リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular analysis of a necrotic cell death induced in cucumber mosaic virus-inoculated Arabidopsis thaliana」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular analysis of a necrotic cell death induced in cucumber mosaic virus-inoculated Arabidopsis thaliana

Tian Ainan 東北大学

2020.03.25

概要

In the field, continuous attacks from numerous pathogens, including viruses, are threatening plant life. For surviving, plants evolved highly efficient defenses to defend themselves. Different from vertebrate immune systems, plant immune systems trigger both preformed defenses at the infection sites and inducible defenses at distal parts of plants. Interactions between plants and pathogens can be represented as consisting of three phases, referred to as a “Zigzag” scheme (Figure 1-1) [1].

During the interactions between plant and pathogens, when pathogen- associated molecular patterns (PAMPs), which are often conserved pathogen molecules essential for their reproduction, were recognized by plant cell surface pattern recognition receptors (PRRs), the first layer of plant defense, pattern (or PRR)- triggered immunity (PTI) was activated. The pathogen failed in penetration of the host cell due to the activation of PTI. However, the arms race between plant and pathogen will not stop but keep evolving. The pathogen alters to produce proteins or other effector molecules under the selective pressures of PTI to suppress PTI, which is known as effector-triggered susceptibility (ETS). When PTI was defeated and pathogens kept releasing their effectors to carry on invasion, the plant was exposed to a selective pressure to produce proteins for the recognition of these effector molecules and the consequently activate defense reaction. Nucleotide binding leucine-rich repeat (NB- LRR) proteins coded by resistance (R) genes in plant recognized the pathogen effectors encoded by avirulence (Avr) genes in the cytoplasm and then triggered the second layer of plant defense, which is known as R gene-mediated defense or effector- triggered immunity (ETI). ETI is a defense system which is much stronger and faster than PTI, and ETI often develops a programmed cell death (PCD) referred to as the hypersensitive response (HR). Therefore, the PCD formed in ETI is also described as HR cell death. Such interactions that fail to result in disease occurrence are described as incompatible interactions. On the other hand, interactions between plants and pathogens that result in disease are described as compatible interactions.

この論文で使われている画像

参考文献

1. Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323-329.

2. Palukaitis, P.; García Arenal, F. Cucumber Mosaic Virus; APS Press: St. Paul, MN, USA, 2018.

3. NG, J.C.K.; L.Perry, K. Transmission of plant viruses by aphid vectors. Mol. Plant Pathol. 2004, 5, 505-511.

4. Christie, R.G.; Edwardson, J.R. Light microscopic techniques for detection of plant virus inclusions. Plant Dis. 1986, 70, 273-279.

5. Huysmans, M.; Lema A, S.; Coll, N.S.; Nowack, M.K. Dying two deaths — programmed cell death regulation in development and disease. Curr. Opin. Plant Biol. 2017, 35, 37-44.

6. Buchanan, B.B.; Gruissem, W.; Jones, R.L. Biochemistry And Molecular Biology of Plants; Wiley: Hoboken, New Jersey, US, 2015.

7. Jones, A.M. Programmed cell death in development and defense. Plant Physiol.2001, 125, 94.

8. Fomicheva, A.S.; Tuzhikov, A.I.; Beloshistov, R.E.; Trusova, S.V.; Galiullina, R.A.; Mochalova, L.V.; Chichkova, N.V.; Vartapetian, A.B. Programmed cell death in plants. Biochemistry (Moscow) 2012, 77, 1452-1464.

9. Morgan, P.W.; Drew, M.C. Plant cell death and cell differentiation. In Plant Cell Death Processes, Noodén, L.D., Ed. Academic Press: San Diego, CA, US, 2004;pp. 19-36.

10. Barlow, P.W. Cell death: an integral part of plant development. Growth regulators in plant senescence 1982, 8, 27-45.

11. Dickman, M.B.; de Figueiredo, P. Death be not proud—cell death control in plant fungal interactions. PLoS Path. 2013, 9, e1003542.

12. Sekine, K.; Kawakami, S.; Hase, S.; Kubota, M.; Ichinose, Y.; Shah, J.; Kang, H.G.; Klessig, D.F.; Takahashi, H. High level expression of a virus resistance gene, RCY1, confers extreme resistance to cucumber mosaic virus in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 2008, 21, 1398-1407.

13. Takahashi, H.; Goto, N.; Ehara, Y. Hypersensitive response in cucumber mosaic virus‐inoculated Arabidopsis thaliana. Plant J. 1994, 6, 369-377.

14. Bendahmane, A.; Kanyuka, K.; Baulcombe, D.C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 1999, 11, 781-791.

15. Al Daoude, A.; de Torres Zabala, M.; Ko, J.H.; Grant, M. RIN13 is a positive regulator of the plant disease resistance protein RPM1. Plant Cell 2005, 17, 1016-1028.

16. Yu, I.; Parker, J.; Bent, A.F. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl. Acad. Sci. USA 1998, 95, 7819-7824.

17. Clough, S.J.; Fengler, K.A.; Yu, I.c.; Lippok, B.; Smith, R.K.; Bent, A.F. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 2000, 97, 9323-9328.

18. Baulcombe, D.; Gilbert, J.; Goulden, M.; Kohm, B.; Cruz, S.S. Molecular biology of resistance to potato virus X in potato. Biochem. Soc. Symp. 1994, 60, 207- 218.

19. Hammond Kosack, K.E.; Silverman, P.; Raskin, I.; Jones, J. Race-specific elicitors of cladosporium fulvum Induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants carrying the corresponding of disease resistance gene. Plant Physiol. 1996, 110, 1381-1394.

20. Morel, J.B.; Dangl, J.L. The hypersensitive response and the induction of cell death in plants. Cell Death Differ. 1997, 4, 671.

21. Komatsu, K.; Hashimoto, M.; Ozeki, J.; Yamaji, Y.; Maejima, K.; Senshu, H.; Himeno, M.; Okano, Y.; Kagiwada, S.; Namba, S. Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol. Plant- Microbe Interact. 2010, 23, 283-293.

22. Inaba, J.; Kim, B.M.; Shimura, H.; Masuta, C. Virus-induced necrosis is a consequence of direct protein-protein interaction between a viral RNA- silencing suppressor and a host catalase. Plant Physiol. 2011, 156, 2026-2036.

23. Sambrook, J.; Russel, D. In Molecular Cloning: a Laboratory Manual Cold Spring Harbor Laboratory Press: New York, NY, 2001.

24. Tomaru, K.; Hidaka, Z. Strains of cucumber mosaic virus isolated from tobacco plants. II. A mild strain. Bull. Hatano Tob. Exp. Stn. 1960, 46, 143-149.

25. Takahashi, H.; Ehara, Y. Severe chlorotic spot symptoms in cucumber mosaic virus strain Y-infected tobaccos are induced by a combination of the virus coat protein gene and two host recessive genes. Mol. Plant-Microbe Interact. 1993, 6, 182-189.

26. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.

27. Koenig, R. Indirect ELISA methods for the broad specificity detection of plant viruses. J. Gen. Virol. 1981, 55, 53-62.

28. Bowling, S.A.; Guo, A.; Cao, H.; Gordon, A.S.; Klessig, D.F.; Dong, X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 1994, 6, 1845-1857.

29. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114-2120.

30. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15-21.

31. Love, M.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550.

32. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 1995, 57, 289-300.

33. Chen, H.; Boutros, P.C. VennDiagram: a package for the generation of highly- customizable Venn and Euler diagrams in R. BMC Bioinformatics 2011, 12, 35.

34. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523.

35. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: J. Integrative Biol. 2012, 16, 284-287.

36. Hashimoto, M.; Komatsu, K.; Iwai, R.; Keima, T.; Maejima, K.; Shiraishi, T.; Ishikawa, K.; Yoshida, T.; Kitazawa, Y.; Okano, Y. Cell death triggered by a putative amphipathic helix of radish mosaic virus helicase protein is tightly correlated with host membrane modification. Mol. Plant-Microbe Interact. 2015, 28, 675-688.

37. Diveki, Z.; Salanki, K.; Balazs, E. The necrotic pathotype of the cucumber mosaic virus (CMV) ns strain is solely determined by amino acid 461 of the 1a protein. Mol. Plant-Microbe Interact. 2004, 17, 837-845.

38. Salánki, K.; Gellért, Á.; Náray Szabó, G.; Balázs, E. Modeling-based characterization of the elicitor function of amino acid 461 of cucumber mosaic virus 1a protein in the hypersensitive response. Virology 2007, 358, 109-118.

39. Kang, W.H.; Seo, J.K.; Chung, B.N.; Kim, K.H.; Kang, B.C. Helicase domain encoded by cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper. PLoS One 2012, 7, e43136.

40. Seo, J.K.; Kwon, S.J.; Choi, H.S.; Kim, K.H. Evidence for alternate states of cucumber mosaic virus replicase assembly in positive-and negative-strand RNA synthesis. Virology 2009, 383, 248-260.

41. O’Reilly, E.K.; Wang, Z.; French, R.; Kao, C.C. Interactions between the structural domains of the RNA replication proteins of plant-infecting RNA viruses. J. Virol. 1998, 72, 7160-7169.

42. Fujisaki, K.; Hagihara, F.; Azukawa, Y.; Kaido, M.; Okuno, T.; Mise, K. Identification and characterization of the SSB1 locus involved in symptom development by spring beauty latent virus infection in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 2004, 17, 967-975.

43. Chen, H.; Adam Arsovski, A.; Yu, K.; Wang, A. Deep sequencing leads to the identification of eukaryotic translation initiation factor 5A as a key element in Rsv1-mediated lethal systemic hypersensitive response to soybean mosaic virus infection in soybean. Mol. Plant Pathol. 2017, 18, 391-404.

44. Kim, B.M.; Suehiro, N.; Natsuaki, T.; Inukai, T.; Masuta, C. The P3 protein of turnip mosaic virus can alone induce hypersensitive response-like cell death in Arabidopsis thaliana carrying TuNI. Mol. Plant-Microbe Interact. 2010, 23, 144- 152.

45. Hajimorad, M.; Eggenberger, A.; Hill, J. Loss and gain of elicitor function of soybean mosaic virus G7 provoking Rsv1-mediated lethal systemic hypersensitive response maps to P3. J. Virol. 2005, 79, 1215-1222.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る