リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fractal Nature of Defect States in the Hofstadter butterfly」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fractal Nature of Defect States in the Hofstadter butterfly

松木, 義幸 大阪大学 DOI:10.18910/87819

2022.03.24

概要

磁場中の2次元結晶中の電子のエネルギースペクトルはフラクタル構造を示し、ホフスタッター蝶と呼ばれてい る。これは量子力学で最初に発見されたフラクタルの一つであり、量子ホール効果と密接に関連する基本的な問題 である。しかし、このフラクタル性を実験的に観測するには、実現不可能なほど強い磁場が必要であり、長年実験 物理学者を悩ませてきた。近年、グラフヱンを用いたモアレ超格子や光学格子などの新しい実験ステージが開発さ れ、ついにホフスタッター蝶が観測された。しかし、現在ホフスタッター蝶の実験的観測法はエネルギースペクト ルと輸送特性の測定にとどまっている。また、磁場中のブロッホ電子に関する従来の理論的研究のほとんどは欠陥 のない綺麗な格子系で行われており、欠陥局在状態のフラクタル性についてはよく理解されていなかった。このよ うな背景の下で本博士論文では点欠陥系におけるホフスタッター蝶に関して次の4項目の解析を行った:⑴点欠陥 状態のエネルギースペクトルのフラクタル性、(II)点欠陥状態の空間的フラクタル性、(III)ホフスタッター蝶の 欠陥エネルギー準位と磁気モーメントの関係、(IV)エネルギースペクトルの点欠陥数依存性。
(I) においては、点欠陥がホフスタッター蝶の無数のフラクタルなエネルギーギャップの一つ一つに欠陥エネルギ 一準位を作り出し、点欠陥状態にもフラクタル性が引き継がれることを示している。
(II) においては、欠陥波動関数の局在長(空間的減衰長)がフラクタル世代によってすべて異なることを示し、 さらに適切なフラクタルスケーリングのもとで、どの欠陥波動関数の局在長も近似的に一つの普遍的な曲線で記述 できることを明らかにしている。この結果は、欠陥波動関数の局在長という空間的情報の測定によるホフスタッタ 一蝶の新しい強力な観測法を提供し、主にエネルギースペクトルのフラクタル構造を観測していた従来の実験結果 に、より詳細な情報を追加するものになっている。
(III) においては、欠陥局在状態は局所電流による磁気モーメントを伴い、その大きさはホフスタッター蝶のエネルギー準位の勾配と正確に一致することを示している。この局所電流は原子レベルの量子ホールエッジ電流と見な すことができ、点欠陥物理とトポロジカル物性を結ぶ非白明な関係が存在することを示唆している。
(IV) においては、点欠陥の数とエネルギーギャップに現れる点欠陥エネルギー準位の数は一致することを示し た。これはバルク-エッジ対応では説明できない性質であり、点欠陥系を特徴付ける新たな対応である

参考文献

[1] P G Harper. The general motion of conduction electrons in a uniform magnetic field, with application to the diamagnetism of metals. Proceedings of the Physical Society. Section A, 68:879–892, oct 1955.

[2] P G Harper. Single band motion of conduction electrons in a uniform magnetic field. Proceedings of the Physical Society. Section A, 68:874–878, 1955.

[3] Douglas R Hofstadter. Energy levels and wave functions of bloch electrons in rational and irrational magnetic fields. Physical review B, 14(6):2239, 1976.

[4] Till Schl¨osser, Klaus Ensslin, Jo¨rg P Kotthaus, and Martin Holland. Landau sub- bands generated by a lateral electrostatic superlattice - chasing the hofstadter butterfly. Semiconductor Science and Technology, 11, nov 1996.

[5] C. Albrecht, J. H. Smet, K. von Klitzing, D. Weiss, V. Umansky, and H. Schweizer. Evidence of hofstadter’s fractal energy spectrum in the quantized hall conductance. Phys. Rev. Lett., 86:147–150, Jan 2001.

[6] MC Geisler, JH Smet, V Umansky, K Von Klitzing, B Naundorf, R Ketzmerick, and H Schweizer. Detection of a landau band-coupling-induced rearrangement of the hofs- tadter butterfly. Phys. Rev. Lett., 92(25):256801, 2004.

[7] C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim. Hofstadter’s butterfly and the fractal quantum hall effect in moir´e super- lattices. Nature, 497:598–602, Jun 2013.

[8] B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watan- abe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori. Massive dirac fermions and hofstadter butterfly in a van der waals heterostructure. Science, 340, 2013.

[9] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal’ko, and A. K. Geim. Cloning of dirac fermions in graphene superlattices. Nature, 497:594–597, nov 2013.

[10] D Jaksch and P Zoller. Creation of effective magnetic fields in optical lattices: the hofstadter butterfly for cold neutral atoms. New Journal of Physics, 5:56–56, Jun 2003.

[11] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch. Realiza- tion of the hofstadter hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett., 111:185301, Oct 2013.

[12] Hirokazu Miyake, Georgios A. Siviloglou, Colin J. Kennedy, William Cody Burton, and Wolfgang Ketterle. Realizing the harper hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett., 111:185302, Oct 2013.

[13] P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas, A. Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, B. Foxen, M. Giustina, E. Jef- frey, J. Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, H. Neven, D. G. Angelakis, and J. Martinis. Spectroscopic sig- natures of localization with interacting photons in superconducting qubits. Science, 358(6367):1175–1179, 2017.

[14] U. Kuhl and H.-J. St¨ockmann. Microwave realization of the hofstadter butterfly. Phys. Rev. Lett., 80:3232–3235, Apr 1998.

[15] O Richoux and V Pagneux. Acoustic characterization of the hofstadter butterfly with resonant scatterers. Europhysics Letters (EPL), 59:34–40, jul 2002.

[16] Xiang Ni, Kai Chen, Matthew Weiner, David J. Apigo, Camelia Prodan, Andrea Alu`, Emil Prodan, and Alexander B. Khanikaev. Observation of hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals. Commun Phys, 2:256 – 261, 2019.

[17] Indubala I Satija. Butterfly in the Quantum World. Morgan & Claypool Publishers, 2016.

[18] G. H. Wannier, G. M. Obermair, and R. Ray. Manetoelectronic denisty of states for a model crystal. physica status solidi (b), 93:337–342, 1979.

[19] F. H. Claro and G. H. Wannier. Magnetic subband structure of electrons in hexagonal lattices. Phys. Rev. B, 19:6068–6074, Jun 1979.

[20] Martin C. Geisler. The hofstadter butterfly and quantum interferences in modulated 2- dimensional electron systems, phd thesis university of stuttgart doi:10.18419/opus-6610.

[21] A. L. C. Pereira and P. A. Schulz. Additional levels between landau bands due to vacancies in graphene: Towards defect engineering. Phys. Rev. B, 78:125402, Sep 2008.

[22] Selcen I˙slamo˘glu, M. O¨ . Oktel, and O g˘uz Gu¨lseren. Hofstadter butterfly of graphene with point defects. Phys. Rev. B, 85:235414, Jun 2012.

[23] Selcen I˙slamo˘glu, M. O¨ . Oktel, and Gu¨lseren. Hall conductance in graphene with point defects. Journal of Physics: Condensed Matter, 25(5):055302, 2013.

[24] Jesper Goor Pedersen and Thomas Garm Pedersen. Hofstadter butterflies and magneti- cally induced band-gap quenching in graphene antidot lattices. Phys. Rev. B, 87:235404, Jun 2013.

[25] Chenggang Zhou, Mona Berciu, and R. N. Bhatt. Effects of large disorder on the hofstadter butterfly. Phys. Rev. B, 71:125310, Mar 2005.

[26] E. N. Grishanov and I. Y. Popov. Spectral properties of graphene with periodic array of defects in a magnetic field. Russ. J. Math. Phys., 25:277–283, 2018.

[27] Yoshiyuki Matsuki and Kazuki Ikeda. Comments on the fractal energy spectrum of honeycomb lattice with defects. Journal of Physics Communications, 3(5):055003, may 2019.

[28] Seydou-Samba Diop, Lars Fritz, Matthias Vojta, and Stephan Rachel. Impurity bound states as detectors of topological band structures revisited. Phys. Rev. B, 101:245132, Jun 2020.

[29] Tsuneya Ando and Yasutada Uemura. Theory of quantum transport in a two- dimensional electron system under magnetic fields. i. characteristics of level broadening and transport under strong fields. Journal of the Physical Society of Japan, 36:959–967, 1974.

[30] Tsuneya Ando. Theory of quantum transport in a two-dimensional electron system under magnetic fields. iii. many-site approximation. Journal of the Physical Society of Japan, 37:622–630, 1974.

[31] Tsuneya Ando, Yukio Matsumoto, and Yasutada Uemura. Theory of hall effect in a two-dimensional electron system. Journal of the Physical Society of Japan, 39:279–288, 1975.

[32] R. E. Prange. Quantized hall resistance and the measurement of the fine-structure constant. Phys. Rev. B, 23:4802–4805, May 1981.

[33] Robert Joynt and R. E. Prange. Conditions for the quantum hall effect. Phys. Rev. B, 29:3303–3317, Mar 1984.

[34] S.A. Gredeskul, M. Zusman, Y. Avishai, and M.Ya. Azbel’. Spectral properties and lo- calization of an electron in a two-dimensional system with point scatterers in a magnetic field. Physics Reports, 288(1):223 – 257, 1997.

[35] Yoshiyuki Matsuki, Kazuki Ikeda, and Mikito Koshino. Fractal defect states in the hofstadter butterfly. Phys. Rev. B, 104:035305, Jul 2021.

[36] K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45(0):494–497, Aug 1980.

[37] D. C. Tsui, H. L. Stormer, and A. C. Gossard. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48(0):1559–1562, May 1982.

[38] Daijiro Yoshioka. The Quantum Hall Effect. Number XII, 210 in Springer Series in Solid-State Sciences. Springer, 1 edition, 2002.

[39] Marvin E Cage, Kv Klitzing, AM Chang, F Duncan, M Haldane, RB Laughlin, AMM Pruisken, and DJ Thouless. The quantum Hall effect. Springer Science & Business Media, 2012.

[40] David Tong. Lectures on the quantum hall effect. arXiv preprint arXiv:1606.06687, 2016.

[41] Horst L. Stormer. Nobel lecture: The fractional quantum hall effect. Rev. Mod. Phys., 71(0):875–889, Jul 1999.

[42] R. B. Laughlin. Quantized hall conductivity in two dimensions. Phys. Rev. B, 23:5632– 5633, May 1981.

[43] B. I. Halperin. Quantized hall conductance, current-carrying edge states, and the ex- istence of extended states in a two-dimensional disordered potential. Phys. Rev. B, 25:2185–2190, Feb 1982.

[44] P. R. Wallace. The band theory of graphite. Phys. Rev., 71:622–634, May 1947.

[45] Nguyen Hong Shon and Tsuneya Ando. Hall conductivity of a two-dimensional graphite system. Journal of the Physical Society of Japan, 67:2421–2429, 1998.

[46] Yisong Zheng and Tsuneya Ando. Hall conductivity of a two-dimensional graphite system. Phys. Rev. B, 65:245420, Jun 2002.

[47] Yasuhiro Hatsugai. Chern number and edge states in the integer quantum hall effect. Phys. Rev. Lett., 71:3697–3700, Nov 1993.

[48] Yasuhiro Hatsugai. Edge states in the integer quantum hall effect and the riemann surface of the bloch function. Phys. Rev. B, 48:11851–11862, Oct 1993.

[49] P Streda. Theory of quantised hall conductivity in two dimensions. Journal of Physics C: Solid State Physics, 15(22):L717, 1982.

[50] A. Widom. Thermodynamic derivation of the Hall effect current. Physics Letters A, 90:474–474, August 1982.

[51] Felix Bloch. U¨ ber die quantenmechanik der elektronen in kristallgittern. Zeitschrift fu¨r Physik, 52(7):555–600, 1929.

[52] R. Peierls. Zur theorie des diamagnetismus von leitungselektronen. Zeitschrift fu¨r Physik, 80(11):763–791, Nov 1933.

[53] J. Zak. Magnetic translation group. Phys. Rev., 134:A1602–A1606, Jun 1964.

[54] B. Andrei Bernevig. Topological Insulators and Topological Superconductors. 2013.

[55] Eduardo Fradkin. Field Theories of Condensed Matter Physics. Cambridge University Press, 2 edition, 2013.

[56] A Rauh, GH Wannier, and G Obermair. Bloch electrons in irrational magnetic fields. physica status solidi (b), 63(1):215–229, 1974.

[57] X.G. Wen and A. Zee. Winding number, family index theorem, and electron hopping in a magnetic field. Nuclear Physics B, 316(3):641–662, 1989.

[58] G. H. Wannier. A result not dependent on rationality for bloch electrons in a magnetic field. physica status solidi (b), 88:757–765, 1978.

[59] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49:405–408, Aug 1982.

[60] Di Xiao, Ming-Che Chang, and Qian Niu. Berry phase effects on electronic properties. Rev. Mod. Phys., 82:1959–2007, Jul 2010.

[61] Pilkyung Moon and Mikito Koshino. Energy spectrum and quantum hall effect in twisted bilayer graphene. Phys. Rev. B, 85:195458, May 2012.

[62] Gerardo G. Naumis and J. L. Arag´on. Substitutional disorder in a fibonacci chain: Resonant eigenstates and instability of the spectrum. Phys. Rev. B, 54:15079–15085, Dec 1996.

[63] Gerardo G. Naumis. Use of the trace map for evaluating localization properties. Phys. Rev. B, 59:11315–11321, May 1999.

[64] Gerardo G. Naumis. Effects of an impurity in the harper model. Physics Letters A, 309, 2003.

[65] A. H. MacDonald. Landau-level subband structure of electrons on a square lattice. Phys. Rev. B, 28:6713–6717, Dec 1983.

[66] Jun-Won Rhim and Kwon Park. Self-similar occurrence of massless dirac particles in graphene under a magnetic field. Phys. Rev. B, 86:235411, Dec 2012.

[67] Nobuyuki Yoshioka, Hiroyasu Matsuura, and Masao Ogata. Quantum hall effect of mass- less dirac fermions and free fermions in hofstadter’s butterfly. Journal of the Physical Society of Japan, 85(6):064712, 2016.

[68] Archana Mishra, S. R. Hassan, and R. Shankar. Translational symmetry breaking and the disintegration of the hofstadter butterfly. Phys. Rev. B, 95:035140, Jan 2017.

[69] Vibhuti Bhushan Jha, Garima Rani, and R. Ganesh. Impurity-induced current in a chern insulator. Phys. Rev. B, 95:115434, Mar 2017.

[70] R M Cavalcanti and C A A de Carvalho. Two-dimensional electron gas in a uniform magnetic field in the presence of a delta-impurity. Journal of Physics A: Mathematical and General, 31:2391–2399, Mar 1998.

[71] YT Li and R Wong. Integral and series representations of the dirac delta function. arXiv preprint arXiv:1303.1943, 2013.

[72] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski, Richard A. Silverman, and George H. Weiss. Methods of quantum field theory in statistical physics. Physics Today, 17(4):78– 80, 1964.

[73] Y. Niimi, H. Kambara, T. Matsui, D. Yoshioka, and Hiroshi Fukuyama. Real-space imaging of alternate localization and extension of quasi-two-dimensional electronic states at graphite surfaces in magnetic fields. Phys. Rev. Lett., 97:236804, Dec 2006.

[74] Mikito Koshino and Hiroki Oka. Topological invariants in two-dimensional quasicrystals. arXiv preprint arXiv:2109.12859, 2021.

[75] Hiroki Oka and Mikito Koshino. Fractal energy gaps and topological invariants in hbn/graphene/hbn double moir´e systems. Phys. Rev. B, 104:035306, Jul 2021.

[76] Stampfli. P. A dodecagonal quasiperiodic lattice in two dimensions. Helvetica Physica Acta, 59:1260–1263, 1986.

[77] Sung Joon Ahn, Pilkyung Moon, Tae-Hoon Kim, Hyun-Woo Kim, Ha-Chul Shin, Eun Hye Kim, Hyun Woo Cha, Se-Jong Kahng, Philip Kim, Mikito Koshino, et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science, 361(6404):782–786, 2018.

[78] Yuichiro Takesaki, Kenji Kawahara, Hiroki Hibino, Susumu Okada, Masaharu Tsuji, and Hiroki Ago. Highly uniform bilayer graphene on epitaxial cu–ni (111) alloy. Chemistry of Materials, 28(13):4583–4592, 2016.

[79] Wei Yao, Eryin Wang, Changhua Bao, Yiou Zhang, Kenan Zhang, Kejie Bao, Chun Kai Chan, Chaoyu Chen, Jose Avila, Maria C Asensio, Junyi Zhu, and Shuyun Zhou. Qua- sicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling. Proceedings of the National Academy of Sciences of the United States of America, 115(27):6928–6933, 2018.

[80] Xu-Dong Chen, Wei Xin, Wen-Shuai Jiang, Zhi-Bo Liu, Yongsheng Chen, and Jian-Guo Tian. High-precision twist-controlled bilayer and trilayer graphene. Advanced Materials, 28(13):2563–2570, 2016.

[81] Pilkyung Moon, Mikito Koshino, and Young-Woo Son. Quasicrystalline electronic states in 30◦ rotated twisted bilayer graphene. Phys. Rev. B, 99:165430, Apr 2019.

[82] Mikito Koshino and Tsuneya Ando. Hall plateau diagram for the hofstadter butterfly energy spectrum. Phys. Rev. B, 73:155304, Apr 2006.

[83] Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of integrals, series, and products. 2014.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る