リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Population genomics of the yellow crazy ant and its intracellular microorganisms」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Population genomics of the yellow crazy ant and its intracellular microorganisms

LEE, CHIH CHI 京都大学 DOI:10.14989/doctor.k22898

2021.01.25

概要

人類の活動により、さまざまな外来生物が、これまでに経験したことのない新しい環境へと分散している。このような生物学的侵入の過程は、非在来種がどのようにして新しい環境に適応し、定着に成功するのかを理解することで、同時代的な時間スケールで生物の進化を探求する絶好の機会を提供する。アリをはじめとする社会性昆虫では、移入先での個体群維持の可否を、局所的な適応が決定しているかどうかは不明である。社会性昆虫の外来種において、集団の多様化とその過程における適応進化を調べることによって、世界的な分布拡大に伴って自然選択がその昆虫にどのような変化をもたらすかを理解する上で重要な知見を得ることができるだろう。さらに、生物の侵入プロセスにおいて、侵入種とそれを宿主とする微生物(ボルバキア菌やウイルスなど)の相互作用が、生物学的侵略の帰結を大きく左右する可能性がある。侵入先において、外来種がもつ微生物は共生者としての利益を提供することで宿主の生存を強化すると同時に、在来生物を脅かす“生物兵器”としても機能する可能性がある。

 本研究では、外来生物における侵入後の進化の帰結を理解するために、広範囲に分布を拡大させた社会的昆虫であるアシナガキアリ(Anoplolepis gracilipes)を調査し、アリの侵入と定着に伴う適応進化のパターンと、本種に付随する細胞内微生物をゲノムワイドなアプローチで理解することを目的とした。

 第1章は論文全体の総論である。本章では、侵略的な社会性昆虫による分布拡大について概説したうえで、研究材料であるアシナガキアリとその共生細菌であるボルバキア、宿主とともにもちこまれる病原体の潜在的な脅威について、現在の理解を述べた。

 第2章では、アシナガキアリを研究するうえで基盤となる遺伝情報が不足していることから、次世代シークエンシング法を用いて本種のミトコンドリアゲノムを解読した。環状のミトコンドリアゲノムは16,943bpで、13のタンパク質をコードする遺伝子、2つのリボソームRNA遺伝子、22のトランスファーRNA、1つの大きなノンコーディング領域を含んでいた。13個のタンパク質をコードする遺伝子の塩基配列を連結して系統解析した結果、本種の系統学的位置はFormicinae亜科に属することが明らかになった。解読されたアシナガキアリのミトコンドリアゲノムは、集団遺伝学的、系統学的、進化学的解析のためのDNAリファレンスとして公表された。

 第3章では、アシナガキアリによる侵入と定着の過程で適応進化が起こるかどうかを調べた。13の地域にまたがる73のアシナガキアリのコロニーについて11,476の多型ゲノムマーカーに基づいて個体群構造を評価した。集団構造解析と移動推定の結果、東南アジア、東アジア、インド太平洋の島々では遺伝子の交流が生じていることが明らかになった。一方、マレー半島の先端部には遺伝的障壁が見出され、アシナガキアリは2つの祖先グループに由来する可能性のある2つの主要な系統学的クレードに分離された。また、FST解析を用いて、正の選択下にある17のゲノム領域を特定し、それらはいくつかのシグナル伝達経路やトランスポゾンに関与する遺伝子と関連している可能性が高いことを明らかにした。これらの結果は、侵略的アリの分布拡大の適応進化の可能性を示唆する新たな知見を与えている。

 第4章では、アシナガキアリの世界的な分布におけるボルバキアの感染率がほぼ100%であることを報告した。ボルバキアとアシナガキアリとの共進化の歴史を理解するために、12の地域にまたがるアリからボルバキアのゲノムSNPを同定し、一塩基多型に基づくボルバキアの系統をアリのミトコンドリアDNAの変異パターンと比較した。その結果、ボルバキアの系統と宿主のmtDNAの間に強い一致があることが明らかになり、共分岐(co-divergence)が進行している証拠が得られた。ボルバキアの遺伝的クラスターを隔てる8つのSNP座のうち、7つの座はタンパク質をコードする遺伝子上に位置していた。そのうちの3つは遺伝子機能に影響を及ぼす可能性のある非同義置換であり、正の選択を受けた痕跡を示すボルバキアのタンパク質遺伝子であることが判明した。これらの知見はともに侵入過程におけるボルバキアとアリの共進化を示唆するものである。

 第5章と第6章では、ハイスループットRNAシークエンシングを用いて、アシナガキアリのウイルス叢(RNA virome)を解析し、ジシストロウイルス(Dicistroviridae)、イフラウイルス(Iflaviridae)、ポリシピウイルス(Polycipiviridae)、および未分類のリボウィリアウイルス(Riboviria)に関連するウイルス様転写物を明らかにした。特に、ジシストロウイルス科のトリアトウイルス属に特徴的な2つの新規ウイルスが報告された。この2つの新規ジシストロウイルスは、それぞれ「Anoplolepisgracilipesvirus1」と「Anoplolepis gracilipes virus 2」と仮命名された。さらに、ポリシピウイルスのゲノムが新規に記載された。ゲノム構造、系統解析、アミノ酸のペアワイズ同一性から、ポリシピウイルス科に属するSopolycivirusの一員であることが明らかになった。このポリシピウイルスは「Anoploleisgracilipesvirus3」と仮命名された。ポリシピウイルスは、大多数の宿主がアリである点で注目に値する。このウイルスは、アリの適応度を低下させる数少ないウイルス性病原体として知られている。遺伝的多様性と置換率の進化的解析により、Anoploleis gracilipes virus 3が高い多型レベルを示すことが明らかになった。このような宿主とともに侵入する病原体の新たな事例の報告は、外来種によってもたらされるウイルスの在来アリ群集への潜在的な脅威をさらに理解するために重要であろう。

 最終章の第7章では、本研究で得られた主要な成果を要約するとともに、今後の展望について言及した。

 本論文では、正の自然選択のシグナルと関連するいくつかの候補遺伝子を用いて、アシナガキアリの個体群構造とその歴史を明らかにした。これらの遺伝子の固定化は、アリの分布拡大に伴う適応進化の帰結だと考えられ、ボルバキアとアリの密接な関係を示唆している。アシナガキアリの病原体に関する知見が不足している中、本研究では、包括的なウイルス叢解析を行い、新たなウイルスを報告した。さらに、アシナガキアリとその微生物を対象とした研究をさらに進めるために、アシナガキアリのドラフトゲノム、ミトコンドリアゲノムの全配列、新しいボルバキアのドラフトゲノム、3つのウイルスゲノムを含む新しいゲノムリソースを提供した。本論文は侵略的外来アリのゲノム情報、個体群の拡散と適応、ボルバキアと宿主の共進化、アリの新規ウイルスを明らかにしたものである。

参考文献

Chapter 1

1. Bertelsmeier, C.; Ollier, S.; Liebhold, A.; Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 2017, 1, 0184.

2. Abbott, K.L. Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on an oceanic island: forager activity patterns, density and biomass. Insectes Sociaux 2005, 52, 266-273.

3. Thomas, M.L.; Tsutsui, N.D.; Holway, D.A. Intraspecific competition influences the symmetry and intensity of aggression in the Argentine ant. Behav. Ecol. 2005, 16, 472-481.

4. Cooling, M.; Hoffmann, B.D. Here today, gone tomorrow: declines and local extinctions of invasive ant populations in the absence of intervention. Biol. Invasions 2015, 17, 3351-3357.

5. Holway, D.A.; Suarez, A.V.; Case, T.J. Role of abiotic factors in governing susceptibility to invasion: a test with Argentine ants. Ecology 2002, 83, 1610-1619.

6. Bertelsmeier, C.; Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 2018, 33, 527-534.

7. Wetterer, J.K. Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology 2005, 45, 77-97.

8. Ito, F.; Asfiya, W.; Kojima, J.I. Discovery of independent-founding solitary queens in the yellow crazy ant Anoplolepis gracilipes in East Java, Indonesia (Hymenoptera: Formicidae). Entomol. Sci. 2016, 19, 312-314.

9. Drescher, J.; Blüthgen, N.; Schmitt, T.; Bühler, J.; Feldhaar, H. Societies drifting apart? Behavioural, genetic and chemical differentiation between supercolonies in the yellow crazy ant Anoplolepis gracilipes. PLoS ONE 2010, 5, e13581.

10. Thomas, M.L.; Becker, K.; Abbott, K.; Feldhaar, H. Supercolony mosaics: two different invasions by the yellow crazy ant, Anoplolepis gracilipes, on Christmas Island, Indian Ocean. Biol. Invasions 2010, 12, 677-687.

11. Gruber, M.A.; Hoffmann, B.D.; Ritchie, P.A.; Lester, P.J. Recent behavioural and population genetic divergence of an invasive ant in a novel environment. Divers. Distrib. 2012, 18, 323-333.

12. Drescher, J.; Blüthgen, N.; Feldhaar, H. Population structure and intraspecific aggression in the invasive ant species Anoplolepis gracilipes in Malaysian Borneo. Mol. Ecol. 2007, 16, 1453-1465.

13. Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751.

14. Zug, R.; Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. 2015, 90, 89–111.

15. Pontieri, L.; Schmidt, A.M.; Singh, R.; Pedersen, J.S.; Linksvayer, T.A. Artificial selection on ant female caste ratio uncovers a link between female-biased sex ratios and infection by Wolbachia endosymbionts. J. Evol. Biol. 2017, 30, 225–234.

16. Tseng, S.P.; Hsu, P.W.; Lee, C.C.; Wetterer, J.K.; Hugel, S.; Wu, L.H.; Lee, C.Y.; Yoshimura, T.; Yang, C.C.S. Evidence for common horizontal transmission of Wolbachia among ants and ant crickets: Kleptoparasitism added to the list. Microorganisms 2020, 8, 805.

17. Sebastien, A.; Gruber, M.A.M.; Lester, P.J. Prevalence and genetic diversity of three bacterial endosymbionts (Wolbachia, Arsenophonus, and Rhizobiales) associated with the invasive yellow crazy ant (Anoplolepis gracilipes). Insectes Soc. 2012, 59, 33–40.

18. Young, H.S.; Parker, I.M.; Gilbert, G.S.; Guerra, A.S.; Nunn, C.L. Introduced species, disease ecology, and biodiversity–disease relationships. Trends Ecol. Evol. 2017, 32, 41-54.

19. Collins, L. M.; Warnock, N. D.; Tosh, D. G.; McInnes, C.; Everest, D.; Montgomery, W. I.; ...; Reid, N. Squirrelpox virus: assessing prevalence, transmission and environmental degradation. PLoS One 2014, 9, e89521.

20. Valles, S.M.; Varone, L.; Ramírez, L.; Briano, J. Multiplex detection of Solenopsis invicta viruses-1,-2, and-3. J. Virol. Methods 2009, 162, 276-279.

21. Sébastien, A.; Lester, P.J.; Hall, R.J.; Wang, J.; Moore, N.E.; Gruber, M.A. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen. Biol. Lett. 2015, 11, 20150610.

22. Yang, C.C.; Yu, Y.C.; Valles, S.M.; Oi, D.H.; Chen, Y.C.; Shoemaker, D.; Wu, W.J.; Shih, C.J. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol. Invasions 2010, 12, 3307-3318.

23. Cremer, S. Pathogens and disease defense of invasive ants. Curr. Opin. Insect. Sci. 2019, 33, 63-68.

Chapter 2

1. O'Dowd D.J.; Green P.T.; Lake P.S. Invasional ‘meltdown’on an oceanic island. Ecol. Lett. 2003, 6:812-817.

2. Hoffmann B.D.; Hagedorn H. Quantification of supercolonial traits in the yellow crazy ant, Anoplolepis gracilipes. J. Insect Sci. 2014, 14,25.

3. Ito F.; Asfiya W.; Kojima Ji. Discovery of independent-founding solitary queens in the yellow crazy ant Anoplolepis gracilipes in east Java, Indonesia (Hymenoptera: Formicidae). Entomol. Sci. 2016, 19,312-314.

4. Gruber M.A.; Hoffmann B.D.; Ritchie P.A.; Lester P.J. Recent behavioural and population genetic divergence of an invasive ant in a novel environment. Divers. Distrib. 2012, 18,323-333.

5. Thomas, M.L.; Becker, K.; Abbott, K.; Feldhaar, H. Supercolony mosaics: two different invasions by the yellow crazy ant, Anoplolepis gracilipes, on Christmas Island, Indian Ocean. Biol. Invasions 2010, 12, 677-687.

6. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114-2120.

7. Dierckxsens N.; Mardulyn P.; Smits G. Novoplasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2016, 45,e18-e18.

8. Bernt M.; Donath A.; Jühling F.; Externbrink F.; Florentz C.; Fritzsch G.; Pütz J.; Middendorf M.; Stadler P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogen. Evol. 2013, 69, 313-319.

9. Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016, 44, D7.

10. Laslett D.; Canbäck B. Arwen: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 2007, 24, 172-175.

11. Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572-1574.

12. Stamatakis A. Raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30,1312-1313.

13. Babbucci M.; Basso A.; Scupola A.; Patarnello T.; Negrisolo E. Is it an ant or a butterfly? Convergent evolution in the mitochondrial gene order of Hymenoptera and lepidoptera. Genome Biol. Evol. 2014, 6,3326-3343.

14. Yang S.; Li X.; Cai L-G; Qian Z-Q. Characterization of the complete mitochondrial genome of Formica selysi (Insecta: Hymenoptera: Formicidae: Formicinae). Mitochondr DNA Part A. 2016, 27,3378-3380.

15. Kim M.J.; Hong E.J.; Kim I. Complete mitochondrial genome of Camponotus atrox (Hymenoptera: Formicidae): A new tRNA arrangement in Hymenoptera. Genome 2015, 59, 59-74.

16. Liu J.-H.; Jia P.-F.; Fu J.-Q.; Dan W.-L.; Yang L.-Y.; Wang Q.-M.; Li Z.-N. Characterization of mitochondrial genome and phylogenetic implications for chinese black ant, Polyrhachis dives (Hymenoptera: Formicidae). Mitochondr DNA Part B 2017, 2,679-680.

17. Blaimer B.B.; Brady S.G.; Schultz T.R.; Lloyd M.W.; Fisher B.L.; Ward P.S. Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: A case study of Formicine ants. BMC Evol. Biol. 2015, 15,271.

Chapter 3

1. Colautti, R.I.; Lau, J.A. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 2015, 24, 1999- 2017.

2. Bertelsmeier, C.; Ollier, S.; Liebhold, A.; Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 2017, 1, 0184.

3. Abbott, K.L. Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on an oceanic island: forager activity patterns, density and biomass. Insectes Sociaux 2005, 52, 266-273.

4. Thomas, M.L.; Tsutsui, N.D.; Holway, D.A. Intraspecific competition influences the symmetry and intensity of aggression in the Argentine ant. Behav. Ecol. 2005, 16, 472-481.

5. Privman, E.; Cohen, P.; Cohanim, A.B.; Riba-Grognuz, O.; Shoemaker, D.; Keller, L. Positive selection on sociobiological traits in invasive fire ants. Mol. Ecol. 2018, 27, 3116-3130.

6. Yang, C.C.; Yu, Y.C.; Valles, S.M.; Oi, D.H.; Chen, Y.C.; Shoemaker, D.; Wu, W.J.; Shih, C.J. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol. Invasions 2010, 12, 3307-3318.

7. Rey, O.; Estoup, A.; Vonshak, M.; Loiseau, A.; Blanchet, S.; Calcaterra, L.; Chifflet, L.; Rossi, J.P.; Kergoat, G.J.; Foucaud, J.; Orivel, J. Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area. Ecol. Lett. 2012, 15, 1266- 1275.

8. Foucaud, J.; Rey, O.; Robert, S.; Crespin, L.; Orivel, J.; Facon, B.; Loiseau, A.; Jourdan, H.; Kenne, M.; Masse, P.S.M.; Tindo, M. Thermotolerance adaptation to human-modified habitats occurs in the native range of the invasive ant Wasmannia auropunctata before long-distance dispersal. Evol. Appl. 2013, 6, 721- 734.

9. Estoup, A.; Ravigné, V.; Hufbauer, R.; Vitalis, R.; Gautier, M.; Facon, B. Is there a genetic paradox of biological invasion? Annu. Rev. Ecol. Evol. Syst. 2016, 47, 51-72.

10. Wetterer, J.K. Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology 2005, 45, 77-97.

11. Ito, F.; Asfiya, W.; Kojima, J.I. Discovery of independent-founding solitary queens in the yellow crazy ant Anoplolepis gracilipes in East Java, Indonesia (Hymenoptera: Formicidae). Entomol. Sci. 2016, 19, 312-314.

12. O'Dowd, D.J.; Green, P.T.; Lake, P.S. Invasional ‘meltdown’on an oceanic island. Ecology Lett. 2003, 6, 812-817.

13. Cooling, M.; Hoffmann, B.D. Here today, gone tomorrow: declines and local extinctions of invasive ant populations in the absence of intervention. Biol. Invasions 2015, 17, 3351-3357.

14. Drescher, J.; Blüthgen, N.; Feldhaar, H. Population structure and intraspecific aggression in the invasive ant species Anoplolepis gracilipes in Malaysian Borneo. Mol. Ecol. 2007, 16, 1453-1465.

15. Drescher, J.; Blüthgen, N.; Schmitt, T.; Bühler, J.; Feldhaar, H. Societies drifting apart? Behavioural, genetic and chemical differentiation between supercolonies in the yellow crazy ant Anoplolepis gracilipes. PLoS ONE 2010, 5, e13581.

16. Thomas, M.L.; Becker, K.; Abbott, K.; Feldhaar, H. Supercolony mosaics: two different invasions by the yellow crazy ant, Anoplolepis gracilipes, on Christmas Island, Indian Ocean. Biol. Invasions 2010, 12, 677-687.

17. Gruber, M.A.; Hoffmann, B.D.; Ritchie, P.A.; Lester, P.J. Recent behavioural and population genetic divergence of an invasive ant in a novel environment. Divers. Distrib. 2012, 18, 323-333.

18. Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 2012, 7, e37135.

19. FastQC. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 26 08 2020).

20. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10-12.

21. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25,1754-60.

22. Rochette, N.C.; Rivera-Colón, A.G.; Catchen, J.M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 2019, 28, 4737-4754.

23. Rochette, N.C.; Catchen, J.M. Deriving genotypes from RAD-seq short-read data using Stacks. Nat. Protoc. 2017, 12, 2640-2659.

24. O'Leary, S.J.; Puritz, J.B.; Willis, S.C.; Hollenbeck, C.M.; Portnoy, D.S. These aren’t the loci you’e looking for: Principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 2018, 27, 3193-3206.

25. Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; McVean, G. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156-2158.

26. Sebastien, A.; Gruber, M.A.M.; Lester, P.J. Prevalence and genetic diversity of three bacterial endosymbionts (Wolbachia, Arsenophonus, and Rhizobiales) associated with the invasive yellow crazy ant (Anoplolepis gracilipes). Insectes Soc. 2012, 59, 33-40.

27. Lee, C.C.; Lin C.Y.; Tseng S.P; Matsuura K.; Yang C.C.S. Ongoing co-evolution of Wolbachia and a widespread invasive ant, Anoplolepis gracilipes. Microorganisms 2020, 8, 1569.

28. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114-2120.

29. Peng, Y.; Leung, H.C.; Yiu, S.M.; Chin, F.Y. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420-1428.

30. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: architecture and applications. BMC Bioinformatics 2009, 10, 421.

31. Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: assessing genome assembly and annotation completeness. In: Gene Prediction Methods in Molecular Biology; Kollmar M., Eds.; Humana: New York, NY, 2019; Volume 1962, pp. 227-245.

32. Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072-1075.

33. Holderegger, R.; Kamm, U.; Gugerli, F. Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc. Ecol. 2006, 21, 797-807.

34. Manichaikul, A.; Mychaleckyj, J.C.; Rich, S.S.; Daly, K.; Sale, M.; Chen, W.M. Robust relationship inference in genome-wide association studies. Bioinformatics 2010, 26, 2867-2873.

35. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403-1405.

36. Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655-1664.

37. Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453-4455.

38. Pattengale, N.D.; Alipour, M.; Bininda-Emonds, O.R.; Moret, B.M.; Stamatakis, A. How many bootstrap replicates are necessary? J. Comput. Biol. 2010, 17, 337-354.

39. Letunic I.; Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019, 47, W256-W259.

40. Petkova, D.; Novembre, J.; Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 2016, 48, 94-100.

41. Foll, M.; Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 2008,180, 977-993.

42. Lotterhos, K.E.; Whitlock, M.C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 2014. 23, 2178- 2192.

43. Luu, K.; Bazin, E.; Blum, M.G. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 2017, 17, 67-77.

44. Othman, S.N.; Chen, Y.H.; Chuang, M.F.; Andersen, D.; Jang, Y.; Borzée, A. Impact of the Mid-Pleistocene Revolution and Anthropogenic Factors on the Dispersion of Asian Black-Spined Toads (Duttaphrynus melanostictus). Animals 2020, 10, 1157.

45. Kusuma, W.E.; Ratmuangkhwang, S.; Kumazawa, Y. Molecular phylogeny and historical biogeography of the Indonesian freshwater fish Rasbora lateristriata species complex (Actinopterygii: Cyprinidae): cryptic species and west-to-east divergences. Mol. Phylogenetics Evol. 2016, 105, 212-223.

46. McColl, H.; Racimo, F.; Vinner, L.; Demeter, F.; Gakuhari, T.; Moreno-Mayar, J.V.; Van Driem, G.; Wilken, U.G.; Seguin-Orlando, A.; De la Fuente Castro, C.; Wasef, S. The prehistoric peopling of Southeast Asia. Science 2018, 361, 88-92.

47. Holway, D.A.; Lach, L.; Suarez, A.V.; Tsutsui, N.D.; Case, T.J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 2002, 33, 181-233.

48. Ascunce, M.S.; Yang, C.C.; Oakey, J.; Calcaterra, L.; Wu, W.J.; Shih, C.J.; Goudet, J.; Ross, K.G.; Shoemaker, D. Global invasion history of the fire ant Solenopsis invicta. Science 2011, 331, 1066-1068.

49. Finkler, A.; Ashery-Padan, R.; Fromm, H. CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett. 2007, 581, 3893-3898.

50. Han, J.; Gong, P.; Reddig, K.; Mitra, M.; Guo, P.; Li, H.S. The fly CAMTA transcription factor potentiates deactivation of rhodopsin, a G protein-coupled light receptor. Cell 2006, 127, 847-858.

51. Sato, K.; Ahsan, M.T.; Ote, M.; Koganezawa, M.; Yamamoto, D. Calmodulin- binding transcription factor shapes the male courtship song in Drosophila. PLoS Genet. 2019, 15, e1008309.

52. Huang, J.; Sun, W.; Seong, K.M.; Mittapalli, O.; Ojo, J.; Coates, B.; Paige, K.N.; Clark, J.M.; Pittendrigh, B.R. Dietary antioxidant vitamin C influences the evolutionary path of insecticide resistance in Drosophila melanogaster. Pestic. Biochem. Phys. 2020, 168, 104631.

53. Galon, Y.; Nave, R.; Boyce, J.M.; Nachmias, D.; Knight, M.R.; Fromm, H. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett. 2008, 582, 943-948.

54. Du, L.; Ali, G.S.; Simons, K.A.; Hou, J.; Yang, T.; Reddy, A.S.N.; Poovaiah, B.W. Ca 2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 2009, 457, 1154-1158.

55. Kim, Y.; Park, S.; Gilmour, S.J.; Thomashow, M.F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of A rabidopsis. Plant J. 2013, 75, 364-376.

56. Mazumdar, M.; Mikami, A.; Gee, M.A.; Vallee, R.B. In vitro motility from recombinant dynein heavy chain. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 6552-6556.

57. Stapley, J.; Santure, A.W.; Dennis, S.R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 2015, 24, 2241-2252.

58. Lee, C.C.; Wang, J. Rapid expansion of a highly germline-expressed mariner element acquired by horizontal transfer in the fire ant genome. Genome Biol. Evol. 2018, 10, 3262-3278.

59. Schrader, L.; Kim, J.W.; Ence, D.; Zimin, A.; Klein, A.; Wyschetzki, K.; Weichselgartner, T.; Kemena, C.; Stökl, J.; Schultner, E.; Wurm, Y. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. commun. 2014, 5, 1-10.

60. Goubert, C.; Henri, H.; Minard, G.; Valiente Moro, C.; Mavingui, P.; Vieira, C.; Boulesteix, M. High-throughput sequencing of transposable element insertions suggests adaptive evolution of the invasive Asian tiger mosquito towards temperate environments. Mol. Ecol. 2017, 26, 3968-3981.

Chapter 4

1. Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751.

2. Zug, R.; Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. 2015, 90, 89–111.

3. Landmann, F.; Foster, J.M.; Michalski, M.L.; Slatko, B.E.; Sullivan, W. Co- evolution between an endosymbiont and its nematode host: Wolbachia asymmetric posterior localization and AP polarity establishment. PLoS Negl. Trop. Dis. 2014, 8, e3096.

4. Lefoulon, E.; Bain, O.; Makepeace, B.L.; d’Haese, C.; Uni, S.; Martin, C.; Gavotte, L. Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ 2016, 4, e1840.

5. Balvín, O.; Roth, S.; Talbot, B.; Reinhardt, K. Co-speciation in bedbug Wolbachia parallel the pattern in nematode hosts. Sci. Rep. 2018, 8, 8797.

6. Newton, I.L.; Rice, D.W. The Jekyll and Hyde symbiont: Could Wolbachia be a nutritional mutualist? J. Bacteriol. 2020, 202, e00589-19.

7. Taylor, M.J.; Bandi, C.; Hoerauf, A. Wolbachia. Bacterial endosymbionts of filarial nematodes. Adv. Parasit. 2005, 60, 245–284.

8. Riegler, M.; Stauffer, C. Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Mol. Ecol. 2002, 11, 2425–2434.

9. Schuler, H.; Köppler, K.; Daxböck-Horvath, S.; Rasool, B.; Krumböck, S.; Schwarz, D.; Hoffmeister, T.S.; Schlick-Steiner, B.C.; Steiner, F.M.; Telschow, A.; et al. The hitchhiker’s guide to Europe: The infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol. Ecol. 2016, 25, 1595–1609.

10. Tagami, Y.; Miura, K. Distribution and prevalence of Wolbachia in Japanese populations of Lepidoptera. Insect Mol. Ecol. 2004, 13, 359–364.

11. Ahmed, M.Z.; Araujo-Jnr, E.V.; Welch, J.J.; Kawahara, A.Y. Wolbachia in butterflies and moths: Geographic structure in infection frequency. Front. Zool. 2015, 12, 16.

12. Pontieri, L.; Schmidt, A.M.; Singh, R.; Pedersen, J.S.; Linksvayer, T.A. Artificial selection on ant female caste ratio uncovers a link between female-biased sex ratios and infection by Wolbachia endosymbionts. J. Evol. Biol. 2017, 30, 225–234.

13. Ün, Ç.; Schultner, E.; Manzano-Marín, A.; Flórez, L.V.; Seifert, B.; Heinze, J.; Oettler, J. Cytoplasmic incompatibility between Old and New World populations of a tramp ant. bioRxiv doi: 10.1101/2020.03.13.988675

14. Wetterer, J.K. Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology 2005, 45, 77–97.

15. Ito, F.; Asfiya, W.; Kojima, J.I. Discovery of independent-founding solitary queens in the yellow crazy ant Anoplolepis gracilipes in East Java, Indonesia (Hymenoptera: Formicidae). Entomol. Sci. 2016, 19, 312–314.

16. Drescher, J.; Blüthgen, N.; Schmitt, T.; Bühler, J.; Feldhaar, H. Societies drifting apart? Behavioural, genetic and chemical differentiation between supercolonies in the yellow crazy ant Anoplolepis gracilipes. PLoS ONE 2010, 5, e13581.

17. Gruber, M.A.; Hoffmann, B.D.; Ritchie, P.A.; Lester, P.J. Recent behavioural and population genetic divergence of an invasive ant in a novel environment. Divers. Distrib. 2012, 18, 323–333.

18. Tseng, S.P.; Hsu, P.W.; Lee, C.C.; Wetterer, J.K.; Hugel, S.; Wu, L.H.; Lee, C.Y.; Yoshimura, T.; Yang, C.C.S. Evidence for common horizontal transmission of Wolbachia among ants and ant crickets: Kleptoparasitism added to the list. Microorganisms 2020, 8, 805.

19. Sebastien, A.; Gruber, M.A.M.; Lester, P.J. Prevalence and genetic diversity of three bacterial endosymbionts (Wolbachia, Arsenophonus, and Rhizobiales) associated with the invasive yellow crazy ant (Anoplolepis gracilipes). Insectes Soc. 2012, 59, 33–40.

20. Baldo, L.; Hotopp, J.C.D.; Jolley, K.A.; Bordenstein, S.R.; Biber, S.A.; Choudhury, R.R.; Hayashi, C.; Maiden, M.C.J.; Tettelin, H.; Werren, J.H. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 2006, 72, 7098–7110.

21. PubMLST. Available online: https://pubmlst.org/wolbachia/info/protocols.shtml (accessed on 26 August 2020).

22. Shoemaker, D.D.; Ahrens, M.; Sheill, L.; Mescher, M.; Keller, L.; Ross, K.G. Distribution and prevalence of Wolbachia infections in native populations of fire ant Solenopsis invicta (Hymenoptera: Formicidae). Environ. Entomol. 2003, 32, 1329– 1336.

23. Lee, C.C.; Wang, J.; Matsuura, K.; Yang, C.C.S. The complete mitochondrial genome of yellow crazy ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Mitochondrial DNA B Resour. 2018, 3, 622–623.

24. Untergasser, A.; Nijveen, H.; Rao, X.; Bisseling, T.; Geurts, R.; Leunissen, J.A. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35, W71–W74.

25. Bleidorn, C.; Gerth, M. A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. FEMS Microbiol. Ecol. 2018, 94, fix163.

26. Kaur, R.; Siozios, S.; Miller, W.J.; Rota-Stabelli, O. Insertion sequence polymorphism and genomic rearrangements uncover hidden Wolbachia diversity in Drosophila suzukii and D. subpulchrella. Sci. Rep. 2017, 7, 14815.

27. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.

28. Peng, Y.; Leung, H.C.; Yiu, S.M.; Chin, F.Y. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428.

29. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421.

30. Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness. In Gene Prediction Methods in Molecular Biology; Kollmar, M., Ed.; Humana: New York, NY, USA, 2019; Volume 1962, pp. 227–245.

31. Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075.

32. Beichman, A.C.; Huerta-Sanchez, E.; Lohmueller, K.E. Using genomic data to infer historic population dynamics of nonmodel organisms. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 433–456.

33. Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 2012, 7, e37135.

34. FastQC. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 26 August 2020).

35. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12.

36. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25,1754–1760.

37. Rochette, N.C.; Rivera-Colón, A.G.; Catchen, J.M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 2019, 28, 4737–4754.

38. Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158.

39. Dhaygude, K.; Nair, A.; Johansson, H.; Wurm, Y.; Sundström, L. The first draft genomes of the ant Formica exsecta, and its Wolbachia endosymbiont reveal extensive gene transfer from endosymbiont to host. BMC Genom. 2019, 20, 1–16.

40. Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455.

41. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874.

42. Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116.

43. Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192.

44. Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915.

45. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079.

46. Mao, M.; Yang, X.; Bennett, G.M. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc. Natl. Acad. Sci. USA 2018, 115, E11691–E11700.

47. Russell, J.A.; Goldman-Huertas, B.; Moreau, C.S.; Baldo, L.; Stahlhut, J.K.; Werren, J.H.; Pierce, N.E. Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution 2009, 63, 624–640.

48. Hedges, S.B.; Marin, J.; Suleski, M.; Paymer, M.; Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 2015, 32, 835–845.

49. Wenseleers, T.; Ito, F.; Van Borm, S.; Huybrechts, R.; Volckaert, F.; Billen, J. Widespread occurrence of the microorganism Wolbachia in ants. P. Roy. Soc. B Biol. Sci. 1998, 265, 1447–1452.

50. Shoemaker, D.D.; Ross, K.G.; Keller, L.; Vargo, E.; Werren, J.H. Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). Insect Mol. Biol. 2000, 9, 661–673.

51. Van Borm, S.; Wenseleers, T.; Billen, J.; Boomsma, J.J. Wolbachia in leafcutter ants: A widespread symbiont that may induce male killing or incompatible matings. J. Evol. Biol. 2001, 14, 805–814.

52. Tsutsui, N.D.; Kauppinen, S.N.; Oyafuso, A.F.; Grosberg, R.K. The distribution and evolutionary history of Wolbachia infection in native and introduced populations of the invasive argentine ant (Linepithema humile). Mol. Ecol. 2003, 12, 3057–3068.

53. Frost, C.L.; Fernández-Marín, H.; Smith, J.E.; Hughes, W.O.H. Multiple gains and losses of Wolbachia symbionts across a tribe of fungus-growing ants. Mol. Ecol. 2010, 19, 4077–4085.

54. Ramalho, M.O.; Martins, C.; Silva, L.M.; Martins, V.G.; Bueno, O.C. Intracellular symbiotic bacteria of Camponotus textor, Forel (Hymenoptera, Formicidae). Curr. Microbiol. 2017, 74, 589–597.

55. Kelly, M.; Price, S.L.; de Oliveira Ramalho, M.; Moreau, C.S. Diversity of Wolbachia associated with the giant turtle ant, Cephalotes atratus. Curr. Microbiol. 2019, 76, 1330–1337.

56. Tseng, S.P.; Wetterer, J.K.; Suarez, A.V.; Lee, C.Y.; Yoshimura, T.; Shoemaker, D.; Yang, C.C.S. 2019. Genetic diversity and Wolbachia infection patterns in a globally distributed invasive ant. Front. Genet. 2019, 10, 838.

57. Dedeine, F.; Vavre, F.; Fleury, F.; Loppin, B.; Hochberg, M.E.; Boulétreau, M. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc. Natl. Acad. Sci. USA 2001, 98, 6247–6252.

58. Vorburger, C.; Gouskov, A. Only helpful when required: A longevity cost of harbouring defensive symbionts. J. Evol. Biol. 2011, 24, 1611–1617.

59. Oliver, K.M.; Campos, J.; Moran, N.A.; Hunter, M.S. Population dynamics of defensive symbionts in aphids. P. Roy. Soc. B Biol. Sci. 2008, 275, 293–299.

60. Jaenike, J.; Brekke, T.D. Defensive endosymbionts: A cryptic trophic level in community ecology. Ecol. Lett. 2011, 14,150–155.

61. Cooling, M.; Gruber, M.A.M.; Hoffmann, B.D.; Sébastien, A.; Lester, P.J. A metatranscriptomic survey of the invasive yellow crazy ant, Anoplolepis gracilipes, identifies several potential viral and bacterial pathogens and mutualists. Insectes Soc. 2017, 64, 197–207.

62. Lee, C.C.; Lin, C.Y.; Hsu, H.W.; Yang, C.C.S. Complete genome sequences of two novel dicistroviruses detected in the yellow crazy ant, (Anoplolepis gracilipes). Arch. Vriol. 2020, 165, 2715-2719.

63. Cooling, M.D.; Hoffmann, B.D.; Gruber, M.A.M.; Lester, P.J. Indirect evidence of pathogen-associated altered oocyte production in queens of the invasive yellow crazy ant, Anoplolepis gracilipes, in Arnhem Land, Australia. Bull. Entomol. Res. 2018, 108, 451–460.

64. Hsu, H.W.; Chiu, M.C.; Lee, C.C.; Lee, C.Y.; Yang, C.C.S. The association between virus prevalence and Intercolonial aggression levels in the yellow crazy ant, Anoplolepis gracilipes (Jerdon). Insects 2019, 10, 436.

65. Kaur, R.; Martinez, J.; Rota-Stabelli, O.; Jiggins, F.M.; Miller, W.J. Age, tissue, genotype and virus infection regulate Wolbachia levels in Drosophila. Mol. Ecol. 2020, 29, 2063–2079.

66. Frentiu, F.D.; Zakir, T.; Walker, T.; Popovici, J.; Pyke, A.T.; van den Hurk, A.; McGraw, E.A.; O’Neill, S.L. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl. Trop. Dis. 2014, 8, e2688.

67. Jiggins, F.M.; Hurst, G.D. Rapid insect evolution by symbiont transfer. Science 2011, 332, 185–186.

68. Himler, A.G.; Adachi-Hagimori, T.; Bergen, J.E.; Kozuch, A.; Kelly, S.E.; Tabashnik, B.E.; Chiel, E.; Duckworth, V.E.; Dennehy, T.J.; Zchori-Fein, E.; et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 2011, 332, 254–256.

69. Weeks, A.R.; Turelli, M.; Harcombe, W.R.; Reynolds, K.T.; Hoffmann, A.A. From parasite to mutualist: Rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol. 2007, 5, e114.

70. Keller, L.; Liautard, C.; Reuter, M.; Brown, W.D.; Sundström, L.; Chapuisat, M. Sex ratio and Wolbachia infection in the ant Formica exsecta. Heredity 2001, 87, 227– 233.

71. Wenseleers, T.; Sundström, L.; Billen, J. Deleterious Wolbachia in the ant Formica truncorum. P. Roy. Soc. B Biol. Sci. 2002, 269, 623–629.

72. Singh, R.; Linksvayer, T.A. Wolbachia-infected ant colonies have increased reproductive investment and an accelerated life cycle. J. Exp. Biol. 2020, 223, jeb220079.

73. Kajtoch, Ł.; Kolasa, M.; Kubisz, D.; Gutowski, J.M.; Ścibior, R.; Mazur, M.A.; Holecová, M. Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. Sci. Rep. 2019, 9, 847.

74. Treanor, D.; Hughes, W.O.H. Limited female dispersal predicts the incidence of Wolbachia across ants (Hymenoptera: Formicidae). J. Evol. Biol. 2019, 32, 1163–1170.

75. Suarez, A.V.; Holway, D.A.; Case, T.J. Patterns of spread in biological invasions dominated by long-distance jump dispersal: Insights from Argentine ants. Proc. Natl. Acad. Sci. USA 2001, 98, 1095–1100.

76. Janicki, J.; Narula, N.; Ziegler, M.; Guénard, B.; Economo, E.P. Visualizing and interacting with large-volume biodiversity data using client–server web-mapping applications: The design and implementation of antmaps.org. Ecol. Inform. 2016, 32, 185–193.

77. Cheng, D.; Chen, S.; Huang, Y.; Pierce, N.E.; Riegler, M.; Yang, F.; Zeng, L.; Lu, Y.; Liang, G.; Xu, Y. Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathog. 2019, 15, e1007942.

78. Reuter, M.; Pedersen, J.S.; Keller, L. Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile. Heredity 2005, 94, 364–369.

79. Yang, C.C.; Yu, Y.C.; Valles, S.M.; Oi, D.H.; Chen, Y.C.; Shoemaker, D.D.; Wu, W.J.; Shih, C.J. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol. Invasions 2010, 12, 3307–3318.

80. Biek, R.; Drummond, A.J.; Poss, M. A virus reveals population structure and recent demographic history of its carnivore host. Science 2006, 311, 538–541.

81. Biek, R.; Henderson, J.C.; Waller, L.A.; Rupprecht, C.E.; Real, L.A. A high- resolution genetic signature of demographic and spatial expansion in epizootic rabies virus. Proc. Natl. Acad. Sci. USA 2007, 104, 7993–7998.

82. Lee, C.C.; Wang, J. Rapid expansion of a highly germline-expressed mariner element acquired by horizontal transfer in the fire ant genome. Genome Biol. Evol. 2018, 10, 3262–3278.

Chapter 5

1. Valles S.M.; Chen Y.; Firth A.E.; Guérin D.M.; Hashimoto Y.; Herrero S.; de Miranda J.R.; Ryabov E. ICTV Virus Taxonomy Profile: Dicistroviridae. J. Gen. Virol. 2017, 98,355-356.

2. Kleanthous E.; Olendraite I.; Lukhovitskaya N.I.; Firth A.E. Discovery of three RNA viruses using ant transcriptomic datasets. Arch. Virol. 2019, 164,643-647.

3. Valles S.M.; Rivers A.R. Nine new RNA viruses associated with the fire ant Solenopsis invicta from its native range. Virus Genes 2019, 55,368-380.

4. Viljakainen L.; Holmberg I.; Abril S.; Jurvansuu J. Viruses of invasive Argentine ants from the European Main supercolony: Characterization, interactions and evolution. J. Gen. Virol. 2018, 25,1129-40.

5. Reuter G.; Pankovics P.; Gyöngyi Z., Delwart E.; Boros Á. Novel dicistrovirus from bat guano. Arch. Virol. 2014, 159,3453-6.

6. Shi M.; Lin X.D.; Tian J.H.; Chen L.J.; Chen X.; Li C.X.; Qin X.C.; Li J.; Cao J.P.; Eden J.S.; Buchmann J. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539-43.

7. Mihara T.; Nishimura Y.; Shimizu Y.; Nishiyama H.; Yoshikawa G.; Uehara H.; Hingamp P.; Goto S.; Ogata H. Linking virus genomes with host taxonomy. Viruses 2016, 8, 66.

8. Payne A.N.; Shepherd T.F.; Rangel J. The detection of honey bee (Apis mellifera) associated viruses in ants. Sci. Rep. 2020, 10,2923.

9. Cooling M.; Gruber M.A.M.; Hoffmann B.D.; Sébastien A.; Lester P.J. A metatranscriptomic survey of the invasive yellow crazy ant, Anoplolepis gracilipes, identifies several potential viral and bacterial pathogens and mutualists. Insect Soc. 2017, 64, 197-207.

10. Bolger A.M.; Lohse M.; Usadel B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114-2120.

11. Grabherr M.G.; Haas B.J.; Yassour M.; Levin J.Z.; Thompson D.A.; Amit I.; Adiconis X.; Fan L.; Raychowdhury R.; Zeng Q.; Chen Z.; Mauceli E.; Hacohen N.; Gnirke A.; Rhind N.; di Palma F.; Birren B.W.; Nusbaum C.; Lindblad-Toh K.; Friedman N.; Regev A. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011, 29,644-652.

12. Buchfink B.; Xie C.; Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59.

13. Huson D.; Beier S.; Flade I.; Gorska A.; El-Hadidi M.; Mitra S.; Ruscheweyh H.; Rewati Tappu D. MEGAN Community Edition - Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 2016, 12, e1004957.

14. Rombel I.T.; Sykes K.F.; Rayner S.; Johnston S.A. ORF-FINDER: a vector for high- throughput gene identification. Gene 2002, 282, 33-41.

15. Marchler-Bauer A.; Derbyshire M.K.; Gonzales N.R.; Lu S.; Chitsaz F.; Geer L.Y.; Geer R.C.; He J.; Gwadz M.; Hurwitz D.I.; Lanczycki C.J.; Lu F.; Marchler G.H.; Song J.S.; Thanki N.; Wang Z.; Yamashita R.A.; Zhang D.; Zheng C.; Bryant S.H. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015, 43, D222-D226.

16. Darriba D.; Posada D.; Kozlov A.M.; Stamatakis A.; Morel B.; Flouri T. ModelTest- NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 2020, 37,291-294.

17. Kozlov A.M.; Darriba D.; Flouri T.; Morel B.; Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453-4455.

18. Letunic I.; Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019, 47, W256-W259.

19. Yang C.C.; Yu Y.C.; Valles S.M.; Oi D.H.; Chen Y.C.; Shoemaker D.W.; Wu W.J.; Shih C.J. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol. Invasions 2010, 3, 333- 345.

20. Culley A.I.L.; Suttle C.A. Family dicistroviridae. In: King AMQA, Carstens EB, Lefkowitz EJ (eds) Virus Taxonomy, Classification and Nomenclature of Viruses. 9th Report of the ICTV Elsevier Academic Press, Amsterdam, 2012, pp 840-854.

Chapter 6

1. Olendraite, I.; Lukhovitskaya, N.I.; Porter, S.D.; Valles, S.M.; Firth, A.E. Polycipiviridae: a proposed new family of polycistronic picorna-like RNA viruses. J. Gen. Virol. 2017, 98, 2368.

2. Olendraite, I.; Brown, K.; Valles, S.M.; Firth, A.E.; Chen, Y.; Guérin, D.M.; Hashimoto, Y.; Herrero, S.; de Miranda, J.R.; Ryabov, E.; Consortium, I.R. ICTV virus taxonomy profile: Polycipiviridae. J. Gen. Virol. 2019, 100, 554.

3. Valles, S.M.; Strong, C.A.; Hashimoto, Y. A new positive-strand RNA virus with unique genome characteristics from the red imported fire ant, Solenopsis invicta. Virology 2007, 365, 457-463.

4. Viljakainen, L.; Holmberg, I.; Abril, S.; Jurvansuu, J. Viruses of invasive Argentine ants from the European main supercolony: characterization, interactions and evolution. J. Gen. Virol. 2018, 99, 1129-1140.

5. Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; Buchmann, J. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539-543.

6. Valles, S.M.; Rivers, A.R. Nine new RNA viruses associated with the fire ant Solenopsis invicta from its native range. Virus Genes 2019, 55, 368-380.

7. Temmam, S.; Hul, V.; Bigot, T.; Hoem, T.; Gorman, C.; Duong, V.; Dussart, P.; Cappelle, J.; Eloit, M. A novel Polycipiviridae virus identified in Pteropus lylei stools. Microbiol. Resour. Announc. 2019, 8, e01662-18.

8. Sanborn, M.A.; Klein, T.A.; Kim, H.C.; Fung, C.K.; Figueroa, K.L.; Yang, Y.; Asafo- Adjei, E.A.; Jarman, R.G.; Hang, J. Metagenomic analysis reveals three novel and prevalent mosquito viruses from a single pool of Aedes vexans nipponii Collected in the Republic of Korea. Viruses 2019, 11, 222.

9. Fukasawa, F.; Hirai, M.; Takaki, Y.; Shimane, Y.; Thomas, C.E.; Urayama, S.I.; Nunoura, T.; Koyama, S. A new polycipivirus identified in Colobopsis shohki. Arch. Virol. 2020, 165, 761-763.

10. Wright, A.A.; Cross, A.R.; Harper, S.J. A bushel of viruses: Identification of seventeen novel putative viruses by RNA-seq in six apple trees. PLoS One 2020, 15, e0227669.

11. Manfredini, F.; Shoemaker, D.; Grozinger, C.M. Dynamic changes in host–virus interactions associated with colony founding and social environment in fire ant queens (Solenopsis invicta). Ecol. Evol. 2016, 6, 233-244.

12. Lauring, A.S.; Andino, R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010, 6, e1001005.

13. Lee, C.C.; Lin, C.Y.; Hsu, H.W.; Yang, C.C.S. Complete genome sequences of two novel dicistroviruses detected in the yellow crazy ant, Anoplolepis gracilipes Arch. Vriol. (in press).

14. Cooling, M.; Gruber, M.A.M.; Hoffmann, B.D.; Sébastien, A.; Lester, P.J. A metatranscriptomic survey of the invasive yellow crazy ant, Anoplolepis gracilipes, identifies several potential viral and bacterial pathogens and mutualists. Insectes Soc. 2017, 64, 197-207.

15. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114-2120.

16. Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; Chen, Z. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644-652.

17. Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59-60.

18. Huson, D.H.; Beier, S.; Flade, I.; Górska, A.; El-Hadidi, M.; Mitra, S.; Ruscheweyh, H.J.; Tappu, R. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 2016, 12, e1004957.

19. Rombel I.T.; Sykes K.F.; Rayner S.; Johnston S.A. ORF-FINDER: a vector for high- throughput gene identification. Gene 2002, 282, 33-41.

20. Söding, J.; Biegert, A.; Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005, 33, W244- W248.

21. Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; Salazar, G.A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016, 44, D279-D285.

22. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235-242.

23. Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115-e115.

24. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870-1874.

25. Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 2020, 37, 291-294.

26. Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453-4455.

27. Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572-1574.

28. Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019, 47, W256-W259.

29. Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772-772.

30. Xu, B.; Yang, Z. PAMLX: a graphical user interface for PAML. Mol. Biol. Evol. 2013, 30, 2723-2724.

31. Allen, C.; Valles, S.M.; Strong, C.A. Multiple virus infections occur in individual polygyne and monogyne Solenopsis invicta ants. J. Invertebr. Pathol. 2011, 107, 107-111.

32. Hashimoto, Y.; Valles, S.M. Infection characteristics of Solenopsis invicta virus 2 in the red imported fire ant, Solenopsis invicta. J. Invertebr. Pathol. 2008, 99, 136- 140.

33. Cremer, S.; Pull, C.D.; Fuerst, M.A. Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 2018, 63,105-123.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る