リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Centrifuge model tests on large-diameter monopiles in dense sand subjected to two-way lateral cyclic loading in short-term」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Centrifuge model tests on large-diameter monopiles in dense sand subjected to two-way lateral cyclic loading in short-term

高橋 章浩 大村 直哉 小林 孝彰 蒲田 幸穂 稲垣 聡 Akihiro Takahashi Naoya Omura Takaaki Kobayashi Yukiho Kamata Satoshi Inagaki 東京工業大学 DOI:https://doi.org/10.1016/j.sandf.2022.101148

2022.04.22

概要

To evaluate the lateral resistance of rigid monopiles for wind turbines in dense sand under lateral cyclic loading, centrifuge model tests are performed, focusing on the base resistance and degradation of the soil resistance under two-way lateral cyclic loading in the short-term. The slenderness ratio (embedded pile length to diameter) is varied from 3.75 to 8 and the loading frequency is in the range of 0.002 to 0.4 Hz in the prototype scale. Under cyclic loading with a maximum horizontal displacement of 5% of the pile diameter, the build-up of excess pore water pressure is observed, but the maximum value of the average excess pore water pressure ratio is around 50% in the steady-state for dense sand whose relative density is 80%. A simple analytical model for the rigid piles, considering the base resistance, is derived and then used to quantify the significance of the resistance at the pile base and the degradation of the soil resistance under cyclic loading. When the slenderness ratio is less than 5, a significant contribution of the moment resistance at the base is confirmed. The estimation of the degradation of the horizontal subgrade reaction coefficient using the simple analytical model suggests that, through cyclic shear tests for the determination of the deformation properties of the soil in a laboratory, it is possible to estimate the degradation of the soil stiffness and the parameters for the reduced sway-rocking type of foundation model.

この論文で使われている画像

参考文献

Abadie, C.N., Byrne, B.W., Houlsby, G.T., 2019. Rigid pile response to cyclic lateral loading: laboratory tests. Ge´otechnique 69 (10), 863–876. https://doi.org/10.1680/jgeot.16.P.325.

API (American Petroleum Institute). 2000. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms— Working Stress Design, RP 2A-WSD, 21st Ed., Washington, DC, USA. Baek, S.H., Kim, J., Lee, S.H., Chung, C.K., 2017. Development of the cyclic p-y curve for a single pile in sandy soil. Mar. Georesour.Geotechnol. 36 (3), 351–359. https://doi.org/10.1080/ 1064119X.2017.1318986.

Barber, E.S., 1953. Discussion to Paper ‘‘Load tests on fixed and freehead piles” by S.M. Gleser. ASTM, STP 154, 96–99.

Bayat, M., Andersen, L.V., Ibsen, L.B., 2016. p-y-y_ curves for dynamic analysis of offshore wind turbine monopile foundations. Soil Dyn. Earthquake Eng. 90, 38–51. https://doi.org/10.1016/ j.soildyn.2016.08.015.

Bhushan, K., Lee, L.J., Grime, D.B., 1981. Lateral load tests on drilled piers in sand. In: O’Neill (Ed.), Drilled Piers and Caissons. American Society of Civil Engineers, New York, NY, USA, pp. 114–131.

Blaney, G.W., O’Neill, M.W., 1986. Measured lateral response of mass on single pile in clay. J. Geotech. Eng. 112 (4), 443–457. https://doi.org/ 10.1061/(ASCE)0733-9410(1986)112:4(443).

Burd, H.J., Taborda, D.M.G., Zdravkovic´, L., Abadie, C.N., Byrne, B. W., Houlsby, G.T., Gavin, K.G., Igoe, D.J.P., Jardine, R.J., Martin,

C.M., McAdam, R.A., Pedro, A.M.G., Potts, D.M., 2020. PISA design model for monopiles for offshore wind turbines: application to a marine sand. Ge´otechnique 70 (11), 1048–1066. https://doi.org/ 10.1680/jgeot.18.P.277.

Carter, J.P., Kulhawy, F.H., 1992. Analysis of laterally loaded shafts in rock. J. Geotech. Eng. 118 (6), 839–855. https://doi.org/10.1061/ (ASCE)0733-9410(1992)118:6(839).

Choo, Y.W., Kim, D., Park, J.H., Kwak, K., Kim, J.H., Kim, D.S., 2014.Lateral response of large-diameter monopiles for offshore wind turbines from centrifuge model tests. Geotech. Test. J. 37 (1), 107–120. https://doi.org/10.1520/GTJ20130081.

Choo, Y.W., Kim, D., 2016. Experimental development of the p-y relationship for large-diameter offshore monopiles in sands: Centrifuge tests. J. Geotech. Geoenviron. Eng. 142 (1), 04015058. https://doi.org/ 10.1061/(ASCE)GT.1943-5606.0001373.

Davisson, M.T., 1970. Lateral load capacity of piles. Highway Res. Rec.333, 104–112.

DNVGL-ST-0126, 2018. Support structures for wind turbines, DNV, Høvik, Norway.

DNVGL-RP-C212, 2019. Offshore soil mechanics and geotechnical engineering, DNV, Høvik, Norway.

Elson, W.K., 1984. Design of laterally-loaded piles, CIRIA Report 103, Construction Industry Research & Information Association, London, UK.

Erbrich, C.T., O’Neill, M.P., Clancy, P., Randolph, M.F., 2011. Axial and lateral pile design in carbonate soils. In: Gourvenec, White (Eds.), Frontiers in Offshore Geotechnics II. CRC Press, Boca Raton, Florida,pp. 125–154.

Hetenyi, M., 1946. Beams on elastic foundations. University of Michigan Press, Ann Arbor, USA.

Higgins, W., Vasquez, C., Basu, D., Griffiths, D.V.G., 2013. Elastic solutions for laterally loaded piles. J. Geotech. Geoenviron. Eng. 139 (7), 1096–1103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000828.

Houlsby, G.T., Cassidy, M.J., Einav, I., 2005. A generalised Winkler

Hanley, S., 2021. Vestas unveils world’s most powerful offshore wind turbine, CleanTechnica, https://cleantechnica.com/2021/02/12/vestas- unveils-worlds-most-powerful-offshore-wind-turbine/.model for the behaviour of shallow foundations. Ge´otechnique 55 (6), 449–460. https://doi.org/10.1680/geot.2005.55.6.449.

Iai, S., Tobita, T., Nakahara, T., 2005. Generalised scaling relations for dynamic centrifuge tests. Ge´otechnique 55 (5), 355–362. https://doi. org/10.1680/geot.2005.55.5.355.

IRENA. 2019. Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects. (A Global Energy Transfor- mation paper), International Renewable Energy Agency, Abu Dhabi, UAE. https://www.irena.org/-/media/Files/IRENA/Agency/Publica- tion/2019/Oct/IRENA_Future_of_wind_2019.pdf.

IRENA, 2021. Offshore renewables: An action agenda for deployment, International Renewable Energy Agency, Abu Dhabi, UAE. https:// www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jul/ IRENA_G20_Offshore_renewables_2021.pdf.

Kagawa, T., Kraft Jr., L.M., 1980. Lateral load-deflection relationships of piles subjected to dynamic loadings. Soils Found. 20 (4), 19–36. https://doi.org/10.3208/sandf1972.20.4_19.

Kamata, Y., Takahashi, A., 2021. Sway-rocking spring system applicable to short-rigid monopile foundations. Geotechnical and Geological Engineering 39 (4), 3065–3079. https://doi.org/10.1007/s10706-021-01678-2.

Lai, Y., Wang, L., Zhang, Y., Hong, Y.i., 2021. Site-specific soil reaction model for monopiles in soft clay based on laboratory element stress- strain curves. Ocean Eng. 220, 108437. https://doi.org/10.1016/j. oceaneng.2020.108437.

Leblanc, C., Houlsby, G.T., Byrne, B.W., 2010. Response of stiff piles in sand to long-term cyclic lateral loading. Ge´otechnique 60 (2), 79–90. https://doi.org/10.1680/geot.7.00196.

McAdam, R.A., Byrne, B.W., Houlsby, G.T., Beuckelaers, W.J.A.P.,Burd, H.J., Gavin, K.G., Igoe, D.J.P., Jardine, R.J., Martin, C.M., Muir Wood, A., Potts, D.M., Skov Gretlund, J., Taborda, D.M.G., Zdravkovic´, L., 2020. Monotonic laterally loaded pile testing in a dense marine sand at Dunkirk. Ge´otechnique 70 (11), 986–998. https:// doi.org/10.1680/jgeot.18.PISA.004.

Nanda, S., Arthur, I., Sivakumar, V., Donohue, S., Bradshaw, A., Keltai, R., Gavin, K., Mackinnon, P., Rankin, B., Glynn, D., 2017. Monopiles subjected to uni- and multi-lateral cyclic loading. Geotech. Eng. 170 (3), 246–258. https://doi.org/10.1680/jgeen.16.00110.

Page, A.M., Grimstada, G., Eiksunda, G.R., Jostad, H.P., 2018. A macro- element pile foundation model for integrated analyses of monopile- based offshore wind turbines. Ocean Eng. 167, 23–35. https://doi.org/ 10.1016/j.oceaneng.2018.08.019.

Poulos, H.G., Davis, E.H., 1974. Elastic solutions for soil and rock mechanics. John Wiley and Sons, New York, USA.

Poulos, H.G., Davis, E.H., 1980. Pile Foundation Analysis and Design.John Wiley and Sons, New York, USA.

Rathod, D., Nigitha, D., Krishnanunni, K.T., 2021. Experimental Investigation of the Behavior of Monopile under Asymmetric Two- Way Cyclic Lateral Loads. Int. J. Geomech. 21 (3), 06021001. https:// doi.org/10.1061/(ASCE)GM.1943-5622.0001920.

Richards, I.A., Bransby, M.F., Byrne, B.W., Gaudin, C., Houlsby, G.T., 2021. Effect of Stress Level on Response of Model Monopile to Cyclic Lateral Loading in Sand. J. Geotech. Geoenviron. Eng. 147 (3), 04021002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002447.

Scott, R.F., 1981. Foundation Analysis. Prentice-Hall, London, UK.

Shadlou, M., Bhattacharya, S., 2016. Dynamic stiffness of monopiles supporting offshore wind turbine generators. Soil Dyn. Earthquake Eng. 88, 15–32. https://doi.org/10.1016/j.soildyn.2016.04.002.

Taborda, D.M.G., Zdravkovic´, L., Potts, D.M., Burd, H.J., Byrne, B.W.,Gavin, K.G., Houlsby, G.T., Jardine, R.J., Liu, T., Martin, C.M., McAdam, R.A., 2020. Finite-element modelling of laterally loaded piles in a dense marine sand at Dunkirk. Ge´otechnique 70 (11), 1014– 1029. https://doi.org/10.1680/jgeot.18.P.277.

Takemura, J., Kondoh, M., Esaki, T., Kouda, M., Kusakabe, O., 1999. Centrifuge model tests on double propped wall excavation in soft clay. Soils Found. 39 (3), 75–87. https://doi.org/10.3208/sandf.39.3_75.

Terzaghi, K., 1955. Evaluation of coefficient of subgrade reaction. Ge´otech- nique 5 (4), 297–326. https://doi.org/10.1680/geot.1955.5.4.297.

Xiao, S.H., Lin, K., Liu, H.J., Zhou, A.N., 2021. Performance analysis of monopile-supported wind turbines subjected to wind and operation loads. Renewable Energy 179, 842–858. https://doi.org/10.1016/j. renene.2021.07.055.

Zhang, L., 2009. Nonlinear analysis of laterally loaded rigid piles in cohesionless soil. Comput. Geotech. 36 (5), 718–724. https://doi.org/ 10.1016/j.compgeo.2008.12.001.

Zhang, Y., Andersen, K.H., 2017. Scaling of lateral pile p-y response in clay from laboratory stress-strain curves. Mar. struct. 53, 124–135. https://doi.org/10.1016/j.marstruc.2017.02.002.

Zhu, B., Li, T., Xiong, G., Liu, J.C., 2016. Centrifuge model tests on laterally loaded piles in sand. Int. J. Phys. Modell. Geotech. 16 (4), 160–172. https://doi.org/10.1680/jphmg.15.00023.

Zhu, B., Ren, J., Yuan, M., Zhu, J.S., Yang, Q.J., Gao, Y.F., Kong, D.Q.,2021. Centrifuge Modeling of Monotonic and Cyclic Lateral Behavior of Monopiles in Sand. J. Geotech. Geoenviron. Eng. 147 (8), 04021058. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002566.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る