. 405, no. 1, pp. L16–L20 (2010).

[77] D. F. Phillips, A. G. Glenday, C.-H. Li, C. Cramer, G. Furesz, G. Chang, A. J. Benedick, L.-J. Chen, F. X. K ¨ artner, S. Korzennik, D. Sasselov, A. Szentgyorgyi , R. L. Walsworth, “Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb,” Opt. Express 20(13), 13711-13726 (2012).

[78] H.-P. Doerr, T. Steinmetz, R. Holzwarth, T. Kentischer , W. Schmidt, “A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph,” Sol. Physik 280(2), 663-670 (2012).

[79] G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer , S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631-6643 (2012).

[80] A. G. Glenday, C.-H. Li, N. Langellier, G. Chang, L.-J. Chen, G. Furesz, A. A. Zibrov, F. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi , R. L. Walsworth, “Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph,” Optica 2(3), 250-254 (2015).

[81] Y. Ma, L. Zuo, F. Meng, C. Li, T. Jiang, A. Wang, F. Zhao, G. Zhao , Z. Zhang, “A compact 30 GHz spaced astro-comb based on 1 GHz Yb:Fiber laser,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2016), paper JTh2A.137.

[82] X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann , C. Beichman, “Demonstration of a near-IR linereferenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Comm. 7(1), 10436 (2016).

[83] R. A. Probst, G. L. Curto, G. Ávila, A. Brucalassi, B. L. C. Martins, I. d. C. Leão, M. Esposito, J. I. G. Hernández, F. Grupp, T. W. Hänsch, R. Holzwarth, H. Kellermann, F. Kerber, O. Mandel, A. Manescau, L. Pasquini, E. Pozna, R. Rebolo, J. R. d. Medeiros, S. P. Stark, T. Steinmetz, A. S. Mascareño, T. Udem, J. Urrutia , Y. Wu, “Relative stability of two laser frequency combs for routine operation on HARPS and FOCES,” vol. 9908. SPIE, 2016, p. 990864 (2016).

[84] L. Wang, F. Grupp, H. Kellermann, U. Hopp , R. Bender, “Line profile analysis of the laser frequency comb in FOCES,” vol. 10400. SPIE, 2017, p. 66, (2017).

[85] A. Ravi, D. F. Phillips, M. Beck, L. L. Martin, M. Cecconi, A. Ghedina, E. Molinari, A. Bartels, D. Sasselov, A. Szentgyorgyi , R. L. Walsworth, “Astrocomb calibrator and spectrograph characterization using a turn-key laser frequency comb,” JATIS, vol. 3, no. 04, p. 1 (2017).

[86] R. A. McCracken, É. Depagne, R. B. Kuhn, N. Erasmus, L. A. Crause , D. T. Reid, “Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm,” Opt. Express 25(6), 6450-6460 (2017).

[87] J. Löhner-Böttcher, W. Schmidt, H.-P. Doerr, T. Kentischer, T. Steinmetz, R. A. Probst , R. Holzwarth, “LARS: An Absolute Reference Spectrograph for solar observations: Upgrade from a prototype to a turn-key system,” A&A, vol. 607, p. A12 (2017).

[88] Z. Hao, H. Ye, J. Han, Y. Wu, Y. Zhai , D. Xiao, “Calibration Tests of a 25-GHz Mode-spacing Broadband Astro-comb on the Fiber-fed High Resolution Spectrograph (HRS) of the Chinese 2.16-m Telescope,” Publ. Astron. Soc. Pac. 130(994), 125001 (2018).

[89] E. Obrzud, M. Rainer, A. Harutyunyan, B. Chazelas, M. Cecconi, A. Ghedina, E. Molinari, S. Kundermann, S. Lecomte, F. Pepe, F. Wildi, F. Bouchy , T. Herr, “Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb,” Opt. Express 26(26), 34830-34841 (2018).

[90] A. J. Metcalf, T. Anderson, C. F. Bender, S. Blakeslee, W. Brand, D. R. Carlson, W. D. Cochran, S. A. Diddams, M. Endl, C. Fredrick, S. Halverson, D. D. Hickstein, F. Hearty, J. Jennings, S. Kanodia, K. F. Kaplan, E. Levi, E. Lubar, S. Mahadevan, A. Monson, J. P. Ninan, C. Nitroy, S. Osterman, S. B. Papp, F. Quinlan, L. Ramsey, P. Robertson, A. Roy, C. Schwab, S. Sigurdsson, K. Srinivasan, G. Stefansson, D. A. Sterner, R. Terrien, A. Wolszczan, J. T. Wright , G. Ycas, “Stellar spectroscopy in the near-infrared with a laser frequency comb,” Optica 6(2), 233-239 (2019).

[91] E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg , T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).

[92] M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman , K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” Nat. Photonics 13(1), 25-30 (2019).

[93] T. Herr , R. A. McCracken, “Astrocomb: Recent Advances,” IEEE Photon. Technol. Lett. 31(23), 1890-1893 (2019).

[94] F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, C. J. Bordé , J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18(3), 379–387 (2001).

[95] F.-L. Hong, J. Ishikawa, A. Onae , H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18(10), 1416–1422 (2001).

[96] L. Chen , J. Ye, “Extensive, high-resolution measurement of hyperfine interactions: precise investigations of molecular potentials and wave function,” Chem. Phys. Lett. 381(5-6), 777–783 (2003).

[97] F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae , H. Matsumoto, “Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm,” J. Opt. Soc. Am. B 19(5), 946–953 (2002).

[98] H.-J. Briegel, W. Dür, J. I. Cirac , P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).

[99] L.-M. Duan, M. D. Lukin, J. I. Cirac , P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413– 418 (2001).

[100] N. Sangouard, C. Simon, H. d. Riedmatten , N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).

[101] K. Kutluer, M. Mazzera , d. H. Riedmatten, “Solid-state source of nonclassical photon pairs with embedded multimode quantum memory,” Phys. Rev. Lett. 118, 210502 (2017).

[102] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Ruitenberg, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Pruneri, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau , R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).

[103] E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck , C. Becher, “ Single photon emission from siliconvacancy colour centres in chemical vapour deposition nanodiamonds on iridium,” New J. Phys. 13, 025012 (2011).

[104] R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang , N. Imoto, “Frequency downconversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers,” Opt. Express 22, 11205–11214 (2014).

[105] J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto , M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).

[106] S. Zaske, A. Lenhard , C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications Cband,” Opt. Express 19, 12825–12836 (2011).

[107] N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham , H. d. Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).

[108] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov , M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

[109] S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin , L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).

[110] J. A. Keszenheimer, E. J. Balboni , J. J. Zayhowski, “Phase locking of 1.32- um microchip lasers through the use of pump-diode,” Opt. Lett. 17, 649–651 (1992).

[111] B. Willke, S. Brozek, K. Danzmann, V. Quetschke , S. Gossler, “Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source,” Opt. Lett. 25, 1019–1021 (2000).

[112] Y. Bitou, K. Sasaki, S. Iwasaki , F.-L. Hong, “Compact I2-stabilized frequency- doubled Nd:YAG laser for long gauge block interferometer,” Jpn. J. Appl. Phys. 42, 2867–2871 (2003).

[113] A. Lassila, K. Riski, J. Hu, T. Ahola, S. Naicheng, L. Chengyang, P. Balling, J. Blabla, L. Abramova, Y. G. Zakharenko, V. L. Fedorin, A. Chartier , J.-M. Chartier, “International comparison of He-Ne lasers stabilized with 127I2 at   633 nm,” Metrologia 37, 701-707 (2000).

[114] E. A. Whittaker, M. Gehrtz , G. C. Bjorklund, “ Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).

[115] S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri , H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).

[116] J. I. Steinfeld, Molecules and Radiation, (MIT Press, New York, 1986).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る