リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Microfluidic generation of monodispersed Janus alginate hydrogel microparticles using water-in-oil emulsion reactant」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Microfluidic generation of monodispersed Janus alginate hydrogel microparticles using water-in-oil emulsion reactant

Yingzhe Liu Takasi Nisisako 東京工業大学 DOI:https://doi.org/10.1063/5.0077916

2022.03.03

概要

Microparticles with uniform anisotropic structures are widely used in physical, chemical, and biological fields owing to their ability to combine multiple functions on a micro-scale. Here, a microfluidic emulsion-based external gelation (μFEEG) method was demonstrated for the first time to produce monodisperse Janus calcium alginate (Ca-alginate) hydrogel microparticles consisting of two compartments. This approach provided a fast reaction condition under which we could prepare magnetic Janus Ca-alginate microparticles with diameters ranging from 148 to 179 μm and a coefficient of variation (CV) less than 4%. Moreover, the boundaries between the two compartments were clear. In addition, the volume fraction of each compartment could be adjusted by varying the flow rate ratio between two dispersed phases. Next, we produced fluorescent Janus beads and magnetic- fluorescent Janus beads with an average diameter of ~150 μm (CV <4.0%). The magnetic Janus hydrogel microparticles we produced could be manipulated by applying a magnetic field to achieve self-assembly, rotation, and accumulation. Magnetic Janus hydrogel microparticles are also capable of mammalian cell encapsulation with good cell viability. This paper presents a simple and stable approach for producing monodisperse bi-compartmental Janus hydrogel microparticles that could have great potential for application in physical, biochemical, and biomedical fields.

この論文で使われている画像

参考文献

1. T. Nisisako, “Recent advances in microfluidic production of Janus droplets and particles,” Curr. Opin. Colloid Interface Sci. 25, 1–12 (2016). https://doi.org/10.1016/j.cocis.2016.05.003.

2. S. Lone, I.W. Cheong, “Fabrication of polymeric Janus particles by droplet microfluidics,” RSC Adv. 4, 13322–13333 (2014). https://doi.org/10.1039/c4ra00158c.

3. T. Nisisako, T. Torii, T. Takahashi, Y. Takizawa, “Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system,” Adv. Mater. 18, 1152– 1156 (2006). https://doi.org/10.1002/adma.200502431.

4. C. C asagramde, P. Fabre, E. Raphael, M. Veyssie, “Janus beads: Realization and behaviour at water/oil interfaces,” Europhys. Lett. 9, 251–255 (1989). https://doi.org/10.1209/0295-5075/9/3/011.

5. S. Berger, A. Synytska, L. Ionov, K.J. Eichhorn, M. Stamm, “Stimuli-responsice bicomponent polymer Janus particles by ‘Grafting from’/‘Grafting’ to approaches,” Macromolecules 41, 9669– 9676 (2008). https://doi.org/10.1021/ma802089h.

6. Y. Du, E. Lo, S. Ali, A. Khademhosseini, “Direct assembly of cell-laden microgels for fabrication of 3D tissue constructs,” PNAS 105, 9522–9527 (2008). https://doi.org/10.1073/pnas.0801866105.

7. W.F. Lai, A.S. Susha, A.L. Rogach, “Multicompartment microgel beads for co-delivery of multiple drugs at individual release rates,” ACS Appl. Mater. Interfaces 8, 871–880 (2016). https://doi.org/10.1021/acsami.5b10274.

8. V. Rastogi, S. Melle, O.G. Calderon, A.A. Garcia, M. Marquez, O.D. Velev, “Synthesis of light- diffreacting assemblies from microspheres and nanoparticles in droplets on a superhydrophobic surface,” Adv. Mater. 20, 4263–4268 (2008). https://doi.org/10.1002/adma.200703008.

9. Y. Komazaki, H. Hirama, T. Torii, “Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper,” J. Appl. Phys. 117, 154506 (2015). https://doi.org/10.1063/1.4917379.

10. J.N. Anker, C. Behrend, R. Kopelman, “Aspherical magnetically modulated optical nanoprobes (MagMOONs),” J. Appl. Phys. 93, 6698–6700 (2003). https://doi.org/10.1063/1.1556926.

11. B. Ren, A. Ruditskiy, J.H. Song, I. Kretzschmar, “Assembly behavior of iron oxide-capped Janus particles in a magentic field,” Langmuir 28, 1149–1156 (2012). https://doi.org/10.1021/la203969f.

12. L. Baraban, D. Makarov, R. Streubel, I. Monch, D. Grimm, S. Sanchez, O.G. Schmidt, “Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery,” ACS Nano 6, 3383–3389 (2012). https://doi.org/10.1021/nn300413p.

13. L.O. Mair, B. Evans, A.R. Hall, J. Carpenter, A. Shields, K. Ford, M. Millard, R. Superfine, “Highly controllable near-surface swimming of magnetic Janus nanorods: application to payload capture and manipulation,” J. Phys. D: Appl. Phys. 44, 125001 (2011). https://doi.org/10.1088/0022-3727/44/12/125001.

14. H. Wang, S. Yang, S.N. Yin, L. Chen, S. Chen, “Janus suprabead displays derived from the modified photonic crystals toward temperature magnetism and optics multiple responses,” ACS Appl. Mater. Interfaces 7, 8827–8833 (2015). https://doi.org/10.1021/acsami.5b01436.

15. K. Maeda, H. Onoe, M. Takinoue, S. Takeuchi, “Controlled synthesis of 3D multt-copmpartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary,” Adv. Mater. 24, 1340–1346 (2012). https://doi.org/10.1002/adma.201102560.

16. L.B. Zhao, L. Pan, K. Zhang, S.S. Guo, W. Liu, Y. Wang, Y. Chen, X.Z. Zhao, H.L.W. Chen, “Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation,” Lab on chip 9, 2981–2986 (2009). https://doi.org/10.1039/b907478c.

17. K.P. Yuet, D.K. Hwang, R. Haghgooie, P.S. Doyle, “Multifunctional superparamagnetic Janus particles,” Langmuir 26, 4281–4287 (2010). https://doi.org/10.1021/la903348s.

18. J. Lan, J.Chen, N. Li, X. Ji, M. Yu, Z. He, “Microfluidic generation of magnetic-fluorescent Janus microparticles for biomolecular detection,” Talanta 151, 126–131 (2016). https://doi.org/10.1016/j.talanta.2016.01.024.

19. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47–52 (2004). https://doi:10.1038/nbt927.

20. V. Stsiapura, A. Sukhanova, M. Artemyev, M. Pluot, J.H.M. Cohen, A.V. Baranov, V. Oleinikov, I. Nabiev, “Functionalized nanocrystal-tagged fluorescent polymer beads: synthesis, physicochemical characterication, and immunolabeling application,” Anal. Biochem. 334, 257– 265 (2004). https://doi.org/10.1016/j.ab.2004.07.006.

21. B.M. Teo, D.J. Young, X.J. Loh, “Magnetic anisotropic particles: toward remotely actuated applications,” Part. Part. Syst. Charact. 33, 709–728 (2016). https://doi.org/10.1002/ppsc.201600060.

22. C. Xu, B. Wang, S. Sun, “Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery,” J. Am. Chem. Soc. 131, 4216–4217 (2009). https://doi.org/10.1021/ja900790v.

23. S.H. Hu, X. Gao, “Manocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy,” J. Am. Chem. Soc. 132, 7234–7237 (2010). https://doi.org/10.1021/ja102489q.

24. X.Y. Ling, I.Y. Phand, C. Acikgoz, M.D. Yilmaz, M.A. Hempenious, G.J. Vancso, J. Huskens, “Janus particles with controllable patchiness and their chemical functionalization and supramolecular assembly,” Angew. Chem. Int. Ed. 48, 7677–7682 (2009). https://doi.org/10.1002/anie.200903579.

25. Y. Zhang, Y. Wan, Y. Liao, Y. Hu, T. Jiang, T. He, W. Bi, J. Lin, P. Gong, L. Tang, et al., “Janus γ- Fe2O3/SiO2-based nanotheranostics for dual-modal imaging and enhanced synergistic cancer starvation/chemodynamic therapy,” Science Bulletin 65, 564–572 (2020). https://doi.org/10.1016/j.scib.2019.12.024.

26. H. Yabu, M. Kanahara, M. Shimomura, T. Arita, K. Harano, E. Nakamura, T. Higuchi, H. Jinnai, “Polymer Janus particles containing block-copolymer stabilized magnetic nanoparticles,” ACS Appl. Mater. Interfaces 5, 3262–3266 (2013). https://doi.org/10.1021/am4003149.

27. K.H. Roh, D.C. Martin, A.J. Lahann, “Biphasic Janus particles with nanoscale anisotropy,” Nature Mater. 4, 759–763 (2005). https://doi.org/10.1038/nmat1486.

28. S.N. Yin, C.F. Wang, Z.Y. Yu, J. Wang, S.S. Liu, S. Chen, “Versatile bifunctional magnetic- fluorescnet responsive Janus supraballs towards the flexible bead display,” Adv. Mater. 23, 2915– 2919 (2011). https://doi.org/10.1002/adma.201100203.

29. Y. Zhao, H.C. Shum, H. Chen, L.L.A. Adams, Z. Gu, D.A. Weitz, “Microfluidic generation of multifunctional quantum dot barcode particles,” J. Am. Chem. Soc. 133, 8790–8793 (2011). https://doi.org/10.1021/ja200729w.

30. R.K. Shah, J.W. Kim, D.A. Weitz, “Janus supraparticles by induced phase separation of nanoparticles in droplets,” Adv. Mater. 21, 1949–1953 (2009). https://doi.org/10.1002/adma.200803115.

31. S.H. Kim, J.Y. Sim, J.M. Lim, S.M. Yang, “Magnetoresponsive microparticles with nanoscopic surface structures for remote-controlled locomotion,” Angew. Chem. 49, 3786–3790 (2010). https://doi.org/10.1002/anie.201001031.

32. S. Li, X. Yu, S. You, B. Cai, C. Liu, H. Liu, W. Liu, S.S. Guo, X.Z. Zhao, “Generation of BiFeO3- Fe3O4 Janus particles based on droplet microfluidic method,” Appl. Phys. Lett. 105, 042903 (2014).

33. S. Yoshida, M. Takinoue, E. Iwase, H. Onoe, “Dynamic transformation of self-assembled structures using anisotropic magnetized hydrogel microparticles,” J. Appl. Phys. 120, 084905 (2016). https://doi.org/10.1063/1.4961422.

34. P. Aslani, R.A. Kennedy, “Effect of gelation conditions and dissolution media on the release of paracetamol from alginate gel beads,” J. Microencapsulation 13, 601–614 (1996). https://doi.org/10.3109/02652049609026044.

35. L. Zhang, K. Chen, H. Zhang, B. Pang, C.H. Choi, A.S. Mao, H. Liao, S. Utech, D.J. Mooney, H. Wang, D.A. Weitz, “Microfluidic templated multicompartment microgels for 3D encapsulation and paring of single cells,” Small 14, 1702955 (2018). https://doi.org/10.1002/smll.201702955.

36. Aketagawa, H. Hirama, T. Torii, “Hyper-miniaturisation of monodisperse Janus hydrogel beads with magnetic anisotropy based on coagulation of Fe3O4 nanoparticles,” J. Mater. Sci. Chem. Eng. 1, 1–5 (2013). https://doi.org/10.4236/msce.2013.12001

37. Y. Liu, N. Tottori, T. Nisisako, “Microfluidic synthesis of highly spherical calcium alginate hydrogels based on external gelation using an emulsion reactant,” Sensors Actuators, B Chem. 283, 802–809 (2019). https://doi.org/10.1016/j.snb.2018.12.101.

38. W.H. Tan, S. Takeuchi, “Monodisperse alginate hydrogel microbeads for cell encapsulation,” Adv. Mater. 19, 2696–2701 (2007). https://doi.org/10.1002/adma.200700433.

39. A. Einstein, “Investigations on the theory of Brownian movement,” (Dover Publications, New York, 1956).

40. A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005). https://doi.org/10.1126/science.1109164.

41. C.K. Kuo, P.X. Ma, “Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties,” Biomaterials 22, 511–521 (2001). https://doi.org/10.1016/s0142-9612(00)00201-5.

42. A.W. Chan, R.J. Neufeld, “Tuneable semi-synthetic network alginate for absorptive encapsulation and controlled release of protein therapeutics,” Biomaterials 31, 9040–9047 (2010). https://doi.org/10.1016/j.biomaterials.2010.07.111.

43. R.G. Thomas, A.R. Unnithan, M.J. Moon, S.P. Surendran, T. Batgerel, C.H. Park, C.S. Kim, Y.Y. Jeong, “Electromagnetic manipulation enabled calcium alginate Janus microsphere for targeted delivery of mesenchymal stem cells,” Int. J. Biol. Macromol. 110, 465–471 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.003.

44. C. Simpliciano, L. Clark, B. Asi, N. Chu, M. Mercado, S. Diaz, M. Goedert, M. Mobed-Miremadi, J. Surf. Eng. Mater. Adv. Technol. 3, 1-12 (2013). http://dx.doi.org/10.4236/jsemat.2013.34A1001.

45. L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, C. Martelet, “Relationship between surface properties (roughness, wetability) of titanium and titanium alloys and cell behavior,” Mater. Sci. Eng. C 23, 551–560 (2003). https://doi.org/10.1016/S0928-4931(03)00033-X.

46. N.J. Hallab, K.J. Bundy, K. O’Connor, R.L. Moses, J.J. Jacobs, “Evaluation of metallic and polymeric biomaterials surface energy and surface roughness characteristics for directed cell adhesion,” Tissue Engineering 7, 55–71 (2001). https://doi.org/10.1089/107632700300003297.

47. A.B. Pawar, I. Kretzschmar, “Fabrication, assembly, and application of patchy particles,” Macromol. Rapid Commun. 31, 150–168 (2010). https://doi.org/10.1002/marc.200900614.

48. X.T. Sun, Y. Zhang, D.H. Zhang, S. Yue, C.G. Yang and Z.R. Xu, “Multitraget sensing of glucose and cholesterol based on Janus hydrogel microparticles,” Biosens. Bioelectron. 92, 81–86 (2017). https://doi.org/10.1016/j.bios.2017.02.008.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る