リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electronic properties of bismuth studied by systematic film control at the nanoscale」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electronic properties of bismuth studied by systematic film control at the nanoscale

伊藤, 俊 東京大学 DOI:10.15083/0002001843

2021.10.04

概要

Elemental bismuth (Bi) has provided an irreplaceable platform for condensed matter physics due to its several extreme properties. The single crystal is a typical semimetal with tiny car- rier pockets and a three-dimensional Dirac dispersion, which respectively generates a strong quantum size effect (QSE) and anomalous electronic transport phenomena. Moreover, its largest atomic spin-orbit coupling among every stable element has made Bi a central compo- nent in recent studies of topologically nontrivial materials. Despite intense research efforts continuing from the early 20 century, two fundamental issues have long been controversial on this attracting material: its electronic topology and a QSE-induced semimetal-semiconductor (SMSC) transition. In the present work, we attempt to solve these two major problems in Bi by direct observations of electronic band structures using angle-resolved photoelectron spectroscopy (ARPES) on Bi thin films whose conditions are systematically controlled at the nanoscale.

The first part of this thesis is on the electronic topology of pure Bi itself, whose experimental determination has been challenging due to the presence of the bulk band gap as small as ∼10 meV and its three-dimensional Dirac band. The latter disperses sharply beyond the maximum momentum resolution expected in ARPES, which is fundamentally limited by an uncertainty relation for photoelectrons. We overcome these difficulties by measuring Bi thin films, instead of its single crystal, for determining the pure bulk property. Quantum well states (QWSs) formed in atomically thin films are two-dimensional states that are free from the resolution limit and still encompass the original three-dimensional band information in the systematic evolution against thicknesses. We show that synthesis of high-quality Bi films leads to observations of the QWS bands on the same energy scale as the bulk band gap. Analyses focusing on a phase shift of QWS wave functions and their level evolution toward the infinite bulk limit precisely identify connections between the surface and bulk band structures, which unambiguously shows a nontrivial topological order.

Before entering the second topic, we scrutinize an electron doping effect caused by adsorption of alkali-metal atoms on a Bi surface, which provides an important tool to observe unoccupied electronic structures by ARPES. By combining systematic measurements on cesium (Cs)- adsorbed Bi films with first-principles calculations, we reveal that Cs-induced energy shifts of the surface bands are directly related to vertical charge-density profiles of each state in a pristine Bi film. In contrast, QWS bands show a conventional rigid-shift behavior. We provide a unified picture of the Cs-induced electron doping based on spatial distributions of each electronic state and Cs-Bi hybridization.

The final part of this thesis is on the SMSC transition in ultrathin Bi films, a unique phase transition driven by quantization of electronic structures. Although it was theoretically predicted more than 50 years ago, the experimental detection has been seriously contradicting between transport and ARPES measurements, which respectively report a semiconducting behavior and a metallic bulk band envelope in atomically thin films. By using our high- quality Bi films and the established alkali-metal adsorption technique, we achieve the first direct observation of the SMSC transition with all the QWS bands clearly resolved. Moreover, anomalous evolution of the QWS energy levels in atomically thin regions clearly show the presence of a mechanism beyond the QSE. Fully utilizing the visualization of fine electronic structures and stepwise theoretical analyses with tight-binding, first-principles, and model calculations, we reveal an unprecedented mechanism: many-body correlations between surface and bulk charge densities gradually deform a one-body confinement potential to that with a double-well-like character, which transforms quantized bulk states into surface-conducting ones and naturally reconciles the previous contradictions. This discovery not only provides the complete picture of the SMSC transition but can also be generalized as a novel size effect governing nanoscale transport in systems with metallic edge states.

The present work thus clarifies the two long-discussed problems in Bi and at the same time introduces a universal framework for investigating electronic properties in matter by systematic control of dimensionality, carrier concentration, and various size-dependent effects pertinent to the presence of a substrate and edge states.

参考文献

[1] P. W. Anderson, More is different, Science 177, 393–396 (1972). 1

[2] F. Bloch, U¨ ber die quantenmechanik der elektronen in kristallgittern, Zeitschrift fu¨r physik 52, 555–600 (1929). 1

[3] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108, 1175 (1957). 1

[4] J. G. Bednorz, K. A. Mu¨ller, Possible high-Tc superconductivity in the Ba-La- Cu-O system, Zeitschrift fu¨r Physik B Condensed Matter 64, 189–193 (1986). 1

[5] E. Dagotto, Complexity in strongly correlated electronic systems, Science 309, 257 (2005). 1

[6] K. v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determina- tion of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45, 494 (1980). 1, 20

[7] R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23, 5632 (1981). 1, 20, 21

[8] D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49, 405 (1982). 1, 20, 21

[9] M. Z. Hasan, C. L. Kane, Colloquium: topological insulators, Rev. Mod. Phys. 82, 3045 (2010). 1, 3, 69, 71

[10] X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011). 1, 3, 69, 71

[11] S. Tomonaga, Remarks on Bloch’s Method of Sound Waves applied to Many-Fermion Problems, Prog. Theor. Phys. 5, 544 (1950). 1

[12] R. E. Peierls, Quantum theory of solids, Clarendon Press, (1955). 1

[13] J. M. Luttinger, An Exactly Soluble Model of a Many‐Fermion System, J. Math. Phys. 4, 1154 (1963). 1

[14] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grig- orieva, S. Dubonos, Firsov, AA, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438, 197 (2005). 1

[15] Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438, 201 (2005). 1

[16] C.-C. Liu, W. Feng, Y. Yao, Quantum spin Hall effect in silicene and two- dimensional germanium, Phys. Rev. Lett. 107, 076802 (2011). 1

[17] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotech. 7, 699 (2012). 1, 69

[18] A. Zangwill, Physics at surfaces, Cambridge University Press, 1988. 2, 8, 39

[19] J. H. Davies, The physics of low-dimensional semiconductors: an introduction, Cambridge University Press, (1998). 2, 9, 14, 48, 49

[20] M.-C. Desjonqueres, D. Spanjaard, Concepts in surface physics, Springer Science & Business Media, (2012). 2

[21] P. Harrison, A. Valavanis, Quantum wells, wires and dots: theoretical and com- putational physics of semiconductor nanostructures, John Wiley & Sons, (2016). 2, 110

[22] J. Butterfield, Less is different: Emergence and reduction reconciled, Foundations of Physics 41, 1065 (2011). 2

[23] A. Y. Cho, J. Arthur, Molecular beam epitaxy, Progress in solid state chemistry 10, 157 (1975). 2, 48

[24] A. Roth, Vacuum technology, Elsevier, (2012). 2

[25] K. Oura, V. Lifshits, A. Saranin, A. Zotov, M. Katayama, Surface science: an introduction, Springer Science & Business Media, (2013). 2

[26] S. Hu¨fner, Photoelectron spectroscopy: principles and applications, Vol. 82, Springer Science & Business Media, (2013). 2, 3, 8, 9, 13, 35, 41, 71

[27] T. Chiang, Photoemission studies of quantum well states in thin films, Surf. Sci. Rep. 39,, 181 (2000). 2, 78, 83, 86

[28] R. M. Martin, Electronic structure: basic theory and practical methods, Cam- bridge University Press, (2004). 2, 50

[29] A. Brugmans, Magnetismus, Seu De Affinitatibus Magneticis Observationes Aca- demicae, Apud Luzac & Van Damme, (1778). 3, 27

[30] T. J. Seebeck, Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz, Ann. Phys. 82, 253 (1826). 3, 27

[31] A. v. Ettingshausen, W. Nernst, Ueber das Auftreten electromotorischer Kr¨afte in Metallplatten, welche von einem W¨armestrome durchflossen werden und sich im magnetischen Felde befinden, Ann. Phys. Chem. 265, 343 (1886). 3, 27

[32] L. Schubnikov, W. J. de Haas, Comm. Phys. Lab. Leiden 207d, 35 (1930). 3, 27

[33] W. J. de Haas, P. M. van Alphen, Comm. Phys. Lab. Leiden 212a, 3 (1930). 3, 27

[34] L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, N. P. Ong, Phase transitions of Dirac electrons in bismuth, Science 321, 547 (2008). 3, 27

[35] Z. Zhu, A. Collaudin, B. Fauqu´e, W. Kang, K. Behnia, Field-induced polarization of Dirac valleys in bismuth, Nat. Phys. 8, 89 (2012). 3, 27

[36] R. Ku¨chler, L. Steinke, R. Daou, M. Brando, K. Behnia, F. Steglich, Thermo- dynamic evidence for valley-dependent density of states in bulk bismuth, Nat. Mater. 13, 461 (2014). 3, 27

[37] B. E. Feldman, M. T. Randeria, A. Gyenis, F. Wu, H. Ji, R. J. Cava, A. H. MacDonald, A. Yazdani, Observation of a nematic quantum Hall liquid on the surface of bismuth, Science 354, 316 (2016). 3

[38] O. Prakash, A. Kumar, A. Thamizhavel, S. Ramakrishnan, Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure, Science 355, 52 (2017). 3

[39] V. Sandomirskii, Dependence of the forbidden-band width of semiconducting films on their thickness and temperature, Sov. Phys. JETP 16, 1630 (1963). 3

[40] V. Lutskii, Features of optical absorption of metallic films in the region where the metal turns into a dielectric, ZhETF Pis ma Redaktsiiu 2, 391 (1965). 3

[41] V. Sandomirskii, Quantum size effect in a semimetal film, Sov. Phys. JETP 25, 101 (1967). 3, 99

[42] L. Hicks, M. S. Dresselhaus, Effect of quantum-well structures on the thermo- electric figure of merit, Phys. Rev. B 47, 12727 (1993). 3

[43] C. Hoffman, J. Meyer, F. Bartoli, A. Di Venere, X. Yi, C. Hou, H. Wang, J. Ket- terson, G. Wong, Semimetal-to-semiconductor transition in bismuth thin films, Phys. Rev. B 48, 11431 (1993). 3, 99

[44] H. Chu, Comment on ”Semimetal-to-semiconductor transition in bismuth thin films”, Phys. Rev. B 51, 5532 (1995). 3, 99

[45] Z. Zhang, J. Y. Ying, M. S. Dresselhaus, Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process, J. Mater. Res. 13, 1745 (1998). 3, 99

[46] S. Lee, J. Ham, K. Jeon, J.-S. Noh, W. Lee, Direct observation of the semimetal- to-semiconductor transition of individual single-crystal bismuth nanowires grown by on-film formation of nanowires, Nanotechnology 21, 405701 (2010). 3, 99

[47] A. Nikolaeva, T. Huber, L. Konopko, A. Tsurkan, Observation of the semiconductor-semimetal and semimetal-semiconductor transitions in Bi quan- tum wires induced by anisotropic deformation and magnetic field, J. Low Temp. Phys. 158, 530 (2010). 3, 99

[48] L. Konopko, T. Huber, A. Nikolaeva, Magnetic Quantum Oscillations in Single Bi Nanowires, J. Low Temp. Phys. 159, 253 (2010). 3, 99

[49] G. Zhou, L. Li, G. Li, Semimetal to semiconductor transition and thermoelectric properties of bismuth nanotubes, J. Appl. Phys. 109, 114311 (2011). 3, 99

[50] S. Xiao, D. Wei, X. Jin, Bi(111) thin film with insulating interior but metallic surfaces, Phys. Rev. Lett. 109, 166805 (2012). 3, 98, 99, 112

[51] K. Zhu, L. Wu, X. Gong, S. Xiao, X. Jin, Quantum transport in the surface states of epitaxial Bi(111) thin films, Phys. Rev. B 94, 121401 (2016). 3, 98, 99, 112

[52] P. Kr¨oger, D. Abdelbarey, M. Siemens, D. Lu¨kermann, S. Sologub, H. Pfnu¨r, C. Tegenkamp, Controlling conductivity by quantum well states in ultrathin Bi(111) films, Phys. Rev. B 97, 045403 (2018). 3, 98, 99, 112

[53] P. Hofmann, The surfaces of bismuth: Structural and electronic properties, Prog. Surf. Sci. 81, 191 (2006). 3, 25, 26, 28, 69, 70

[54] C. Ast, H. H¨ochst, Electronic structure of a bismuth bilayer, Phys. Rev. B 67, 113102 (2003). 3, 70, 71

[55] Y. Ohtsubo, L. Perfetti, M. O. Goerbig, P. L. F`evre, F. Bertran, A. Taleb- Ibrahimi, Non-trivial surface-band dispersion on Bi(111), New J. Phys. 15, 033041 (2013). 3, 70, 71, 74, 76, 116, 123

[56] L. Perfetti, J. Faure, E. Papalazarou, J. Mauchain, M. Marsi, M. O. Goerbig, A. Taleb-Ibrahimi, Y. Ohtsubo, New aspects of electronic excitations at the bis- muth surface: Topology, thermalization and coupling to coherent phonons, J. Electron Spectrosc. Relat. Phenom. 201, 60 (2015). 3, 70, 71

[57] T. Hirahara, T. Shirai, T. Hajiri, M. Matsunami, K. Tanaka, S. Kimura, S. Hasegawa, K. Kobayashi, Role of quantum and surface-state effects in the bulk Fermi-level position of ultrathin Bi films, Phys. Rev. Lett. 115, 106803 (2015). 4, 98, 99, 101, 108, 112

[58] I. Tamm, U¨ ber eine m¨ogliche Art der Elektronenbindung an Kristalloberfl¨achen, Zeitschrift fu¨r Physik 76, 849 (1932). 8

[59] E. T. Goodwin, Electronic states at the surfaces of crystals: II. The approxima- tion of tight binding: finite linear chain of atoms, Math. Proc. Camb. Phil. Soc. 35, 221 (1939). 8

[60] W. Shockley, On the surface states associated with a periodic potential, Phys. Rev. 56, 317 (1939). 8

[61] H. Ibach, H. Lu¨th, Solid-state physics: An Introduction to Principles of Material Science, Springer Science & Business Media, 2009. 9

[62] E. V. Chulkov, V. M. Silkin, P. M. Echenique, Image potential states on metal surfaces: binding energies and wave functions, Surf. Sci. 437, 330 (1999). 10

[63] P. Echenique, J. Pendry, The existence and detection of Rydberg states at sur- faces, J. Phys. C 11, 2065 (1978). 12

[64] E. McRae, Electronic surface resonances of crystals, Rev. Mod. Phys. 51, 541 (1979). 12

[65] S. G. Davison, M. Steslicka, Basic Theory of Surface States, Oxford University Press, (1992). 13

[66] N. V. Smith, Phase analysis of image states and surface states associated with nearly-free-electron band gaps, Phys. Rev. B 32, 3549 (1985). 13, 125

[67] N. V. Smith, N. B. Brookes, Y. Chang, P. D. Johnson, Quantum-well and tight- binding analyses of spin-polarized photoemission from Ag/Fe(001) overlayers, Phys. Rev. B 49, 332 (1994). 13, 125

[68] J. Sakurai, Modern quantum mechanics, Addison Wesley, (1993). 16, 45

[69] 安藤陽一, トポロジカル絶縁体入門, 講談社, (2014). 17

[70] 斎藤英治, 村上修一, スピン流とトポロジカル絶縁体, 共立出版, (2014). 17

[71] Y. A. Bychkov, E. I. Rashba, Properties of a 2D electron gas with lifted spectral degeneracy, JETP Lett. 39, 78 (1984). 24

[72] 伏屋雄紀, ビスマス研究温故知新固体中ディラック電子とバンド間磁場効果, 物性研究 90, 537 (2008). 25, 27

[73] P. Cucka, C. Barrett, The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi, Acta Crystallographica 15, 865 (1962). 25, 87

[74] Y. Liu, R. E. Allen, Electronic structure of the semimetals Bi and Sb, Phys. Rev. B 52, 1566 (1995). 25, 27, 28, 62, 63, 64, 67, 69, 71, 74, 82, 87, 100, 105

[75] H. M¨onig, J. Sun, Y. M. Koroteev, G. Bihlmayer, J. Wells, E. Chulkov, K. Pohl, P. Hofmann, Structure of the (111) surface of bismuth: LEED analysis and first- principles calculations, Phys. Rev. B 72, 085410 (2005). 26

[76] I. Aguilera, C. Friedrich, S. Blu¨gel, Electronic phase transitions of bismuth under strain from relativistic self-consistent GW calculations, Phys. Rev. B 91, 125129 (2015). 27, 69, 71, 82, 106, 116

[77] Y. Fuseya, M. Ogata, H. Fukuyama, Transport properties and diamagnetism of dirac electrons in bismuth, J. Phys. Soc. Japan 84, 012001 (2014). 27

[78] Y. Koroteev, G. Bihlmayer, J. Gayone, E. Chulkov, S. Blu¨gel, P. Echenique, P. Hofmann, Strong spin-orbit splitting on Bi surfaces, Phys. Rev. Lett. 93, 046403 (2004). 28, 69, 70, 76

[79] T. Hirahara, The Rashba and quantum size effects in ultrathin Bi films, J. Elec. Spectrosc. Relat. Phenom. 201, 98 (2015). 28

[80] R. Singh, Spin-orbit splitting in graphene, silicene and germanene: Dependence on buckling, Int. J. Mod. Phys. B 32, 1850055 (2018). 28

[81] F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Sch¨afer, R. Claessen, Bismuthene on a SiC substrate: A candidate for a high- temperature quantum spin Hall material, Science 357, 287 (2017). 28

[82] X. Gonze, J.-P. Michenaud, J.-P. Vigneron, First-principles study of As, Sb, and Bi electronic properties, Phys. Rev. B 41, 11827 (1990). 28

[83] A. Kimura, E. Krasovskii, R. Nishimura, K. Miyamoto, T. Kadono, K. Kanomaru, E. Chulkov, G. Bihlmayer, K. Shimada, H. Namatame, M. Taniguchi, Strong Rashba-type spin polarization of the photocurrent from bulk continuum states: Experiment and theory for Bi(111), Phys. Rev. Lett. 105, 076804 (2010). 29

[84] K. Kuroda, K. Yaji, M. Nakayama, A. Harasawa, Y. Ishida, S. Watanabe, C.-T. Chen, T. Kondo, F. Komori, S. Shin, Coherent control over three-dimensional spin polarization for the spin-orbit coupled surface state of Bi2Se3, Phys. Rev. B 94, 165162 (2016). 29

[85] K. Yaji, K. Kuroda, S. Toyohisa, A. Harasawa, Y. Ishida, S. Watanabe, C. Chen, K. Kobayashi, F. Komori, S. Shin, Spin-dependent quantum interference in pho- toemission process from spin-orbit coupled states, Nat. Comm. 8, 14588 (2017). 29

[86] D. Hou, Z. Qiu, K. Harii, Y. Kajiwara, K. Uchida, Y. Fujikawa, H. Nakayama, T. Yoshino, T. An, K. Ando, X. Jin, E. Saitoh, Interface induced inverse spin Hall effect in bismuth/permalloy bilayer, Appl. Phys. Lett. 101, 042403 (2012). 29

[87] H. Emoto, Y. Ando, E. Shikoh, Y. Fuseya, T. Shinjo, M. Shiraishi, Conversion of pure spin current to charge current in amorphous bismuth, J. Appl. Phys. 115, 17C507 (2014). 29

[88] H. Emoto, Y. Ando, G. Eguchi, R. Ohshima, E. Shikoh, Y. Fuseya, T. Shinjo, M. Shiraishi, Transport and spin conversion of multicarriers in semimetal bis- muth, Phys. Rev. B 93, 174428 (2016). 29

[89] E. J. Tichovolsky, J. G. Mavroides, Magnetoreflection studies on the band struc- ture of bismuth-antimony alloys, Solid State Comm. 7, 927 (1969). 29

[90] L. S. Lerner, K. F. Cuff, L. R. Williams, Energy-Band Parameters and Rel- ative Band-Edge Motions in the Bi-Sb Alloy System near the Semimetal― Semiconductor Transition, Rev. Mod. Phys. 40, 770 (1968). 29

[91] N. B. Brandt, M. V. Semenov, L. A. Falkovsky, Experiment and theory on the magnetic susceptibility of Bi-Sb alloys, J. Low Temp. Phys. 27, 75 (1977). 29

[92] B. Lenoir, M. Cassart, J.-P. Michenaud, H. Scherrer, S. Scherrer, Transport prop- erties of Bi-rich Bi-Sb alloys, J. Phys. Chem. Solids 57, 89 (1996). 29

[93] T. Nagao, J. Sadowski, M. Saito, S. Yaginuma, Y. Fujikawa, T. Kogure, T. Ohno, Y. Hasegawa, S. Hasegawa, T. Sakurai, Nanofilm Allotrope and Phase Transfor- mation of Ultrathin Bi Film on Si(111)-7×7, Phys. Rev. Lett. 93, 105501 (2004). 30, 31

[94] S. Hatta, Y. Ohtsubo, S. Miyamoto, H. Okuyama, T. Aruga, Epitaxial growth of Bi thin films on Ge(111), Appl. Surf. Sci. 256, 1252 (2009). 30, 31, 72

[95] Y. Lu, W. Xu, M. Zeng, G. Yao, L. Shen, M. Yang, Z. Luo, F. Pan, K. Wu, T. Das, P. He, J. Jiang, J. Martin, Y. P. Feng, H. Lin, X.-s. Wang, Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110), Nano Lett. 15, 80 (2014). 30, 31

[96] G. Bian, X. Wang, T. Miller, T.-C. Chiang, P. J. Kowalczyk, O. Mahapatra, S. Brown, First-principles and spectroscopic studies of Bi(110) films: Thickness- dependent Dirac modes and property oscillations, Phys. Rev. B 90, 195409 (2014). 30, 31

[97] T. Payer, C. Klein, M. Acet, V. Ney, M. Kammler, F.-J. M. zu Hering- dorf, M. Horn-von Hoegen, High-quality epitaxial Bi(111) films on Si(111) by isochronal annealing, Thin Solid Films 520, 6905 (2012). 30, 106

[98] 高橋隆, 光電子固体物性, 朝倉書店, (2011). 35, 41, 42, 44

[99] L. Hedin, J. Lee, Sudden approximation in photoemission and beyond, J. Elec. Spectrosc. Relat. Phenom. 124, 289 (2002). 36

[100] A. Altland, B. D. Simons, Condensed matter field theory, Cambridge University Press, (2010). 36, 37, 117

[101] J. Braun, K. Miyamoto, A. Kimura, T. Okuda, M. Donath, H. Ebert, J. Minar, Exceptional behavior of d-like surface resonances on W(110): the one-step model in its density matrix formulation, New J. Phys. 16, 015005 (2014). 37

[102] S. Karkare, W. Wan, J. Feng, T. C. Chiang, H. A. Padmore, One-step model of photoemission from single-crystal surfaces, Phys. Rev. B 95, 075439 (2017). 37

[103] G. A. Somorjai, Chemistry in two dimensions: Surfaces, Cornell University Press, (1981). 39

[104] SPECS Surface Nano Analysis GmbH, Excitation Sources, http://www.specs. de/cms/front_content.php?idart=685. 44

[105] 東北大学光電子固体物性研究室, https://arpes.phys.tohoku.ac.jp/contents/study.html. 44

[106] 広島大学放射光科学研究センター, 光源・ビームライン, http://www.hsrc. hiroshima-u.ac.jp/storagering_beamlines/sr_ring.html. 44

[107] 今井功, 流体力学(前編), 裳華房, (1997). 48

[108] J. C. Slater, Atomic radii in crystals, J. Chem. Phys. 41, 3199 (1964). 48

[109] 高田康民, 多体問題特論 第一原理からの多電子問題, 朝倉書店, (2009). 50

[110] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964). 50

[111] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correla- tion effects, Phys. Rev. 140, A1133 (1965). 51

[112] J. C. Slater, Quantum theory of molecules and solids, McGraw-Hill New York, (1963). 51

[113] J. F. Janak, Proof that ∂E/∂ni= ϵ¯ in density-functional theory, Phys. Rev. B 18, 7165 (1978). 53

[114] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188 (1976). 56, 87

[115] J. C. Slater, G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94, 1498 (1954). 57

[116] 藤森淳, 強相関物質の基礎 原子、分子から固体へ, 内田老鶴圃, (2005). 57, 61

[117] C. Kittel, Introduction to solid state physics, John Wiley & Sons, (2005). 57

[118] N. Ashcroft, N. Mermin, Solid State Physics, (1976). 57

[119] G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev. 52, 191 (1937). 57

[120] P.-O. L¨owdin, On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. Chem. Phys. 18, 365 (1950). 58

[121] Y. Ohtsubo, S.-i. Kimura, Topological phase transition of single-crystal Bi based on empirical tight-binding calculations, New J. Phys. 18, 123015 (2016). 64, 76, 100, 116

[122] K. Saito, H. Sawahata, T. Komine, T. Aono, Tight-binding theory of surface spin states on bismuth thin films, Phys. Rev. B 93, 041301 (2016). 64, 65, 66, 100

[123] J. C. Y. Teo, L. Fu, C. L. Kane, Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx, Phys. Rev. B 78, 045426 (2008). 65, 69

[124] L. Petersen, P. Hedeg˚ard, A simple tight-binding model of spin-orbit splitting of sp-derived surface states, Surf. Sci. 459, 49 (2000). 65

[125] C. R. Ast, I. Gierz, sp-band tight-binding model for the Bychkov-Rashba effect in a two-dimensional electron system including nearest-neighbor contributions from an electric field, Phys. Rev. B 86, 085105 (2012). 65

[126] G. Aut`es, A. Isaeva, L. Moreschini, J. C. Johannsen, A. Pisoni, R. Mori, W. Zhang, T. G. Filatova, A. N. Kuznetsov, L. Forr´o, W. V. d. Broek, Y. Kim, K. S. Kim, A. Lanzara, J. D. Denlinger, E. Rotenberg, A. Bostwick, M. Grioni, O. V. Yazyev, A novel quasi-one-dimensional topological insulator in bismuth iodide β-Bi4I4, Nat. Mater. 15, 154 (2015). 69

[127] C.-C. Liu, J.-J. Zhou, Y. Yao, F. Zhang, Weak Topological Insulators and Com- posite Weyl Semimetals: β-Bi4X4 (X = Br, I), Phys. Rev. Lett. 116, 066801 (2016). 69

[128] S. Golin, Band structure of bismuth: Pseudopotential approach, Phys. Rev. 166, 643 (1968). 69

[129] Y. M. Koroteev, G. Bihlmayer, E. V. Chulkov, S. Blu¨gel, First-principles inves- tigation of structural and electronic properties of ultrathin Bi films, Phys. Rev. B 77, 045428 (2008). 69, 74, 126

[130] T. Hirahara, N. Fukui, T. Shirasawa, M. Yamada, M. Aitani, H. Miyazaki, M. Matsunami, S. Kimura, T. Takahashi, S. Hasegawa, K. Kobayashi, Atomic and electronic structure of ultrathin Bi(111) films grown on Bi2Te3(111) sub- strates: evidence for a strain-induced topological phase transition, Phys. Rev. Lett. 109, 227401 (2012). 69

[131] N. A. Red’ko, N. A. Rodionov, Topological phase transitions in Bi1−xSbx alloys and composition dependence of the position of the heavy-hole band, Pis’ma Zh. Eksp. Teor. Fiz. 42, 246 (1985) [J. Exp. Theor. Phys. Lett. 42, 303 (1986)]. 69

[132] C. Ast, H. H¨ochst, Fermi surface of Bi(111) measured by photoemission spec- troscopy, Phys. Rev. Lett. 87, 177602 (2001). 70, 74

[133] W. Ning, F. Kong, C. Xi, D. Graf, H. Du, Y. Han, J. Yang, K. Yang, M. Tian, Y. Zhang, Evidence of topological two-dimensional metallic surface states in thin bismuth nanoribbons, ACS nano 8, 7506 (2014). 70, 83

[134] W. Ning, F. Kong, Y. Han, H. Du, J. Yang, M. Tian, Y. Zhang, Robust surface state transport in thin bismuth nanoribbons, Sci. Rep. 4, 7086 (2014). 70, 83

[135] K. Yaji, private communication (2015). 72

[136] T. Hirahara, T. Nagao, I. Matsuda, G. Bihlmayer, E. Chulkov, Y. Koroteev, S. Hasegawa, Quantum well states in ultrathin Bi films: Angle-resolved pho- toemission spectroscopy and first-principles calculations study, Phys Rev. B 75, 035422 (2007). 73, 74, 80, 83, 86

[137] A. Takayama, T. Sato, S. Souma, T. Takahashi, Giant out-of-plane spin compo- nent and the asymmetry of spin polarization in surface Rashba states of bismuth thin film, Phys. Rev. Lett. 106, 166401 (2011). 73, 80

[138] G. Kresse, J. Furthmu¨ller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996). 74

[139] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996). 74, 87

[140] P. E. Bl¨ochl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994). 74

[141] T. Hirahara, T. Nagao, I. Matsuda, G. Bihlmayer, E. Chulkov, Y. Koroteev, P. Echenique, M. Saito, S. Hasegawa, Role of spin-orbit coupling and hybridiza- tion effects in the electronic structure of ultrathin Bi films, Phys Rev. Lett. 97, 146803 (2006). 74, 76, 80, 106

[142] A. Takayama, T. Sato, S. Souma, T. Oguchi, T. Takahashi, Tunable spin polar- ization in bismuth ultrathin film on Si(111), Nano Lett. 12, 1776 (2012). 74, 76, 86, 106

[143] G. Bian, T. Miller, T. Chiang, Electronic structure and surface-mediated metasta- bility of Bi films on Si(111)-7×7 studied by angle-resolved photoemission spec- troscopy, Phys. Rev. B 80, 245407 (2009). 74, 86

[144] Y. Ohtsubo, J. Mauchain, J. Faure, E. Papalazarou, M. Marsi, P. L. F`evre, F. Bertran, A. Taleb-Ibrahimi, L. Perfetti, Giant anisotropy of spin-orbit splitting at the bismuth surface, Phys. Rev. Lett. 109, 226404 (2012). 74

[145] Y. Fuseya, H. Fukuyama, Analytical Solutions for the Surface States of Bi1−xSbx (0 ≤ x ≤ 0.1), J. Phys. Soc. Japan 87, 044710 (2018). 76

[146] P. Zhang, P. Richard, T. Qian, Y.-M. Xu, X. Dai, H. Ding, A precise method for visualizing dispersive features in image plots, Rev. Sci. Instrum. 82, 043712 (2011). 77

[147] H. Hayasaka, Y. Fuseya, Crystalline spin-orbit interaction and the Zeeman split- ting in Pb1−xSnxTe, J. Phys.: Cond. Matter 28, 31LT01 (2016). 83

[148] H. Du, X. Sun, X. Liu, X. Wu, J. Wang, M. Tian, A. Zhao, Y. Luo, J. Yang, B. Wang, J. G. Hou, Surface Landau levels and spin states in bismuth (111) ultrathin films, Nat. Comm. 7, 10814 (2016). 83

[149] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussan, Y. L. Chen, Discovery of a three- dimensional topological Dirac semimetal, Na3Bi, Science 343, 864–867 (2014). 83, 117

[150] M. Hirayama, R. Okugawa, S. Ishibashi, S. Murakami, T. Miyake, Weyl node and spin texture in trigonal tellurium and selenium, Phys. Rev. Lett. 114, 206401 (2015). 83

[151] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349, 613 (2015). 83, 117

[152] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5, 031013 (2015). 83, 117

[153] J. Ruan, S.-K. Jian, H. Yao, H. Zhang, S.-C. Zhang, D. Xing, Symmetry-protected ideal Weyl semimetal in HgTe-class materials, Nat. Comm. 7, 11136 (2016). 83

[154] A. Kiejna, K. Wojciechowski, Work function of metals: Relation between theory and experiment, Prog. Surf. Sci. 11, 293 (1981). 85, 94

[155] T. Aruga, Y. Murata, Alkali-metal adsorption on metals, Prog. Surf. Sci. 31, 61 (1989). 85, 94

[156] C. Stampfl, M. Scheffler, Theoretical identification of a (2 × 2) composite double layer ordered surface alloy of Na on Al(111), Surf. Sci. 319, L23 (1994). 85, 86, 94

[157] R. Diehl, R. McGrath, Current progress in understanding alkali metal adsorption on metal surfaces, J. Phys. Condens. Matter 9, 951 (1997). 85, 86, 94

[158] Z. H. Zhu, G. Levy, B. Ludbrook, C. N. Veenstra, J. A. Rosen, R. Comin, D. Wong, P. Dosanjh, A. Ubaldini, P. Syers, N. P. Butch, J. Paglione, I. S. Elfimov, A. Damascelli, Rashba spin-splitting control at the surface of the topo- logical insulator Bi2Se3, Phys. Rev. Lett. 107, 186405 (2011). 85

[159] P. Zhang, P. Richard, N. Xu, Y. Xu, T. Ma, J .and Qian, A. Fedorov, J. Den- linger, G. Gu, H. Ding, Observation of an electron band above the Fermi level in FeTe0.55Se0.45 from in-situ surface doping, Appl. Phys. Lett. 105, 172601 (2014). 85

[160] F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan, C.-h. Liu, D. Qian, S.-C. Zhang, J.-F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14, 1020 (2015). 85, 86

[161] Y. Feng, D. Liu, B. Feng, X. Liu, L. Zhao, Z. Xie, Y. Liu, A. Liang, C. Hu, Y. Hu, S. He, G. Liu, J. Zhang, C. Chen, Z. Xu, L. Chen, K. Wua, Y.-T. Liu, H. Lin, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, A. Bansil, X. J. Zhou, Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system, Proc. Natl. Acad. Sci. 113, 14656 (2016). 85, 86

[162] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the elec- tronic structure of bilayer graphene, Science 313, 951 (2006). 85

[163] J. Kim, S. Baik, S. Ryu, Y. Sohn, S. Park, B. Park, J. Denlinger, Y. Yi, H. Choi, K. Kim, Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus, Science 349, 723 (2015). 85

[164] Y. Miyata, K. Nakayama, K. Sugawara, T. Sato, T. Takahashi, High-temperature superconductivity in potassium-coated multilayer FeSe thin films, Nat. Mater. 14, 775 (2015). 85

[165] M. Ren, Y. Yan, X. Niu, R. Tao, D. Hu, R. Peng, B. Xie, J. Zhao, T. Zhang, D.- L. Feng, Superconductivity across Lifshitz transition and anomalous insulating state in surface K-dosed (Li0.8Fe0.2OH)FeSe, Sci. Adv. 3, e1603238 (2017). 85

[166] S.-W. Kim, H. Jung, H.-J. Kim, J.-H. Choi, S.-H. Wei, J.-H. Cho, Microscopic mechanism of the tunable band gap in potassium-doped few-layer black phospho- rus, Phys. Rev. B 96, 075416 (2017). 86

[167] I. Belopolski, S.-Y. Xu, Y. Ishida, X. Pan, P. Yu, D. S. Sanchez, H. Zheng, M. Neupane, N. Alidoust, G. Chang, T.-R. Chang, Y. Wu, G. Bian, S.-M. Huang, C.-C. Lee, D. Mou, L. Huang, Y. Song, B. Wang, G. Wang, Y.-W. Yeh, N. Yao, J. E. Rault, P. Le F`evre, F. Bertran, H.-T. Jeng, T. Kondo, A. Kaminski, H. Lin, Z. Liu, F. Song, S. Shin, M. Z. Hasan, Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate MoxW1−xTe2, Phys. Rev. B 94, 085127 (2016). 86

[168] A. V. Matetskiy, L. V. Bondarenko, A. Y. Tupchaya, D. V. Gruznev, S. V. Ere- meev, A. V. Zotov, A. A. Saranin, Adsorbate-induced modification of electronic band structure of epitaxial Bi(111) films, Appl. Surf. Sci. 406, 122 (2017). 86, 89

[169] S. Ito, B. Feng, M. Arita, A. Takayama, R.-Y. Liu, T. Someya, W.-C. Chen, T. Iimori, H. Namatame, M. Taniguchi, C.-M. Cheng, S.-J. Tang, F. Komori, K. Kobayashi, T.-C. Chiang, I. Matsuda, Proving nontrivial topology of pure bismuth by quantum confinement, Phys. Rev. Lett. 117, 236402 (2016). 86

[170] L. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, R. E. Weber, Handbook of Auger electron spectroscopy, Physical Electronics Industries, (1976). 87

[171] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, D. C. Allan, First-principles computation of material prop- erties: the ABINIT software project, Comput. Mater. Sci. 25, 478 (2002). 87

[172] C. Hartwigsen, S. Goedecker, J. Hutter, Relativistic separable dual-space Gaus- sian pseudopotentials from H to Rn, Phys. Rev. B 58, 3641 (1998). 87

[173] J. N. Crain, M. C. Gallagher, J. L. McChesney, M. Bissen, F. J. Himpsel, Doping of a surface band on Si(111) √3 × √3-Ag, Phys. Rev. B 72, 045312 (2005). 87

[174] W. Halperin, Quantum size effects in metal particles, Rev. Mod. Phys. 58, 533 (1986). 97

[175] Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang, L.-X. Zhang, W. G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. F. Jia, Z. X. Zhao, Q. K. Xue, Superconduc- tivity modulated by quantum size effects, Science 306, 1915 (2004). 97

[176] P. S. Kirchmann, L. Rettig, X. Zubizarreta, V. M. Silkin, E. V. Chulkov, U. Bovensiepen, Quasiparticle lifetimes in metallic quantum-well nanostructures, Nat. Phys. 6, 782 (2010). 99

[177] O. Lopez-Acevedo, K. A. Kacprzak, J. Akola, H. H¨akkinen, Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters, Nat. Chem. 2, 329 (2010). 99

[178] A. Campos, N. Troc, E. Cottancin, M. Pellarin, H.-C. Weissker, J. Lerm´e, M. Ko- ciak, M. Hillenkamp, Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments, Nat. Phys. 1 (2018). 99

[179] D. Mahendra, R. Grassi, J. Y. Chen, M. Jamali, D. R. Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, A. Mkhoyan, K, T. Low, J. P. Wang, Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe1−x films, Nat. Mater. 17, 800 (2018). 99

[180] R. Yukawa, K. Ozawa, S. Yamamoto, R.-Y. Liu, I. Matsuda, Anisotropic effective mass approximation model to calculate multiple subband structures at wide-gap semiconductor surfaces: Application to accumulation layers of SrTiO3 and ZnO, Surf. Sci. 641, 224 (2015). 101, 127

[181] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A. Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov, H. Bouchiat, S. Gu´eron, A. Yaz- dani, A. Bernevig, B, T. Neupert, Higher-order topology in bismuth, Nat. Phys. 14, 918 (2018). 116, 121

[182] G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T. Neupert, C.-K. Chiu, S.-M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C.-C. Lee, H.-T. Jeng, C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, M. Z. Hasan, Topological nodal-line fermions in spin-orbit metal PbTaSe2, Nat. Comm. 7, 10556 (2016). 117

[183] M. Dzero, K. Sun, V. Galitski, P. Coleman, Topological kondo insulators, Phys. Rev. Lett. 104, 106408 (2010). 117

[184] M. Dzero, K. Sun, P. Coleman, V. Galitski, Theory of topological Kondo insula- tors, Phys. Rev. B 85, 045130 (2012). 117

[185] F. Lu, J. Zhao, H. Weng, Z. Fang, X. Dai, Correlated topological insulators with mixed valence, Phys. Rev. Lett. 110, 096401 (2013). 117

[186] M. Neupane, N. Alidoust, S. Xu, T. Kondo, Y. Ishida, D.-J. Kim, C. Liu, I. Be- lopolski, Y. Jo, T.-R. Chang, H. T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, M. Z. Hasan, Surface electronic structure of the topo- logical Kondo-insulator candidate correlated electron system SmB6, Nat. Comm. 4, 2991 (2013). 117

[187] H. Weng, J. Zhao, Z. Wang, Z. Fang, X. Dai, Topological crystalline Kondo insu- lator in mixed valence ytterbium borides, Phys. Rev. Lett. 112, 016403 (2014). 117

[188] K. Hagiwara, Y. Ohtsubo, M. Matsunami, S.-i. Ideta, K. Tanaka, H. Miyazaki, J. E. Rault, P. Le F`evre, F. Bertran, A. Taleb-Ibrahimi, R. Yukawa, M. Kobayashi, K. Horiba, H. Kumigashira, K. Sumida, T. Okuda, F. Iga, S.-i. Kumira, Surface Kondo effect and non-trivial metallic state of the Kondo insula- tor YbB12, Nat. Comm. 7, 12690 (2016). 117

[189] M. Kitzler, S. Gr¨afe, Ultrafast Dynamics Driven by Intense Light Pulse, Vol. 86, Springer, (2015). 117

[190] T. Frigge, B. Hafke, T. Witte, B. Krenzer, C. Streubu¨hr, A. S. Syed, V. M. Trontl, I. Avigo, P. Zhou, M. Ligges, D. v. d. Linde, U. Bovensiepen, M. Horn- von Hoegen, S. Wippermann, A. Lu¨cke, S. Sanna, U. Gerstmann, W. G. Schmidt, Optically excited structural transition in atomic wires on surfaces at the quantum limit, Nature 544, 207 (2017). 118

[191] C. W. Nicholson, A. Lu¨cke, W. G. Schmidt, M. Puppin, L. Rettig, R. Ernstorfer, M. Wolf, Beyond the molecular movie: Dynamics of bands and bonds during a photoinduced phase transition, Science 362, 821 (2018). 118

[192] M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D. Hinks, Destruction of the Fermi surface in underdoped high-Tc superconductors, Nature 392, 157 (1998). 119

[193] D. R. Lide, CRC handbook of chemistry and physics, CRC press, (2004). 126

[194] I. Matsuda, T. Ohta, H. W. Yeom, In-plane dispersion of the quantum-well states of the epitaxial silver films on silicon, Phys. Rev. B 65, 085327 (2002). 126

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る