リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rapid identification of rare earth element bearing minerals in ores by cathodoluminescence method」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rapid identification of rare earth element bearing minerals in ores by cathodoluminescence method

Susumu Imashuku Kazuaki Wagatsuma 東北大学 DOI:10.1016/j.mineng.2020.106317

2020.06.01

概要

In mineral ores, the identification of monazite, bastnäsite, and xenotime, which are currently exploited rare earth element bearing minerals, is important for the development of the mines that reserve rare earth elements. A conventional method for their identification, an electron probe microanalysis, is time-consuming. Here a method to rapidly identify these minerals is presented by acquiring cathodoluminescence (CL) images and spectra. Monazite, xenotime, and bastnäsite emitted red, blue-green, and red luminescence in their CL images, respectively. We detected CL peaks related to some rare earth elements, such as Ce, Tb, Pr, Sm, and Nd for monazite; Gd, Ce, Tb, Er, Tm, Dy, Sm, and Nd for xenotime; and Pr, Sm, and Nd for bastnäsite using our custom CL spectrometer. Monazite, bastnäsite, and xenotime are distinguishable from other minerals that coexist with these three minerals based on their CL colors, intensities, peak wavelengths, and peak intensity ratios. The analysis time to acquire the CL images and spectra was within 100 s. Therefore, the acquisition of CL images and spectra contributes to the development of the rare earth element reserving mines and the sustainable supply thereof.

この論文で使われている画像

参考文献

Alonso, E., Sherman, A.M., Wallington, T.J., Everson, M.P., Field, F.R., Roth, R., Kirchain, R.E., Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ. Sci. Technol., 2012, 46(6), 3406-3414.

Alves, F.E.A., Neumann, R., Ávila, C.A., Faulstich, F.R.L., Monazite-(Ce) and xenotime-(Y) microinclusions in fluorapatite of the pegmatites from the Volta Grande mine, Minas Gerais state, southeast Brazil, as witnesses of the dissolution–reprecipitation process. Mineralogical Magazine, 2019, 83(4), 595-606.

Barrera-Villatoro, A., Boronat, C., Rivera-Montalvo, T., Correcher, V., Garcia-Guinea, J., Zarate-Medina, J., Cathodoluminescence response of natural and synthetic lanthanide-rich phosphates (Ln3+: Ce, Nd). Radiat. Phys. Chem., 2017, 141, 271-275.

Binnemans, K., Jones, P.T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., Buchert, M., Recycling of rare earths: a critical review. J. Clean Prod., 2013, 51, 1-22.

Blanc, P., Baumer, A., Cesbron, F., Ohnenstetter, D., Panczer, G., Rémond, G., 2000. Systematic Cathodoluminescence Spectral Analysis of Synthetic Doped Minerals, In Cathodoluminescence in Geosciences, eds. Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. Springer, Berlin, pp. 127-160.

Chen, Z., Global rare earth resources and scenarios of future rare earth industry. J. Rare Earths, 2011, 29(1), 1-6.

Gaft, M., Reisfeld, R., Panczer, G., Luminescence Spectroscopy of Minerals and Materials. 2005, Springer, Berlin.

Goodenough, K.M., Wall, F., Merriman, D., The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Nat. Resour. Res., 2017, 27(2), 201-216.

Görgen, P., Richter, D.K.G., Neuser, R.D., Use of cathodoluminescence in heavy mineral analytics illustrated by the stable mineral group monazitexenotimezircon from Triassic sandstones of NE-Bavaria. Z. Dtsch. Ges. Geowiss, 2009, 160(1), 57-68.

Gupta, C.K., Krishnamurthy, N., Extractive metallurgy of rare earths. Int. Mater. Rev., 1992, 37(1), 197-248.

Habermann, D., Neuser, R.D., Richter, D.K., 2000. Quantitative high resolution spectral analysis of Mn2+ in sementary calcite, In Cathodoluminscence in Geosciences, eds. Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. Springer, Berlin, pp. 331-358.

Imashuku, S., Ono, K., Shishido, R., Suzuki, S., Wagatsuma, K., Cathodoluminescence analysis for rapid identification of alumina and MgAl2O4 spinel inclusions in steels. Mater. Charact., 2017a, 131, 210-216.

Imashuku, S., Ono, K., Wagatsuma, K., Rapid phase mapping in heat-treated powder mixture of alumina and magnesia utilizing cathodoluminescence. X-Ray Spectrom., 2017b, 46(2), 131- 135.

Imashuku, S., Tsuneda, H., Wagatsuma, K., Effects of divalent-cation iron and manganese oxides on the luminescence of free lime and free magnesia. Spectrochim Acta A Mol Biomol Spectrosc, 2020a, 229, 117952.

Imashuku, S., Tsuneda, H., Wagatsuma, K., Rapid and Simple Identification of Free Magnesia in Steelmaking Slag Used for Road Construction Using Cathodoluminescence. Metall Mater Trans B, 2020b, 51B, 27-34.

Imashuku, S., Wagatsuma, K., Rapid identification of calcium aluminate inclusions in steels using cathodoluminescence analysis. Metallurgical and Materials Transactions B, 2018, 49(5), 2868-2874.

Imashuku, S., Wagatsuma, K., Cathodoluminescence analysis of nonmetallic inclusions of nitrides in steel. Surf. Interface Anal., 2019a, 51(1), 31-34.

Imashuku, S., Wagatsuma, K., Non-destructive evaluation of alumina scale on heat-resistant steels using cathodoluminescence and X-ray-excited optical luminescence. Corros. Sci., 2019b, 154, 226-230.

Imashuku, S., Wagatsuma, K., Cathodoluminescence Analysis for the Nondestructive Evaluation of Silica Scale on an Iron-Based Alloy. Oxid. Met., 2020a, 93(1-2), 175-182. Imashuku, S., Wagatsuma, K., Cathodoluminescence Analysis of Nonmetallic Inclusions in Steel Deoxidized and Desulfurized by Rare-Earth Metals (La, Ce, Nd). Metall Mater Trans B, 2020b, 51B, 79-84.

Jordens, A., Cheng, Y.P., Waters, K.E., A review of the beneficiation of rare earth element bearing minerals. Miner. Eng., 2013, 41, 97-114.

Kalceff, M.A.S., Phillips, M.R., Moon, A.R., Kalceff, W., 2000. Cathodoluminescence Microcharacterisation of Silicon Dioxide Polymorphs, In Cathodoluminscence in Geosciences, eds. Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. Springer, Berlin, pp. 193-224.

Kano, T., 1999. Principal phosphor materials and their optical properties, In Phosphor handbook, eds. Shinoya, S., Yen, W.M. CRC Press, Boca Raton, Florida, pp. 178-200.

Kumari, A., Panda, R., Jha, M.K., Kumar, J.R., Lee, J.Y., Process development to recover rare earth metals from monazite mineral: A review. Miner. Eng., 2015, 79, 102-115.

Long, K.R., Gosen, B.S.V., Foley, N.K., Cordier, D., The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective. 2010, U.S. Geological Survey, Reston, Virginia, USA.

MacRae, C.M., Wilson, N.C., Luminescence database I--minerals and materials. Microsc. Microanal., 2008, 14(2), 184-204.

Marfunin, A.S., Spectroscopy, Luminescence and Radiation Centers in Minerals. 1979, Springer-Verlag, Berlin.

Richter, D.K., Görgen, P., Götte, T., Monazite cathodoluminescence — A new tool for heavy mineral analysis of siliciclastic sedimentary rocks. Sediment. Geol., 2008, 209(1-4), 36-41.

Richter, D.K., Krampitz, H., Görgen, P., Götte, T., Neuser, R.D., Xenotime in the Lower Buntsandstein of Central Europe: Evidence from cathodoluminescence investigation. Sediment. Geol., 2006, 183(3-4), 261-268.

Roskill, Rare earths: Global industry, markets and outlook. 16th edn. 2016, Roskill, London. U.S. Geological Survey, Mineral commodity summaries 2019. 2019, Reston, Virginia.

Thompson, A.C., Vaughan, D., X-Ray Data Booklet. 2001, Lawrence Berkeley National Laboratory, Berkeley.

Tsuneda, H., Imashuku, S., Wagatsuma, K., Detection of free-lime in steelmaking sag by cathodoluminescence method. Tetsu To Hagane-J. Iron Steel Inst. Jpn., 2019, 105(5), 30-37.

Vaggelli, G., Cossio, R., Petrelli, M., Rossetti, P., Combined cathodoluminescence spectroscopy, electron microprobe and laser ablation ICP mass spectrometry analysis: an attempt to correlate luminescence and chemical composition of monazite. Microchimica Acta, 2008, 161(3-4), 313-321.

Vennari, C.E., Williams, Q., High-pressure Raman and Nd3+ luminescence spectroscopy of bastnäsite-(REE)CO3F. Am. Miner., 2019, 104(10), 1389-1401.

Williams, M.L., Jercinovic, M.J., Hetherington, C.J., Microprobe Monazite Geochronology: Understanding Geologic Processes by Integrating Composition and Chronology. Annu. Rev. Earth Planet. Sci., 2007, 35(1), 137-175.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る