リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Surgical treatment of cartilage lesions in the knee: A narrative review」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Surgical treatment of cartilage lesions in the knee: A narrative review

Matsushita, Takehiko Tokura, Takeo Okimura, Kenjiro Sano, Shohei Nishida, Kyohei Nagai, Kanto Hoshino, Yuichi 神戸大学

2023.12

概要

Purpose The treatment of cartilage injury is challenging owing to its low self-healing capacity. Here we describe a literature review of the current diagnostic methods, surgical treatment options, and techniques for knee cartilage injuries, including possible future treatments and augmentations. Methods Studies describing surgical techniques for knee cartilage injuries were searched and arbitrarily selected in PubMed. Possible future treatments and augmentations, growth factors, and cell-based treatments are also discussed. Results Surgical options for cartilage injury, such as microfracture, osteochondral autografts or allografts, and autologous chondrocyte implantation, are well-established methods with overall satisfactory short- and long-term outcomes. However, the limitations and disadvantages of these treatments, such as repair with fibrous cartilage, donor site morbidity, and two-step surgery, have raised concerns. Various surgical treatments or augmentations have been developed to overcome these limitations, including autologous matrix-induced chondrogenesis, bone marrow aspirate concentrate, particulate chondrocyte implantation, and particulate juvenile allograft chondrocytes, and promising short-to mid-term results have been reported. Additionally, numerous studies are underway on the augmentation of biological healing including growth factor and stem cell therapies. Conclusions Although treating cartilage injuries remains challenging, advancements have been made. It is advisable for surgeons and clinicians to update their surgical techniques and knowledge of cartilage repair and regeneration to better treat patients with knee cartilage injuries.

この論文で使われている画像

参考文献

[26]

[1] Åroøen A, Løken S, Heir S, Alvik E, Ekeland A, Granlund OG, et al. Articular

cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004;32:

211–4. https://doi.org/10.1177/0363546503259345.

[2] Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage

injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997;13:456–60.

https://doi.org/10.1016/S0749-8063(97)90124-9.

[3] Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in

1,000 knee arthroscopies. Arthroscopy 2002;18:730–4. https://doi.org/10.1053/

jars.2002.32839.

[4] Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral

defects in athletes' knees: a systematic review. Med Sci Sports Exerc 2010;42:

1795–801. https://doi.org/10.1249/MSS.0b013e3181d9eea0.

[5] Schreiner AJ, Stoker AM, Bozynski CC, Kuroki K, Stannard JP, Cook JL. Clinical

application of the basic science of articular cartilage pathology and treatment.

J Knee Surg 2020;33:1056–68. https://doi.org/10.1055/s-0040-1712944.

[6] Eyre D. Collagen of articular cartilage. Arthritis Res 2002;4:30–5. https://doi.org/

10.1186/ar380.

[7] Heinegård D. Proteoglycans and more — from molecules to biology. Int J Exp

Pathol 2009;90:575–86. https://doi.org/10.1111/j.1365-2613.2009.00695.x.

[8] Simon TM, Jackson DW. Articular cartilage: injury pathways and treatment

options. Sports Med Arthrosc 2018;26:146–54. https://doi.org/10.1097/

JSA.0000000000000182.

[9] Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res 2002;402:

21–37. https://doi.org/10.1097/00003086-200209000-00004.

[10] Andrade R, Vasta S, Papalia R, Pereira H, Oliveira JM, Reis RL, et al. Prevalence of

articular cartilage lesions and surgical clinical outcomes in football (soccer)

players' knees: a systematic review. Arthroscopy 2016;32:1466–77. https://

doi.org/10.1016/j.arthro.2016.01.055.

[11] Krych AJ, Hevesi M, Desai VS, Camp CL, Stuart MJ, Saris DBF. Learning from

failure in cartilage repair surgery: an analysis of the mode of failure of primary

procedures in consecutive cases at a tertiary referral center. Orthop J Sport Med

2018;6:1–10. https://doi.org/10.1177/2325967118773041.

[12] Merkely G, Ogura T, Bryant T, Minas T. Severe bone marrow edema among

patients who underwent prior marrow stimulation technique is a significant

predictor of graft failure after autologous chondrocyte implantation. Am J Sports

Med 2019;47:1874–84. https://doi.org/10.1177/0363546519853584.

[13] Minas T, Ogura T, Headrick J, Bryant T. Autologous chondrocyte implantation

“sandwich” technique compared with autologous bone grafting for deep

osteochondral kesions in the knee. Am J Sports Med 2018;46:322–32. https://

doi.org/10.1177/0363546517738000.

[14] Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H, et al.

Definition of pertinent parameters for the evaluation of articular cartilage repair

tissue with high-resolution magnetic resonance imaging. Eur J Radiol 2004;52:

310–9. https://doi.org/10.1016/j.ejrad.2004.03.014.

[15] Ashraf S, Zahoor A. Magnetic resonance imaging of articular cartilage. JBJS Rev

2016;4:1–12. https://doi.org/10.2106/JBJS.RVW.15.00093.

[16] Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance

observation of cartilage repair tissue (MOCART) for the evaluation of autologous

chondrocyte transplantation: determination of interobserver variability and

correlation to clinical outcome after 2 years. Eur J Radiol 2006;57:16–23. https://

doi.org/10.1016/j.ejrad.2005.08.007.

[17] Ochs BG, Müller-Horvat C, Albrecht D, Schewe B, Weise K, Aicher WK, et al.

Remodeling of articular cartilage and subchondral bone after bone grafting and

matrix-associated autologous chondrocyte implantation for osteochondritis

dissecans of the knee. Am J Sports Med 2011;39:764–73. https://doi.org/

10.1177/0363546510388896.

[18] Kreuz PC, Steinwachs M, Erggelet C, Krause SJ, Ossendorf C, Maier D, et al.

Classification of graft hypertrophy after autologous chondrocyte implantation of

full-thickness chondral defects in the knee. Osteoarthritis Cartilage 2007;15:

1339–47. https://doi.org/10.1016/j.joca.2007.04.020.

[19] Kreuz PC, Steinwachs M, Erggelet C, Lahm A, Krause S, Ossendorf C, et al.

Importance of sports in cartilage regeneration after autologous chondrocyte

implantation: a prospective study with a 3-year follow-up. Am J Sports Med 2007;

35:1261–8. https://doi.org/10.1177/0363546507300693.

[20] Steinwachs M, Kreuz PC. Autologous chondrocyte implantation in chondral

defects of the knee with a type I/III collagen membrane: a prospective study with a

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

77

3-year follow-up. Arthroscopy 2007;23:381–7. https://doi.org/10.1016/

j.arthro.2006.12.003.

Liu YW, Tran MD, Skalski MR, Patel DB, White EA, Tomasian A, et al. MR imaging

of cartilage repair surgery of the knee. Clin Imag 2019;58:129–39. https://

doi.org/10.1016/j.clinimag.2019.07.004.

Krych AJ, Saris DBF, Stuart MJ, Hacken B. Cartilage injury in the knee: assessment

and treatment options. J Am Acad Orthop Surg 2020;28:914–22. https://doi.org/

10.5435/JAAOS-D-20-00266.

Jungesblut OD, Moritz M, Spiro AS, Stuecker R, Rupprecht M. Fixation of unstable

osteochondritis dissecans lesions and displaced osteochondral fragments using

new biodegradable magnesium pins in adolescents. Cartilage 2021;13:302S–10S.

https://doi.org/10.1177/1947603520942943.

Camathias C, Festring JD, Gaston MS. Bioabsorbable lag screw fixation of knee

osteochondritis dissecans in the skeletally immature. J Pediatr Orthop B 2011;20:

74–80. https://doi.org/10.1097/BPB.0b013e328341dfb4.

Leland DP, Bernard CD, Camp CL, Nakamura N, Saris DBF, Krych AJ. Does internal

fixation for unstable osteochondritis dissecans of the skeletally mature knee work?

A systematic review. Arthroscopy 2019;35:2512–22. https://doi.org/10.1016/

j.arthro.2019.03.020.

Bowers AL, Huffman GR. Suture bridge fixation of a femoral condyle traumatic

osteochondral defect. Clin Orthop Relat Res 2008;466:2276–81. https://doi.org/

10.1007/s11999-008-0357-6.

Vogel LA, Fitzsimmons KP, Lee Pace J. Osteochondral fracture fixation with

fragment preserving suture technique. Arthrosc Tech 2020;9:e761. https://

doi.org/10.1016/j.eats.2020.02.018. –7.

Steadman JR, Rodkey WG, Briggs KK. Microfracture: its history and experience of

the developing surgeon. Cartilage 2010;1:78–86. https://doi.org/10.1177/

1947603510365533.

Mithoefer K, Mcadams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical

efficacy of the microfracture technique for articular cartilage repair in the knee: an

evidence-based systematic analysis. Am J Sports Med 2009;37:2053–63. https://

doi.org/10.1177/0363546508328414.

Goyal D, Keyhani S, Lee EH, Hui JHP. Evidence-based status of microfracture

technique: a systematic review of level I and II studies. Arthroscopy 2013;29:

1579–88. https://doi.org/10.1016/j.arthro.2013.05.027.

Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of

microfracture for traumatic chondral defects of the knee: average 11-year followup. Arthroscopy 2003;19:477–84. https://doi.org/10.1053/jars.2003.50112.

Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic

review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc 2020;

28:670–706. https://doi.org/10.1007/s00167-019-05359-9.

Riboh JC, Gregory, Cvetanovich L, Cole BJ, Yanke AB. Comparative efficacy of

cartilage repair procedures in the knee: a network meta-analysis. Knee Surg Sports

Traumatol Arthrosc 2017;25:3786–99. https://doi.org/10.1007/s00167-0164300-1.

Solheim E, Hegna J, Inderhaug E. Long-term survival after microfracture and

mosaicplasty for knee articular cartilage repair: a comparative study between two

treatments cohorts. Cartilage 2020;11:71–6. https://doi.org/10.1177/

1947603518783482.

Solheim E, HegnaJ, Strand T, Harlem T, Inderhaug E. Randomized study of longterm (15-17 years) outcome after microfracture versus mosaicplasty in knee

articular cartilage defects. Am J Sports Med 2018;48:826–31. https://doi.org/

10.1177/0363546517745281.

Jones KJ, Kelley BV, Arshi A, McAllister DR, Fabricant PD. Comparative

effectiveness of cartilage repair with respect to the minimal clinically important

difference. Am J Sports Med 2019;47:3284–93. https://doi.org/10.1177/

0363546518824552.

Yabumoto H, Nakagawa Y, Mukai S. Surgical technique and clinical outcomes of

osteochondral autograft transplantation for large osteonecrotic lesions of the

femoral condyle with residual Normal cartilage: the eyeglass technique. Orthop J

Sport Med 2019;7:1–8. https://doi.org/10.1177/2325967119872446.

Briggs DT, Sadr KN, Pulido PA, Bugbee WD. The use of osteochondral allograft

transplantation for primary treatment of cartilage lesions in the knee. Cartilage

2015;6:203–7. https://doi.org/10.1177/1947603515595072.

Chahal J, Gross AE, Gross C, Mall N, Dwyer T, Chahal A, Whelan DB, Cole BJ.

Outcomes of osteochondral allograft transplantation in the knee. Arthroscopy

2013;29:575–88. https://doi.org/10.1016/j.arthro.2012.12.002.

Familiari F, Cinque ME, Chahla J, Godin JA, Olesen LM, Moastshe G, LaPrade RF.

Am J Sports Med 2018;46:3541–9. https://doi.org/10.1177/0363546517732531.

Riff AJ, Huddleston HP, Cole BJ, Yanke AB. Autologous chondrocyte implantation

and osteochondral allograft transplantation render comparable outcomes in the

setting of failed marrow stimulation. Am J Sports Med 2020;48:861–70. https://

doi.org/10.1177/0363546520902434.

Levy YD, G€

ortz S, Pulido PA, McCauley JC, Bugbee WD. Do fresh osteochondral

allografts successfully treat femoral condyle lesions? Knee Clin Orthop Relat Res

2013;471:231–7. https://doi.org/10.1007/s11999-012-2556-4.

Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of

deep cartilage defects in the knee with autologous chondrocyte transplantation.

N Engl J Med 1994;331:889–95.

Minas T, Von Keudell A, Bryant T, Gomoll AH. The John Insall Award: a minimum

10-year outcome study of autologous chondrocyte implantation knee. Clin Orthop

Relat Res 2014;472:41–51. https://doi.org/10.1007/s11999-013-3146-9.

Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A. Two- to

9-year outcome after autologous chondrocyte transplantation of the knee. Clin

Orthop Relat Res 2000;374:212–34. https://doi.org/10.1097/00003086200005000-00020.

T. Matsushita et al.

Journal of Joint Surgery and Research 1 (2023) 70–79

[46] Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A.

A prospective, randomized study comparing two techniques of autologous

chondrocyte implantation for osteochondral defects in the knee: periosteum

covered versus type I/III collagen covered. Knee 2006;13:203–10. https://

doi.org/10.1016/j.knee.2006.02.011.

[47] Samuelson EM, Brown DE. Cost-effectiveness analysis of autologous chondrocyte

implantation: a comparison of periosteal patch versus type I/III collagen

membrane. Am J Sports Med 2012;40:1252–8. https://doi.org/10.1177/

0363546512441586.

[48] Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, et al.

A prospective multicenter study on the outcome of type I collagen hydrogel-based

autologous chondrocyte implantation (cares) for the repair of articular cartilage

defects in the knee. Am J Sports Med 2011;39:2558–65. https://doi.org/10.1177/

0363546511423369.

[49] Ebert JR, Fallon M, Wood DJ, Janes GC. A prospective clinical and radiological

evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte

implantation. Am J Sports Med 2017;45:59–69. https://doi.org/10.1177/

0363546516663493.

[50] Matsushita T, Matsumoto T, Araki D, Nagai K, Hoshino Y, Niikura T, et al. A phase

I/IIa clinical trial of third-generation autologous chondrocyte implantation (Ik-01)

for focal cartilage injury of the knee. Asia-Pacific J Sport Med Arthrosc Rehabil

Technol 2022;28:6–12. https://doi.org/10.1016/j.asmart.2022.03.004.

[51] Niemeyer P, Schubert T, Grebe M, Hoburg A. Matrix-associated chondrocyte

implantation is associated with fewer reoperations than microfracture: results of a

population-representative, matched-pair claims data analysis for cartilage defects

of the knee. Orthop J Sport Med 2019;7:1–7. https://doi.org/10.1177/

2325967119877847.

[52] Schuette HB, Kraeutler MJ, McCarty EC. Matrix-assisted autologous chondrocyte

transplantation in the knee: a systematic review of mid- to long-term clinical

outcomes. Orthop J Sport Med 2017;5:1–8. https://doi.org/10.1177/

2325967117709250.

[53] Dhillon J, Decilveo AP, Kraeutler MJ, Belk JW, McCulloch PC, Scillia AJ. Thirdgeneration autologous chondrocyte implantation (cells cultured within collagen

membrane) is superior to microfracture for focal chondral defects of the knee

joint: systematic review and meta-analysis. Arthroscopy 2022;38:2579–86.

https://doi.org/10.1016/j.arthro.2022.02.011.

[54] Brittberg M, Rechker D, Ilgenfritz J, Saris DBF, SUMMIT Extension Study Group.

Matrix-applied characterized autologous cultured chondrocytes versus

microfracture. Five-year follow-up of a prospective randomized trial. Am J Sports

Med 2018;46:1343–51. https://doi.org/10.1177/0363546518756976.

[55] Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J. Transplantation of cartilagelike tissue made by tissue engineering in the treatment of cartilage defects of the

knee. J Bone Joint Surg Br 2002;84:571–8. https://doi.org/10.1302/0301620X.84B4.11947.

[56] Adachi N, Ochi M, Deie M, Nakamae A, Kamei G, Uchio Y, et al. Implantation of

tissue-engineered cartilage-like tissue for the treatment for full-thickness cartilage

defects of the knee. Knee Surg Sports Traumatol Arthrosc 2014;22:1241–8.

https://doi.org/10.1007/s00167-013-2521-0.

[57] Shinohara M, Akagi R, Watanabe A, Kato Y, Sato Y, Morikawa T, et al. Timedependent change in cartilage repair tissue evaluated by magnetic resonance

imaging up to 2 years after atelocollagen-assisted autologous cartilage

transplantation: data from the CaTCh study. Cartilage 2022;13:1–13. https://

doi.org/10.1177/19476035221109227.

[58] Tohyama H, Yasuda K, Minami A, Majima T, Iwasaki N, Muneta T, et al.

Atelocollagen-associated autologous chondrocyte implantation for the repair

of chondral defects of the knee: a prospective multicenter clinical trial in

Japan. J Orthop Sci 2009;14:579–88. https://doi.org/10.1007/s00776-0091384-1.

[59] Takazawa K, Adachi N, Deie M, Kamei G, Uchio Y, Iwasa J, et al. Evaluation of

magnetic resonance imaging and clinical outcome after tissue-engineered cartilage

implantation: prospective 6-year follow-up study. J Orthop Sci 2012;17:413–24.

https://doi.org/10.1007/s00776-012-0231-y.

[60] Hoburg A, Niemeyer P, Laute V, Zinser W, John T, Becher C, et al. Safety and

efficacy of matrix-associated autologous chondrocyte implantation with spheroids

for patellofemoral or tibiofemoral defects: a 5-year follow-up of a phase 2, doseconfirmation trial. Orthop J Sport Med 2022;10:1–9. https://doi.org/10.1177/

23259671211053380.

[61] Siebold R, Suezer F, Schmitt B, Trattnig S, Essig M. Good clinical and MRI outcome

after arthroscopic autologous chondrocyte implantation for cartilage repair in the

knee. Knee Surg Sports Traumatol Arthrosc 2018;26:831–9. https://doi.org/

10.1007/s00167-017-4491-0.

[62] Choi NY, Kim BW, Yeo WJ, Kim HB, Suh DS, Kim JS, et al. Gel-type autologous

chondrocyte (Chondron) implantation for treatment of articular cartilage defects

of the knee. BMC Muscoskel Disord 2010;11:103. https://doi.org/10.1186/14712474-11-103.

[63] Yoon TH, Jung M, Choi CH, Kim HS, Lee YH, Choi YS, et al. Arthroscopic gel-type

autologous chondrocyte implantation presents histologic evidence of regenerating

hyaline-like cartilage in the knee with articular cartilage defect. Knee Surg Sports

Traumatol Arthrosc 2020;28:941–51. https://doi.org/10.1007/s00167-01905572-6.

[64] Seow D, Yasui Y, Hurley ET, Ross AW, Murawski CD, Shimozono Y, et al.

Extracellular matrix cartilage allograft and particulate cartilage allograft for

osteochondral lesions of the knee and Ankle joints: a systematic review. Am J

Sports Med 2018;46:1758–66. https://doi.org/10.1177/0363546517717494.

[65] Fortier LA, Chapman HS, Pownder SL, Roller BL, Cross JA, Cook JL, et al.

BioCartilage improves cartilage repair compared with microfracture alone in an

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

78

equine model of full-thickness cartilage loss. Am J Sports Med 2016;44:2366–74.

https://doi.org/10.1177/0363546516648644.

Cole BJ, Haunschild ED, Carter T, Meyer J, Fortier LA, Gilat R, et al. Clinically

significant outcomes following the treatment of focal cartilage defects of the knee

with microfracture augmentation using cartilage allograft extracellular matrix: a

multicenter prospective study. Arthroscopy 2021;37:1512–21. https://doi.org/

10.1016/j.arthro.2021.01.043.

Brusalis CM, Greditzer HG, Fabricant PD, Stannard JP, Cook JL. BioCartilage

augmentation of marrow stimulation procedures for cartilage defects of the knee:

two-year clinical outcomes. Knee 2020;27:1418–25. https://doi.org/10.1016/

j.knee.2020.07.087.

Gille J, Kunow J, Boisch L, Behrens P, Bos I, Hoffmann C, et al. Cell-laden and cellfree matrix-induced chondrogenesis versus microfracture for the treatment of

articular cartilage defects: a histological and biomechanical study in sheep.

Cartilage 2010;1:29–42. https://doi.org/10.1177/1947603509358721.

Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled

trial demonstrating sustained benefit of autologous matrix-induced

chondrogenesis over microfracture at five years. Int Orthop 2017;41:797–804.

https://doi.org/10.1007/s00264-016-3391-0.

Fossum V, Hansen AK, Wilsgaard T, Knutsen G. Collagen-covered autologous

chondrocyte implantation versus autologous matrix-induced chondrogenesis: a

randomized trial comparing 2 methods for repair of cartilage defects of the knee.

Orthop J Sport Med 2019;7:1–11. https://doi.org/10.1177/2325967119868212.

Kim JH, Heo JW, Lee DH. Clinical and radiological outcomes after autologous

matrix-induced chondrogenesis versus microfracture of the knee: a systematic

review and meta-analysis with a minimum 2-year follow-up. Orthop J Sport Med

2020;8:1–15. https://doi.org/10.1177/2325967120959280.

Migliorini F, Maffulli N, Baroncini A, Bell A, Hildebrand F, Schenker H.

Autologous matrix-induced chondrogenesis is effective for focal chondral defects

of the knee. Sci Rep 2022;12:1–10. https://doi.org/10.1038/s41598-022-135916.

Karpinski K, H€aner M, Bierke S, Petersen W. Matrix-induced chondrogenesis is a

valid and safe cartilage repair option for small- to medium-sized cartilage defects

of the knee: a systematic review. Knee Surg Sports Traumatol Arthrosc 2021;29:

4213–22. https://doi.org/10.1007/s00167-021-06513-y.

Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N. Matrix-induced autologous

chondrocyte implantation versus multipotent stem cells for the treatment of large

patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage

2015;6:82–97. https://doi.org/10.1177/1947603514563597.

Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based

scaffold with activated bone marrow-derived mesenchymal stem cells compared

with microfracture. Am J Sports Med 2016;44:2846–54. https://doi.org/10.1177/

0363546516656179.

Enea D, Cecconi S, Calcagno S, Busilacchi A, Manzotti S, Gigante A. One-step

cartilage repair in the knee: collagen-covered microfracture and autologous bone

marrow concentrate. A pilot study. Knee 2015;22:30–5. https://doi.org/10.1016/

j.knee.2014.10.003.

Krych AJ, Nawabi DH, Farshad-Amacker NA, Jones KJ, Maak TG, Potter HG,

Williams III RJ. Bone marrow concentrate improves early cartilage phase

maturation of a scaffold plug in the knee. A comparative magnetic resonance

imaging analysis to platelet-rich plasma and control. Am J Sports Med 2016;44:

91–8. https://doi.org/10.1177/0363546515609597.

Cavinatto L, Hinckel BB, Tomlinson RE, Gupta S, Farr J, Bartolozzi AR. The role of

bone marrow aspirate concentrate for the treatment of focal chondral lesions of

the knee: a systematic review and critical analysis of animal and clinical studies.

Arthroscopy 2019;35:1860–77. https://doi.org/10.1016/j.arthro.2018.11.073.

Stockwell RA. The interrelationship of cell density and cartilage thickness in

mammalian articular cartilage. J Anat 1971;109:411–21.

Farr J, Cole BJ, Sherman S, Karas V. Particulated articular cartilage: CAIS and

DeNovo NT. J Knee Surg 2012;25:23–9. https://doi.org/10.1055/s-00311299652.

Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological

outcomes after cartilage repair with particulated juvenile articular cartilage: a 2year prospective study. Am J Sports Med 2014;42:1417–25. https://doi.org/

10.1177/0363546514528671.

Grawe B, Burge A, Nguyem J, Strickland S, Warren R, Rodeo S, Stein BES.

Cartilage regeneration in full-thickness patellar chondral defects treated with

particulated juvenile articular allograft cartilage: an MRI analysis. Cartilage 2017;

8:374–83. https://doi.org/10.1177/1947603517710308.

Dawkins BJ, Stein BES, Mintz DN, Fabricant PD, Gomoll AH, Strickland SM,

Aitchison AH, Perea SH, Green DW. Patellofemoral joint cartilage restoration with

particulated juvenile allograft in patients under 21 years old. Knee 2022;36:

120–9. https://doi.org/10.1016/j.knee.2021.07.006.

Riboh JC, Cole BJ, Farr J. Particulated articular cartilage for symptomatic

chondral defects of the knee. Curr Rev Musculoskelet Med 2015;8:429–35.

https://doi.org/10.1007/s12178-015-9300-0.

Christensen BB, Olesen ML, Hede KTC, Bergholt NL, Foldager CB, Lind M.

Particulated cartilage for chondral and osteochondral repair: a review. Cartilage

2021;13:1047–57. https://doi.org/10.1177/1947603520904757.

Tompkins M, Hamann JC, Diduch DR, Bonner KF, Hart JM, Gwathmey FW, et al.

Preliminary re6sults of a novel single-stage cartilage restoration technique:

particulated juvenile articular cartilage allograft for chondral defects of the

patella. Arthroscopy 2013;29:1661–70. https://doi.org/10.1016/

j.arthro.2013.05.021.

Wang T, Belkin NS, Burge AJ, Chang B, Pais M, Mahony G, et al. Patellofemoral

cartilage lesions treated with particulated juvenile allograft cartilage: a

T. Matsushita et al.

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Journal of Joint Surgery and Research 1 (2023) 70–79

prospective study with minimum 2-year clinical and magnetic resonance imaging

outcomes. Arthroscopy 2018;34:1498–505. https://doi.org/10.1016/

j.arthro.2017.11.021.

Salzmann GM, Calek AK, Preiss S. Second-generation autologous minced cartilage

repair technique. Arthrosc Tech 2017;6:e127–31. https://doi.org/10.1016/

j.eats.2016.09.011.

Christensen BB, Foldager CB, Jensen J, Lind M. Autologous dual-tissue

transplantation for osteochondral repair: early clinical and radiological results.

Cartilage 2015;6:166–73. https://doi.org/10.1177/1947603515580983.

Cole BJ, Farr J, Winalski SC, Hosea T, Richmond J, Mandelbaum B, De Deyne PG.

Outcomes after a single-stage procedure for cell-based cartilage repair. A

prospective clinical safety trial with 2-year follow-up. Am J Sports Med 2011;39:

1170–9. https://doi.org/10.1177/0363546511399382.

Massen FK, Inauen CR, Harder LP, Runer A, Preiss S, Salzmann GM. One-step

autologous minced cartilage procedure for the treatment of knee joint chondral

and osteochondral lesions: a series of 27 patients with 2-year follow-up. Orthop J

Sport Med 2019;7:1–8. https://doi.org/10.1177/2325967119853773.

Di Martino A, Silva S, Andriolo L, Merli G, Reale D, Zaffagnini S, et al.

Osteochondral autograft transplantation versus autologous bone-cartilage paste

grafting for the treatment of knee osteochondritis dissecans. Int Orthop 2021;45:

453–61. https://doi.org/10.1007/s00264-020-04804-6.

Lee B, Parvizi J, Bramlet D, Romness DW, Guermazi A, Noh M, et al. Results of a

phase II study to determine the efficacy and safety of genetically engineered

allogeneic human chondrocytes expressing TGF-β1. J Knee Surg 2020;33:167–72.

https://doi.org/10.1055/s-0038-1676803.

Hochberg MC, Guermazi A, Guehring H, Aydemir A, Wax S, Fleuranceau-Morel P,

et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage

thickness in patients with osteoarthritis: the FORWARD randomized clinical trial.

JAMA 2019;322:1360–70. https://doi.org/10.1001/jama.2019.14735.

Cavallo C, Filardo G, Mariani E, Kon E, Marcacci M, Pereira Ruiz MT, et al.

Comparison of platelet-rich plasma formulations for cartilage healing: an in vitro

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

79

study. J Bone Joint Surg Am 2014;96:423–9. https://doi.org/10.2106/

JBJS.M.00726.

Gilat R, Haunschild ED, Knapik DM, Evuarherhe A, Parvaresh KC, Cole BJ.

Hyaluronic acid and platelet-rich plasma for the management of knee

osteoarthritis. Int Orthop 2021;45:345–54. https://doi.org/10.1007/s00264-02004801-9.

O'Connell B, Wragg NM, Wilson SL. The use of PRP injections in the management

of knee osteoarthritis. Cell Tissue Res 2019;376:143–52. https://doi.org/

10.1007/s00441-019-02996-x.

Liang Y, Li J, Wang Y, He J, Chen L, Chu J, et al. Platelet rich plasma in the repair

of articular cartilage injury: a narrative review. Cartilage 2022;13:1–16. https://

doi.org/10.1177/19476035221118419.

Bennel K, Paterson K, Metcalf B, Duong V, Eyles J, Kasza J, et al. Effect of intraarticular platelet-rich plasma vs placebo injection on pain and medial tibial

cartilage volume in patients with knee osteoarthritis: the RESTORE randomized

clinical trial. JAMA 2021;326:1–11.

Le H, Xu W, Zhuang X, Chang F, Wang Y, Ding J. Mesenchymal stem cells for

cartilage regeneration. J Tissue Eng 2020;11:1–22. https://doi.org/10.1177/

2041731420943839.

Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal

stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther

2020;11:1–21. https://doi.org/10.1186/s13287-020-02001-1.

Sekiya I, Muneta T, Horie M, Koga H. Arthroscopic transplantation of synovial

stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop

Relat Res 2015;473:2316–26. https://doi.org/10.1007/s11999-015-4324-8.

Yamashita A, Tamamura Y, Morioka M, Karagiannis P, Shima N, Tsumaki N.

Considerations in hiPSC-derived cartilage for articular cartilage repair. Inflamm

Regen 2018;38:1–7. https://doi.org/10.1186/s41232-018-0075-8.

Yamashita A, Morioka M, Yahara Y, Okada M, Kobayashi T, Kuriyama S, et al.

Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem

Cell Rep 2015;4:404–18. https://doi.org/10.1016/j.stemcr.2015.01.016.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る