リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Crystallographic texture- and grain boundary density-independent improvement of corrosion resistance in austenitic 316L stainless steel fabricated via laser powder bed fusion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Crystallographic texture- and grain boundary density-independent improvement of corrosion resistance in austenitic 316L stainless steel fabricated via laser powder bed fusion

Tsutsumi, Yusuke 大阪大学

2021.09.01

概要

Improvement of corrosion resistance of austenitic 316L stainless steel via laser powder bed fusion (LPBF) is currently a prominent research topic; however, the effects of crystallographic texture and the related grain boundary density on the corrosion resistance of LPBF-fabricated parts have not been elucidated. For biomedical applications, crystallographic texture control from a single crystalline-like to randomly oriented polycrystalline microstructure is highly attractive for optimizing the mechanical properties (particularly the Young's modulus) of implants. An investigation of the impacts of crystallographic planes and grain boundaries exposed to the biological environment on corrosion behavior is necessary. 316L stainless steels with different crystallographic textures and grain boundary densities were successfully fabricated via LPBF. The corrosion resistances of the LPBF-fabricated specimens were comprehensively assessed by anodic polarization, dissolution, and crevice corrosion repassivation tests. The LPBF-fabricated specimens showed extremely high pitting potentials in the physiological saline compared with the commercially available counterparts, and importantly, excellent pitting corrosion resistance was observed irrespective of the crystallographic planes and grain boundary density exposed. Moreover, the LPBF-fabricated specimens did not show metastable pitting corrosion even in an accelerated test using an acid solution. The repassivation behavior of the specimens was not affected by LPBF. Such a drastic improvement in the corrosion resistances of the LPBF-fabricated specimens might be attributed to suppression of inclusion coarsening owing to the rapid cooling rate during solidification in LPBF. By using LPBF, the desired crystallographic texture can be introduced based on the desired mechanical properties without concern for corrosiveness.

参考文献

[1] T. Hanawa, Metal ion release from metal implants, Mater. Sci. Eng. C 24 (2004) 745–752, https://doi.org/10.1016/j.msec.2004.08.018.

[2] N. Henrik Nielsen, A. Linneberg, T. Menn´e, F. Madsen, L. Frølund, A. Dirksen, T. Jørgensen, Allergic contact sensitization in an adult Danish population: two cross-sectional surveys eight years apart (The Copenhagen Allergy Study), Acta Derm. Venereol. 81 (2001) 31–34, https://doi.org/10.1080/000155501750208155.

[3] C. Lid´en, S. Carter, Nickel release from coins, Contact Dermat. 44 (2001) 160–165, https://doi.org/10.1034/j.1600-0536.2001.044003160.x.

[4] Y. Tomizawa, T. Hanawa, D. Kuroda, H. Nishida, M. Endo, Corrosion of stainless steel sternal wire after long-term implantation, J. Artif. Organs 9 (2006) 61–66, https://doi.org/10.1007/s10047-005-0321-0.

[5] T. Akazawa, S. Minami, K. Takahashi, T. Kotani, T. Hanawa, H. Moriya, Corrosion of spinal implants retrieved from patients with scoliosis, J. Orthop. Sci. 10 (2005) 200–205, https://doi.org/10.1007/s00776-004-0867-3.

[6] O. Gokcekaya, T. Ishimoto, S. Hibino, J. Yasutomi, T. Narushima, T. Nakano, Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy, Acta Mater. 212 (2021), 116876, https://doi.org/10.1016/j.actamat.2021.116876.

[7] T. Ishimoto, K. Hagihara, K. Hisamoto, T. Nakano, Stability of crystallographic texture in laser powder bed fusion: understanding the competition of crystal growth using a single crystalline seed, Addit. Manuf. 43 (2021), 102004, https://doi.org/10.1016/j.addma.2021.102004.

[8] L. Thijs, M.L. Montero Sistiaga, R. Wauthle, Q. Xie, J.P. Kruth, J. Van Humbeeck, Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum, Acta Mater. 61 (2013) 4657–4668, https://doi.org/10.1016/j.actamat.2013.04.036.

[9] T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, T. Nakano, Crystallographic texture control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus, Scr. Mater. 132 (2017) 34–38, https://doi.org/10.1016/j.scriptamat.2016.12.038.

[10] H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting, J. Mater. Sci. Technol. 34 (2018) 1799–1804, https://doi.org/10.1016/j.jmst.2018.02.002.

[11] O. Gokcekaya, N. Hayashi, T. Ishimoto, K. Ueda, T. Narushima, T. Nakano, Crystallographic orientation control of pure chromium via laser powder-bed fusion and improved high temperature oxidation resistance, Addit. Manuf. (2020), 101624, https://doi.org/10.1016/j.addma.2020.101624.

[12] S.H. Sun, K. Hagihara, T. Nakano, Effect of scanning strategy on texture formation in Ni-25at%Mo alloys fabricated by selective laser melting, Mater. Des. 140 (2018) 307–316, https://doi.org/10.1016/j.matdes.2017.11.060.

[13] K. Hagihara, T. Nakano, M. Suzuki, T. Ishimoto, Suyalatu, S.H. Sun, Successful additive manufacturing of MoSi2 including crystallographic texture and shape control, J. Alloy. Compd. 696 (2017) 67–72, https://doi.org/10.1016/j. jallcom.2016.11.191.

[14] X. Wang, J.A. Mun˜iz-Lerma, O. Sanchez-Mata, M. Attarian Shandiz, N. Brodusch, R. Gauvin, M. Brochu, Characterization of single crystalline austenitic stainless steel thin struts processed by laser powder bed fusion, Scr. Mater. 163 (2019) 51–56, https://doi.org/10.1016/j.scriptamat.2018.12.032.

[15] T.P. Gabb, J. Gayda, R.V. Miner, Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Ren´e N4: Part II. Low cycle fatigue behavior, Metal. Trans. A 17 (1986) 497–505, https://doi.org/ 10.1007/BF02643956.

[16] F. Yang, H. Xue, L. Zhao, X. Fang, H. Zhang, Effects of crystal orientation and grain boundary inclination on stress distribution in bicrystal interface of austenite stainless steel 316L, Adv. Mater. Sci. Eng. 2019 (2019), 2468487, https://doi.org/ 10.1155/2019/2468487.

[17] A. Parsapour, S.N. Khorasani, M.H. Fathi, Effect of surface treatment and metallic coating on corrosion behavior and biocompatibility of surgical 316L stainless steel implant, J. Mater. Sci. Technol. 28 (2012) 125–131, https://doi.org/10.1016/ S1005-0302(12)60032-2.

[18] A. Shahryari, J.A. Szpunar, S. Omanovic, The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior, Corros. Sci. 51 (2009) 677–682, https://doi.org/10.1016/j.corsci.2008.12.019.

[19] B.R. Kumar, R. Singh, B. Mahato, P.K. De, N.R. Bandyopadhyay, D.K. Bhattacharya, Effect of texture on corrosion behavior of AISI 304L stainless steel, Mater. Charact. 54 (2005) 141–147, https://doi.org/10.1016/j.matchar.2004.11.004.

[20] D. Lindell, R. Pettersson, Crystallographic effects in corrosion of austenitic stainless steel 316L, Mater. Corros. 66 (2015) 727–732, https://doi.org/10.1002/ maco.201408002.

[21] M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe, Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering, Acta Mater. 50 (2002) 2331–2341, https://doi.org/10.1016/S1359-6454(02)00064-2.

[22] M.L.K. Lodhi, K.M. Deen, M.C. Greenlee-Wacker, W. Haider, Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications, Addit. Manuf. 27 (2019) 8–19, https://doi.org/10.1016/j.addma.2019.02.005.

[23] N.S. Al-Mamun, D.K. Mairaj, W. Haider, E. Asselin, I. Shabib, Corrosion behavior and biocompatibility of additively manufactured 316L stainless steel in a physiological environment: the effect of citrate ions, Addit. Manuf. 34 (2020), 101237, https://doi.org/10.1016/j.addma.2020.101237.

[24] S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting, Scr. Mater. 159 (2019) 89–93, https://doi.org/10.1016/j.scriptamat.2018.09.017.

[25] Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, D. Fabijanic, On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel, Scr. Mater. 141 (2017) 94–98, https://doi.org/10.1016/j. scriptamat.2017.07.037.

[26] M. Atapour, X. Wang, K. Fa¨rnlund, W.I. Odnevall, Y. Hedberg, Corrosion and metal release investigations of selective laser melted 316L stainless steel in a synthetic physiological fluid containing proteins and in diluted hydrochloric acid, Electrochim. Acta 354 (2020), 136748, https://doi.org/10.1016/j. electacta.2020.136748.

[27] D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, C. Man, X. Li, The passivity of selective laser melted 316L stainless steel, Appl. Surf. Sci. 504 (2020), 144495, https://doi.org/10.1016/j.apsusc.2019.144495.

[28] M. Laleh, A.E. Hughes, S. Yang, J. Li, W. Xu, I. Gibson, M.Y. Tan, Two and three- dimensional characterisation of localised corrosion affected by lack-of-fusion pores in 316L stainless steel produced by selective laser melting, Corros. Sci. 165 (2020), 108394, https://doi.org/10.1016/j.corsci.2019.108394.

[29] T. Ishimoto, S. Wu, Y. Ito, S.H. Sun, H. Amano, T. Nakano, Crystallographic orientation control of 316L austenitic stainless steel via selective laser melting, ISIJ Int. 60 (2020) 1758–1764, https://doi.org/10.2355/isijinternational.ISIJINT-2019-744.

[30] A. Chiba, I. Muto, Y. Sugawara, N. Hara, Pit initiation mechanism at MnS inclusions in stainless steel: synergistic effect of elemental sulfür and chloride ions, J. Electrochem. Soc. 160 (2013) C511–C520, https://doi.org/10.1149/ 2.081310jes.

[31] A. Chiba, I. Muto, Y. Sugawara, N. Hara, Effect of atmospheric aging on dissolution of MnS inclusions and pitting initiation process in type 304 stainless steel, Corros. Sci. 106 (2016) 25–34, https://doi.org/10.1016/j.corsci.2016.01.022.

[32] Y. Tanaka, E. Kobayashi, S. Hiromoto, K. Asami, H. Imai, T. Hanawa, Calcium phosphate formation on titanium by low-voltage electrolytic treatments, J. Mater. Sci. Mater. Med. 18 (2007) 797–806, https://doi.org/10.1007/s10856-006-0004-2.

[33] A.M. Anderson-Wile, B.M. Wile, Q. Wen, H. Shen, Corrosion at the polymer-metal interface in artificial seawater solutions, Int. J. Corros. 2012 (2012) 1–8, https:// doi.org/10.1155/2012/496960.

[34] X. Ni, D. Kong, W. Wu, L. Zhang, C. Dong, B. He, L. Lu, K. Wu, D. Zhu, Corrosion behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds, J. Mater. Eng. Perform. 27 (2018) 3667–3677, https://doi.org/ 10.1007/s11665-018-3446-z.

[35] M. Ma, Z. Wang, X. Zeng, A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition, Mater. Sci. Eng. A 685 (2017) 265–273, https://doi.org/10.1016/j.msea.2016.12.112.

[36] J.W. Fu, Y.S. Yang, J.J. Guo, W.H. Tong, Effect of cooling rate on solidification microstructures in AISI 304 stainless steel, Mater. Sci. Technol. 24 (2008) 941–944, https://doi.org/10.1179/174328408×295962.

[37] Z. Duan, C. Man, C. Dong, Z. Cui, D. Kong, L. Wang, X. Wang, Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: pitting mechanism induced by gas pores, Corros. Sci. 167 (2020), 108520, https://doi.org/10.1016/j.corsci.2020.108520.

[38] Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, D. Fabijanic, On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel, Scr. Mater. 141 (2017) 94–98, https://doi.org/10.1016/j. scriptamat.2017.07.037.

[39] G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld, C. R. Hutchinson, On the corrosion and metastable pitting characteristics of 316l stainless steel produced by selective laser melting, J. Electrochem. Soc. 164 (2017) C250–C257, https://doi.org/10.1149/2.0551706jes.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る