リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「マイクロX線CTを用いた3次元腫瘍血管イメージングによる血管新生阻害剤の薬効評価法の開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

マイクロX線CTを用いた3次元腫瘍血管イメージングによる血管新生阻害剤の薬効評価法の開発

徳永 正之 東北大学

2020.03.25

概要

腫瘍血管はがん細胞に酸素や栄養を供給しており、その新生は腫瘍の成長に必須である。1971 年、腫瘍の血管新生を抑制することでがんを治療する「がん兵糧攻め療法」の概念が提唱された。その後、この療法の実現を目的として、血管内皮増殖因子(VEGF)、中でも VEGF-A に対するヒト化抗体であるベバシズマブが開発され、2004年に腫瘍の血管新生阻害剤として初めて承認された。多くの血管新生阻害剤の中で、ベバシズマブは特異性が高く、薬効が非常に期待される薬剤である。しかし、臨床において、ベバシズマブ単剤の治療効果は限定的であり、化学療法とベバシズマブ治療の併用療法が行われている。そのため、ベバシズマブがより抗腫瘍効果の高い薬剤へ改良されること、ひいては血管新生阻害剤の開発全体に波及効果を与えるような創薬技術を創発することが期待される。

より効果的な血管新生阻害剤の開発には、動物モデルを用いた前臨床試験での薬効評価精度が極めて重要であり、その精度向上のためには血管新生阻害作用の正確な可視化能が鍵となる。これまでの血管新生阻害剤の腫瘍血管への薬効評価は、担がんマウスの病理標本の顕微鏡観察により、血管密度の測定が一般的に行われていた。病理組織観察は、微小血管を評価できる長所がある一方、以下の3点が短所として挙げられる。

(1) 腫瘍内の血管分布は不均一であるため、病理組織観察のように、一部分の計測のみでは組織全体の病態を推量し難いこと。
(2) 病理組織観察のため腫瘍を摘出した際、血圧の欠如が血管を収縮させ本来の形態が失われてしまうこと。
(3) 病理組織切片作製のために行うホルマリン固定によって、組織が縮み形態が変わってしまうこと。

以上の理由から、病理組織観察では生体内と同じ状態で血管構造や体積を正確に測定することが困難であった。よって、担がんマウスを用いた前臨床試験で効率良く血管新生阻害剤を開発するためには、腫瘍全体の血管を 3 次元にて、非侵襲的に、in vivoイメージングする技術の開発が重要である。X 線 CT は造影剤を用いることにより、上記の3条件を満足しつつ血管をイメージング可能な方法である。近年、動物実験用の造影剤として、高い X 線吸収能を持つ金原子をナノ粒子化した金ナノ粒子(AuNPs)造影剤が注目されている。AuNPs を使用した X 線 CT による血管造影画像は、腫瘍全体の血管を高精度に評価することができる。しかし先行研究において、「AuNPs 等の造影剤」と「X 線 CT」の組み合わせによって血管新生阻害剤の薬効評価を行った研究では、空間分解能や血管病態の評価法が十分と言えなかった。

本研究では、顕微鏡を用いた病理学的分析およびマイクロ X 線 CT を用いた画像解析により、ヒト膵臓がんおよびヒト卵巣がんを皮下移植したマウスの腫瘍血管に対するベバシズマブの効果を調査した。臨床において、ベバシズマブは卵巣がんに対し適応対象であるが、膵臓がんに対してはそうではない。最初に、病理学的解析により、両腫瘍の評価を行った。その結果、ヒト膵臓がん由来の腫瘍では、ベバシズマブ治療後も腫瘍が成長を続け、腫瘍血管密度に変化がなかった。一方、ベバシズマブ投与を 行ったヒト卵巣がん由来の腫瘍では、血管密度が低下し腫瘍成長の速度も低下したが、完全な治癒には至らず腫瘍は成長し続けた。この結果は、卵巣がん腫瘍がベバシズマ ブに対する薬剤耐性を獲得した可能性を示唆した。次に、腫瘍全体の腫瘍血管に対す るベバシズマブの影響を、非侵襲的、3 次元的に、in vivo 計測するため、新たに 15 nm AuNPs 造影剤を作製し、高分解能マイクロ X 線 CT( 9 µm/voxel )と組み合わせる ことで、30 µm 径の血管を可視化・解析する技術を開発した。この技術を用いて腫瘍 血管イメージングを施行し、腫瘍全体の血管密度の解析を試みた。その結果、膵臓が ん腫瘍では、薬剤の有無で血管密度に顕著な差は認められず、病理解析と同様の結果 を得た。一方、卵巣がん腫瘍において、抗がん剤投与直後(腫瘍移植後 5 週)では、非 投与群に対し血管密度の値が有意に低下したが、その後回復し始め、7 週ではコント ロール群に近づき、9 週では、コントロール群と同レベルにまで回復することが分か った。このように、腫瘍全体の血管密度の回復プロセスがベバシズマブの薬剤耐性を 顕著に示す指標となり得ることが示唆された。またこの結果は、30 µm 径以上の血管 を解析することによって得られたが、可視化できる血管径を 100 µm 程度まで分解能 を落とすと、同様の解析を行っても本研究と同等の結果を得ることはできなかった。したがって、本研究の高解像度 X 線 CT イメージングは、血管新生阻害剤の開発に役 立つ薬効の理解に貢献できることが示唆された。

この論文で使われている画像

参考文献

1. Folkman J. Tumor angiogenesis: therapeutic implications. The New England journal of medicine. 1971;285:1182-6.

2. Hanahan D and Folkman J. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell. 1996;86:353-364.

3. A.G. Ide NHB, S.L. Warren. Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentgenol. 1939;42:891-899.

4. Folkman J, Merler E, Abernathy C and Williams G. Isolation of a tumor factor responsible for angiogenesis. The Journal of experimental medicine. 1971;133:275-88.

5. Ellis LM. Mechanisms of Action of Bevacizumab as a Component of Therapy for Metastatic Colorectal Cancer. Seminars in Oncology. 2006;33:S1-S7.

6. Ferrara N, Hillan KJ, Gerber HP and Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature reviews Drug discovery. 2004;3:391-400.

7. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R and Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. The New England journal of medicine. 2004;350:2335-42.

8. Presta LG, Chen H, O'Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M and Ferrara N. Humanization of an Anti-Vascular Endothelial Growth Factor Monoclonal Antibody for the Therapy of Solid Tumors and Other Disorders. Cancer Research. 1997;57:4593-4599.

9. Folkman J. Antiangiogenesis in cancer therapy--endostatin and its mechanisms of action. Experimental cell research. 2006;312:594-607.

10. Wu YS, Shui L, Shen D and Chen X. Bevacizumab combined with chemotherapy for ovarian cancer: an updated systematic review and meta-analysis of randomized controlled trials. Oncotarget. 2017;8:10703-10713.

11. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nature reviews Drug discovery. 2007;6:273-86.

12. Kindler HL, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, Innocenti F, Mulcahy MF, O'Reilly E, Wozniak TF, Picus J, Bhargava P, Mayer RJ, Schilsky RL and Goldberg RM. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28:3617-22.

13. Bagri A, Berry L, Gunter B, Singh M, Kasman I, Damico LA, Xiang H, Schmidt M, Fuh G, Hollister B, Rosen O and Plowman GD. Effects of anti-VEGF treatment duration on tumor growth, tumor regrowth, and treatment efficacy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16:3887-900.

14. Mabuchi S, Terai Y, Morishige K, Tanabe-Kimura A, Sasaki H, Kanemura M, Tsunetoh S, Tanaka Y, Sakata M, Burger RA, Kimura T and Ohmichi M. Maintenance treatment with bevacizumab prolongs survival in an in vivo ovarian cancer model. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14:7781-9.

15. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS and Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841-4.

16. Weidner N, Semple JP, Welch WR and Folkman J. Tumor Angiogenesis and Metastasis — Correlation in Invasive Breast Carcinoma. New England Journal of Medicine. 1991;324:1-8.

17. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S and Gasparini G. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. Journal of the National Cancer Institute. 1992;84:1875-87.

18. Weidner N, Carroll PR, Flax J, Blumenfeld W and Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. The American journal of pathology. 1993;143:401-409.

19. de la Taille A, Katz AE, Bagiella E, Buttyan R, Sharir S, Olsson CA, Burchardt T, Ennis RD and Rubin MA. Microvessel density as a predictor of PSA recurrence after radical prostatectomy. A comparison of CD34 and CD31. American journal of clinical pathology. 2000;113:555-62.

20. Yano T, Tanikawa S, Fujie T, Masutani M and Horie T. Vascular endothelial growth factor expression and neovascularisation in non-small cell lung cancer. European journal of cancer (Oxford, England : 1990). 2000;36:601-9.

21. Tanaka F, Otake Y, Yanagihara K, Kawano Y, Miyahara R, Li M, Yamada T, Hanaoka N, Inui K and Wada H. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clinical cancer research : an official journal of the American Association for Cancer Research. 2001;7:3410-5.

22. Ushijima C, Tsukamoto S, Yamazaki K, Yoshino I, Sugio K and Sugimachi K. High vascularity in the peripheral region of non-small cell lung cancer tissue is associated with tumor progression. Lung cancer (Amsterdam, Netherlands). 2001;34:233-41.

23. Cesca M, Morosi L, Berndt A, Nerini IF, Frapolli R, Richter P, Decio A, Dirsch O, Micotti E, Giordano S, D'Incalci M, Davoli E, Zucchetti M and Giavazzi R. Bevacizumab-Induced Inhibition of Angiogenesis Promotes a More Homogeneous Intratumoral Distribution of Paclitaxel, Improving the Antitumor Response. Molecular Cancer Therapeutics. 2016;15:125-135.

24. Dickson PV, Hamner JB, Sims TL, Fraga CH, Ng CY, Rajasekeran S, Hagedorn NL, McCarville MB, Stewart CF and Davidoff AM. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13:3942-50.

25. Ehling J, Theek B, Gremse F, Baetke S, Mockel D, Maynard J, Ricketts SA, Grull H, Neeman M, Knuechel R, Lederle W, Kiessling F and Lammers T. Micro-CT imaging of tumor angiogenesis: quantitative measures describing micromorphology and vascularization. The American journal of pathology. 2014;184:431-41.

26. Gyanchandani R, Ortega Alves MV, Myers JN and Kim S. A Proangiogenic Signature Is Revealed in FGF-Mediated Bevacizumab-Resistant Head and Neck Squamous Cell Carcinoma. Molecular Cancer Research. 2013;11:1585-1596.

27. Tamura R, Tanaka T, Miyake K, Tabei Y, Ohara K, Sampetrean O, Kono M, Mizutani K, Yamamoto Y, Murayama Y, Tamiya T, Yoshida K and Sasaki H. Histopathological investigation of glioblastomas resected under bevacizumab treatment. Oncotarget. 2016;7:52423-52435.

28. Zhao YY, Xue C, Jiang W, Zhao HY, Huang Y, Feenstra K, Resau JH, Qian CN and Zhang L. Predictive value of intratumoral microvascular density in patients with advanced non-small cell lung cancer receiving chemotherapy plus bevacizumab. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2012;7:71-5.

29. Fidler IJ. Tumor Heterogeneity and the Biology of Cancer Invasion and Metastasis. Cancer Research. 1978;38:2651-2660.

30. Jain RK and Stylianopoulos T. Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology. 2010;7:653-664.

31. McDonald DM and Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nature medicine. 2003;9:713-25.

32. Li X, Anton N, Zuber G and Vandamme T. Contrast agents for preclinical targeted X-ray imaging. Advanced drug delivery reviews. 2014;76:116-133.

33. Hainfeld JF, Slatkin DN, Focella TM and Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. The British journal of radiology. 2006;79:248-53.

34. Nebuloni L, Kuhn GA and Muller R. A comparative analysis of water-soluble and blood-pool contrast agents for in vivo vascular imaging with micro-CT. Academic radiology. 2013;20:1247-55.

35. Hubbell JH. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients. http://physicsnistgov/PhysRefData/XrayMassCoef/.

36. Majoros IJ, Keszler B, Woehler S, Bull T and Baker JR. Acetylation of Poly(amidoamine) Dendrimers. Macromolecules. 2003;36:5526-5529.

37. Attia MF, Anton N, Chiper M, Akasov R, Anton H, Messaddeq N, Fournel S, Klymchenko AS, Mely Y and Vandamme TF. Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core. ACS nano. 2014;8:10537-50.

38. Su X, Kuang L, Battle C, Shaner T, Mitchell BS, Fink MJ and Jayawickramarajah J. Mild Two-Step Method to Construct DNA-Conjugated Silicon Nanoparticles: Scaffolds for the Detection of MicroRNA-21. Bioconjugate Chemistry. 2014;25:1739-1743.

39. Chen Q, Wang H, Liu H, Wen S, Peng C, Shen M, Zhang G and Shi X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Modified with RGD Peptide for Targeted Computed Tomography/Magnetic Resonance Dual-Modal Imaging of Tumors. Analytical Chemistry. 2015;87:3949-3956.

40. Cole LE, Vargo-Gogola T and Roeder RK. Contrast-Enhanced X-ray Detection of Microcalcifications in Radiographically Dense Mammary Tissue Using Targeted Gold Nanoparticles. ACS nano. 2015;9:8923-8932.

41. Yang X, Yang M, Pang B, Vara M and Xia Y. Gold Nanomaterials at Work in Biomedicine. Chemical Reviews. 2015;115:10410-10488.

42. Al Zaki A, Joh D, Cheng Z, De Barros ALB, Kao G, Dorsey J and Tsourkas A. Gold-Loaded Polymeric Micelles for Computed Tomography-Guided Radiation Therapy Treatment and Radiosensitization. ACS nano. 2014;8:104-112.

43. Yang W, Ella-Menye J-R, Liu S, Bai T, Wang D, Yu Q, Li Y and Jiang S. Cross-Linked Carboxybetaine SAMs Enable Nanoparticles with Remarkable Stability in Complex Media. Langmuir. 2014;30:2522-2529.

44. Park G, Seo D, Chung IS and Song H. Poly(ethylene glycol)- and Carboxylate-Functionalized Gold Nanoparticles Using Polymer Linkages: Single-Step Synthesis, High Stability, and Plasmonic Detection of Proteins. Langmuir. 2013;29:13518-13526.

45. Yin Q, Yap FY, Yin L, Ma L, Zhou Q, Dobrucki LW, Fan TM, Gaba RC and Cheng J. Poly(iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging. Journal of the American Chemical Society. 2013;135:13620-3.

46. Kim D, Park S, Lee JH, Jeong YY and Jon S. Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging. Journal of the American Chemical Society. 2007;129:7661-7665.

47. Liu H, Wang H, Xu Y, Guo R, Wen S, Huang Y, Liu W, Shen M, Zhao J, Zhang G and Shi X. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS applied materials & interfaces. 2014;6:6944-53.

48. Kannan P, Kretzschmar WW, Winter H, Warren D, Bates R, Allen PD, Syed N, Irving B, Papiez BW, Kaeppler J, Markelc B, Kinchesh P, Gilchrist S, Smart S, Schnabel JA, Maughan T, Harris AL, Muschel RJ, Partridge M, Sharma RA and Kersemans V. Functional Parameters Derived from Magnetic Resonance Imaging Reflect Vascular Morphology in Preclinical Tumors and in Human Liver Metastases. Clinical cancer research : an official journal of the American Association for Cancer Research. 2018;24:4694-4704.

49. Nitta N, Takakusagi Y, Kokuryo D, Shibata S, Tomita A, Higashi T, Aoki I and Harada M. Intratumoral evaluation of 3D microvasculature and nanoparticle distribution using a gadolinium-dendron modified nano-liposomal contrast agent with magnetic resonance micro-imaging. Nanomedicine : nanotechnology, biology, and medicine. 2018;14:1315-1324.

50. Savai R, Langheinrich AC, Schermuly RT, Pullamsetti SS, Dumitrascu R, Traupe H, Rau WS, Seeger W, Grimminger F and Banat GA. Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia (New York, NY). 2009;11:48-56.

51. Kiessling F, Greschus S, Lichy MP, Bock M, Fink C, Vosseler S, Moll J, Mueller MM, Fusenig NE, Traupe H and Semmler W. Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis. Nature medicine. 2004;10:1133-8.

52. Zagorchev L, Oses P, Zhuang ZW, Moodie K, Mulligan-Kehoe MJ, Simons M and Couffinhal T. Micro computed tomography for vascular exploration. Journal of angiogenesis research. 2010;2:7.

53. Jørgen Fogh GT. New Human Tumor Cell Lines. Human Tumor Cells in Vitro. 1975:115-159.

54. Yunis AA, Arimura GK and Russin DJ. Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. International journal of cancer. 1977;19:128-35.

55. Huynh H, Teo CCM and Soo KC. Bevacizumab and rapamycin inhibit tumor growth in peritoneal model of human ovarian cancer. Molecular Cancer Therapeutics. 2007;6:2959-2966.

56. Arjaans M, Munnink THO, Oosting SF, van Scheltinga AGTT, Timmer-Bosscha H, de Hooge MNL-, Schröder CP and de Vries EGE. Abstract 2438: Bevacizumab treatment hampers tumor uptake of antibodies in human tumor bearing mice. Cancer Research. 2012;72:2438-2438.

57. Rein DT, Volkmer AK, Volkmer J, Beyer IM, Janni W, Fleisch MC, Welter AK, Bauerschlag D, Schondorf T and Breidenbach M. Systemic administration of bevacizumab prolongs survival in an in vivo model of platinum pre-treated ovarian cancer. Oncology letters. 2012;3:530-534.

58. Nakagawa T, Gonda K, Kamei T, Cong L, Hamada Y, Kitamura N, Tada H, Ishida T, Aimiya T, Furusawa N, Nakano Y and Ohuchi N. X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface. Science and technology of advanced materials. 2016;17:387-397.

59. Rossi L, Verrico M, Zaccarelli E, Papa A, Colonna M, Strudel M, Vici P, Bianco V and Tomao F. Bevacizumab in ovarian cancer: A critical review of phase III studies. Oncotarget. 2017;8:12389-12405.

60. Uehara H. Angiogenesis of prostate cancer and antiangiogenic therapy. The journal of medical investigation : JMI. 2003;50:146-153.

61. Relf M, LeJeune S, Scott PAE, Fox S, Smith K, Leek R, Moghaddam A, Whitehouse R, Bicknell R and Harris AL. Expression of the Angiogenic Factors Vascular Endothelial Cell Growth Factor, Acidic and Basic Fibroblast Growth Factor, Tumor Growth Factor β-1, Platelet-derived Endothelial Cell Growth Factor, Placenta Growth Factor, and Pleiotrophin in Human Primary Breast Cancer and Its Relation to Angiogenesis. Cancer Research. 1997;57:963-969.

62. Vasudev NS and Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471-94.

63. Bergers G and Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology. 2005;7:452-464.

64. Benjamin LE, Golijanin D, Itin A, Pode D and Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999;103:159-165.

65. Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD and McDonald DM. Inhibition of Vascular Endothelial Growth Factor (VEGF) Signaling in Cancer Causes Loss of Endothelial Fenestrations, Regression of Tumor Vessels, and Appearance of Basement Membrane Ghosts. The American journal of pathology. 2004;165:35-52.

66. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Ruckert F, Grutzmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J and Tuveson DA. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science (New York, NY). 2009;324:1457-61.

67. Nishihara H. Human pathological basis of blood vessels and stromal tissue for nanotechnology. Advanced drug delivery reviews. 2014;74:19-27.

68. Hata A, Yanagawa M, Honda O, Kikuchi N, Miyata T, Tsukagoshi S, Uranishi A and Tomiyama N. Effect of Matrix Size on the Image Quality of Ultra-high-resolution CT of the Lung: Comparison of 512 x 512, 1024 x 1024, and 2048 x 2048. Academic radiology. 2018;25:869-876.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る