リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Probing Electroweakly Interacting Massive Particles with Drell-Yan Process at 100 TeV Colliders」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Probing Electroweakly Interacting Massive Particles with Drell-Yan Process at 100 TeV Colliders

千草, 颯 東京大学 DOI:10.15083/0002004694

2022.06.22

概要

There are many extensions of the standard model that predict the existence of elec- troweakly interacting massive particles (WIMPs), in particular in the context of the dark matter. WIMPs, which may be the dominant component of the dark matter, can be searched for using several different methods, such as the direct and indirect detec- tion of the dark matter and the direct production at collider experiments. However, it is known that Higgsino, which is an example of the WIMP contained in the supersym- metric extension of the standard model, is difficult to search for in many cases. In this thesis, we provide a way for indirectly studying WIMPs through the precision study of the pair production processes of charged leptons or that of a charged lepton and a neutrino at future 100 TeV collider experiments. It is revealed that this search method is suitable in particular for Higgsino, providing us the 5σ discovery reach of Higgsino in supersymmetric model with mass up to 850 GeV. We also show that this search method provides important and independent information about every kind of WIMP in addition to Higgsino. Finally, we also discuss how accurately one can extract the mass, gauge charge, and spin of WIMPs in our method.

参考文献

[1] S. Chigusa, Y. Ema, T. Moroi, Probing electroweakly interacting massive particles with Drell-Yan process at 100 TeV hadron colliders, Phys. Lett. B789 (2019) 106–113. arXiv:1810.07349, doi:10.1016/j.physletb.2018.12.011.

[2] T. Abe, S. Chigusa, Y. Ema, T. Moroi, Indirect studies of electroweakly interacting particles at 100 TeV hadron colliders, Phys. Rev. D100 (5) (2019) 055018. arXiv: 1904.11162, doi:10.1103/PhysRevD.100.055018.

[3] R. Kitano, Y. Nomura, A Solution to the supersymmetric fine-tuning problem within the MSSM, Phys. Lett. B631 (2005) 58–67. arXiv:hep-ph/0509039, doi:10.1016/ j.physletb.2005.10.003.

[4] C. Brust, A. Katz, S. Lawrence, R. Sundrum, SUSY, the Third Generation and the LHC, JHEP 03 (2012) 103. arXiv:1110.6670, doi:10.1007/JHEP03(2012)103.

[5] M. Papucci, J. T. Ruderman, A. Weiler, Natural SUSY Endures, JHEP 09 (2012) 035. arXiv:1110.6926, doi:10.1007/JHEP09(2012)035.

[6] H. Baer, V. Barger, P. Huang, X. Tata, Natural Supersymmetry: LHC, dark mat- ter and ILC searches, JHEP 05 (2012) 109. arXiv:1203.5539, doi:10.1007/ JHEP05(2012)109.

[7] J. D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, in: 11th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY 2003) Tucson, Arizona, June 5-10, 2003, 2003. arXiv:hep-ph/0306127.

[8] J. D. Wells, PeV-scale supersymmetry, Phys. Rev. D71 (2005) 015013. arXiv:hep-ph/ 0411041, doi:10.1103/PhysRevD.71.015013.

[9] N. Arkani-Hamed, S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073. arXiv: hep-th/0405159, doi:10.1088/1126-6708/2005/06/073.

[10] G. F. Giudice, A. Romanino, Split supersymmetry, Nucl. Phys. B699 (2004) 65– 89, [Erratum: Nucl. Phys.B706,487(2005)]. arXiv:hep-ph/0406088, doi:10.1016/ j.nuclphysb.2004.11.048,10.1016/j.nuclphysb.2004.08.001.

[11] N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, A. Romanino, Aspects of split su- persymmetry, Nucl. Phys. B709 (2005) 3–46. arXiv:hep-ph/0409232, doi:10.1016/ j.nuclphysb.2004.12.026.

[12] N. Arkani-Hamed, S. Dimopoulos, S. Kachru, Predictive landscapes and new physics at a TeV (2005). arXiv:hep-th/0501082.

[13] L. Randall, R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B557 (1999) 79–118. arXiv:hep-th/9810155, doi:10.1016/S0550-3213(99)00359-4.

[14] G. F. Giudice, M. A. Luty, H. Murayama, R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027. arXiv:hep-ph/9810442, doi:10.1088/1126-6708/1998/12/027.

[15] M. Cirelli, N. Fornengo, A. Strumia, Minimal dark matter, Nucl. Phys. B753 (2006) 178–194. arXiv:hep-ph/0512090, doi:10.1016/j.nuclphysb.2006.07.012.

[16] M. Cirelli, A. Strumia, M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B787 (2007) 152–175. arXiv:0706.4071, doi:10.1016/ j.nuclphysb.2007.07.023.

[17] M. Cirelli, A. Strumia, Minimal Dark Matter: Model and results, New J. Phys. 11 (2009) 105005. arXiv:0903.3381, doi:10.1088/1367-2630/11/10/105005.

[18] D. S. Akerib, et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2) (2017) 021303. arXiv:1608.07648, doi:10.1103/ PhysRevLett.118.021303.

[19] X. Cui, et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Exper- iment, Phys. Rev. Lett. 119 (18) (2017) 181302. arXiv:1708.06917, doi:10.1103/ PhysRevLett.119.181302.

[20] E. Aprile, et al., Dark Matter Search Results from a One Tonne×Year Exposure of XENON1T, Phys. Rev. Lett. 121 (11) (2018) 111302. arXiv:1805.12562, doi:10.1103/PhysRevLett.121.111302.

[21] J. Hisano, K. Ishiwata, N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B690 (2010) 311–315. arXiv:1004.4090, doi:10.1016/j. physletb.2010.05.047.

[22] J. Hisano, K. Ishiwata, N. Nagata, Direct Search of Dark Matter in High-Scale Supersymmetry, Phys. Rev. D87 (2013) 035020. arXiv:1210.5985, doi:10.1103/ PhysRevD.87.035020.

[23] J. Hisano, K. Ishiwata, N. Nagata, QCD Effects on Direct Detection of Wino Dark Matter, JHEP 06 (2015) 097. arXiv:1504.00915, doi:10.1007/JHEP06(2015)097.

[24] R. J. Hill, M. P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B707 (2012) 539–545. arXiv:1111.0016, doi:10.1016/j.physletb.2012.01.013.

[25] R. J. Hill, M. P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602. arXiv:1309.4092, doi:10.1103/PhysRevLett. 112.211602.

[26] J. Hisano, K. Ishiwata, N. Nagata, T. Takesako, Direct Detection of Electroweak- Interacting Dark Matter, JHEP 07 (2011) 005. arXiv:1104.0228, doi:10.1007/ JHEP07(2011)005.

[27] A. Albert, et al., Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2) (2017) 110. arXiv:1611.03184, doi:10.3847/1538-4357/834/2/110.

[28] M. L. Ahnen, et al., Limits to Dark Matter Annihilation Cross-Section from a Com- bined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies, JCAP 1602 (02) (2016) 039. arXiv:1601.06590, doi:10.1088/1475-7516/2016/02/039.

[29] H. Abdallah, et al., Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (11) (2016) 111301. arXiv:1607.08142, doi:10.1103/PhysRevLett.117.111301.

[30] G. A. G´omez-Vargas, M. A. S´anchez-Conde, J.-H. Huh, M. Peir´o, F. Prada, A. Morselli, A. Klypin, D. G. Cerden˜o, Y. Mambrini, C. Mun˜oz, Constraints on WIMP annihilation for contracted dark matterin the inner Galaxy with the Fermi-LAT, JCAP 1310 (2013) 029. arXiv:1308.3515, doi:10.1088/1475-7516/2013/10/029.

[31] B. Bhattacherjee, M. Ibe, K. Ichikawa, S. Matsumoto, K. Nishiyama, Wino Dark Matter and Future dSph Observations, JHEP 07 (2014) 080. arXiv:1405.4914, doi: 10.1007/JHEP07(2014)080.

[32] R. Krall, M. Reece, Last Electroweak WIMP Standing: Pseudo-Dirac Higgsino Status and Compact Stars as Future Probes, Chin. Phys. C42 (4) (2018) 043105. arXiv: 1705.04843, doi:10.1088/1674-1137/42/4/043105.

[33] H. Abdalla, et al., Searches for gamma-ray lines and ’pure WIMP’ spectra from Dark Matter annihilations in dwarf galaxies with H.E.S.S, JCAP 1811 (11) (2018) 037. arXiv:1810.00995, doi:10.1088/1475-7516/2018/11/037.

[34] M. Aaboud, et al., Search for long-lived charginos based on a disappearing-track sig- nature in pp collisions at √s = 13 TeV with the ATLAS detector, JHEP 06 (2018) 022. arXiv:1712.02118, doi:10.1007/JHEP06(2018)022.

[35] Search for direct pair production of higgsinos by the reinterpretation of the disappear- ing track analysis with 36.1 fb−1 of √s = 13 TeV data collected with the ATLAS experiment, Tech. Rep. ATL-PHYS-PUB-2017-019, CERN, Geneva (Dec 2017). URL http://cds.cern.ch/record/2297480

[36] A. M. Sirunyan, et al., Search for disappearing tracks as a signature of new long- lived particles in proton-proton collisions at √s = 13 TeV, JHEP 08 (2018) 016. arXiv:1804.07321, doi:10.1007/JHEP08(2018)016.

[37] B. Ostdiek, Constraining the minimal dark matter fiveplet with LHC searches, Phys. Rev. D92 (2015) 055008. arXiv:1506.03445, doi:10.1103/PhysRevD.92.055008.

[38] H. Baer, A. Mustafayev, X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev. D89 (5) (2014) 055007. arXiv:1401.1162, doi:10.1103/PhysRevD.89.055007.

[39] T. K. Charles, et al., The Compact Linear Collider (CLIC) - 2018 Summary Report, CERN Yellow Rep. Monogr. 1802 (2018) 1–98. arXiv:1812.06018, doi:10.23731/ CYRM-2018-002.

[40] D. S. M. Alves, J. Galloway, J. T. Ruderman, J. R. Walsh, Running Electroweak Couplings as a Probe of New Physics, JHEP 02 (2015) 007. arXiv:1410.6810, doi: 10.1007/JHEP02(2015)007.

[41] C. Gross, O. Lebedev, J. M. No, Drell-Yan constraints on new electroweak states: LHC as a pp → l+l− precision machine, Mod. Phys. Lett. A32 (16) (2017) 1750094. arXiv:1602.03877, doi:10.1142/S0217732317500948.

[42] M. Farina, G. Panico, D. Pappadopulo, J. T. Ruderman, R. Torre, A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B772 (2017) 210–215. arXiv:1609.08157, doi:10.1016/j.physletb.2017.06.043.

[43] K. Harigaya, K. Ichikawa, A. Kundu, S. Matsumoto, S. Shirai, Indirect Probe of Electroweak-Interacting Particles at Future Lepton Colliders, JHEP 09 (2015) 105. arXiv:1504.03402, doi:10.1007/JHEP09(2015)105.

[44] S. Matsumoto, S. Shirai, M. Takeuchi, Indirect Probe of Electroweakly Interacting Particles at the High-Luminosity Large Hadron Collider, JHEP 06 (2018) 049. arXiv: 1711.05449, doi:10.1007/JHEP06(2018)049.

[45] L. Di Luzio, R. Gr¨ober, G. Panico, Probing new electroweak states via precision mea- surements at the LHC and future colliders, JHEP 01 (2019) 011. arXiv:1810.10993, doi:10.1007/JHEP01(2019)011.

[46] S. Matsumoto, S. Shirai, M. Takeuchi, Indirect Probe of Electroweak-Interacting Par- ticles with Mono-Lepton Signatures at Hadron Colliders (2018). arXiv:1810.12234.

[47] M. L. Mangano, et al., Physics at a 100 TeV pp Collider: Standard Model Pro- cesses, CERN Yellow Report (3) (2017) 1–254. arXiv:1607.01831, doi:10.23731/ CYRM-2017-003.1.

[48] R. Contino, et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (3) (2017) 255–440. arXiv:1606.09408, doi:10.23731/ CYRM-2017-003.255.

[49] T. Golling, et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Report (3) (2017) 441–634. arXiv:1606.00947, doi:10. 23731/CYRM-2017-003.441.

[50] M. Ahmad, et al., CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector (2015).

[51] C.-S. S. Group, CEPC-SPPC Preliminary Conceptual Design Report. 2. Accelerator (2015).

[52] M. Low, L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161. arXiv:1404.0682, doi:10.1007/JHEP08(2014)161.

[53] M. Cirelli, F. Sala, M. Taoso, Wino-like Minimal Dark Matter and future collid- ers, JHEP 10 (2014) 033, [Erratum: JHEP01,041(2015)]. arXiv:1407.7058, doi: 10.1007/JHEP10(2014)033,10.1007/JHEP01(2015)041.

[54] T. Han, S. Mukhopadhyay, X. Wang, Electroweak Dark Matter at Future Hadron Colliders, Phys. Rev. D98 (3) (2018) 035026. arXiv:1805.00015, doi:10.1103/ PhysRevD.98.035026.

[55] R. Mahbubani, P. Schwaller, J. Zurita, Closing the window for compressed Dark Sectors with disappearing charged tracks, JHEP 06 (2017) 119, [Erratum: JHEP10,061(2017)]. arXiv:1703.05327, doi:10.1007/JHEP06(2017)119,10.1007/JHEP10(2017)061.

[56] S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D13 (1976) 974–996, [Addendum: Phys. Rev.D19,1277(1979)]. doi:10.1103/PhysRevD.19.1277, 10.1103/PhysRevD.13.974.

[57] E. Gildener, Gauge Symmetry Hierarchies, Phys. Rev. D14 (1976) 1667. doi:10.1103/ PhysRevD.14.1667.

[58] L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D20 (1979) 2619–2625. doi:10.1103/PhysRevD.20.2619.

[59] M. Tanabashi, et al., Review of Particle Physics, Phys. Rev. D98 (3) (2018) 030001. doi:10.1103/PhysRevD.98.030001.

[60] A. Salam, J. A. Strathdee, On Superfields and Fermi-Bose Symmetry, Phys. Rev. D11 (1975) 1521–1535. doi:10.1103/PhysRevD.11.1521.

[61] M. T. Grisaru, W. Siegel, M. Rocek, Improved Methods for Supergraphs, Nucl. Phys. B159 (1979) 429. doi:10.1016/0550-3213(79)90344-4.

[62] S. P. Martin, A Supersymmetry primer (1997) 1–98[Adv. Ser. Direct. High Energy Phys.18,1(1998)]. arXiv:hep-ph/9709356, doi:10.1142/9789812839657_0001,10. 1142/9789814307505_0001.

[63] N. Sakai, T. Yanagida, Proton Decay in a Class of Supersymmetric Grand Unified Models, Nucl. Phys. B197 (1982) 533. doi:10.1016/0550-3213(82)90457-6.

[64] G. R. Farrar, P. Fayet, Phenomenology of the Production, Decay, and Detection of New Hadronic States Associated with Supersymmetry, Phys. Lett. 76B (1978) 575–579. doi:10.1016/0370-2693(78)90858-4.

[65] S. Dimopoulos, H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B193 (1981) 150–162. doi:10.1016/0550-3213(81)90522-8.

[66] S. Weinberg, Supersymmetry at Ordinary Energies. 1. Masses and Conservation Laws, Phys. Rev. D26 (1982) 287. doi:10.1103/PhysRevD.26.287.

[67] S. Dimopoulos, S. Raby, F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D24 (1981) 1681–1683. doi:10.1103/PhysRevD.24.1681.

[68] L. O’Raifeartaigh, Spontaneous Symmetry Breaking for Chiral Scalar Superfields, Nucl. Phys. B96 (1975) 331–352. doi:10.1016/0550-3213(75)90585-4.

[69] P. Fayet, J. Iliopoulos, Spontaneously Broken Supergauge Symmetries and Goldstone Spinors, Phys. Lett. 51B (1974) 461–464. doi:10.1016/0370-2693(74)90310-4.

[70] P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B90 (1975) 104–124. doi:10.1016/ 0550-3213(75)90636-7.

[71] T. E. W. Group, 2012 Update of the Combination of CDF and D0 Results for the Mass of the W Boson (2012). arXiv:1204.0042.

[72] J. Alcaraz, P. Azzurri, A. Bajo-Vaquero, E. Barberio, A. Blondel, D. Bourilkov, P. Checchia, R. Chierici, R. Clare, J. D’Hondt, G. Della Ricca, M. Dierckxsens, D. Duchesneau, G. Duckeck, M. Elsing, M. W. Gru¨newald, A. Gurtu, J. B. Hansen, R. Hawkings, S. Jezequel, R. W. L. Jones, T. Kawamoto, E. Lan¸con, W. Liebig, L. Mal- geri, S. Mele, M. N. Minard, K. M¨onig, C. Parkes, U. Parzefall, B. Pietrzyk, G. Quast, P. B. Renton, S. Riemann, K. Sachs, D. Strom, A. Str¨assner, R. Tenchini, F. Teubert, M. A. Thomson, S. Todorova-Nov´a, A. Valassi, A. Venturi, H. Voss, C. P. Ward, N. K. Watson, P. S. Wells, S. Wynhoff, P. de Jong, B. de la Cruz, A Combination of Prelim- inary Electroweak Measurements and Constraints on the Standard Model, 2006, Tech. Rep. hep-ex/0612034. ALEPH-2006-001 PHYSICS-2006-001. CERN-L3-310. CERN- PH-EP-2006-042. DELPHI-2006-014 PHYS-948. L3-Note-2833. LEPEWWG-2006-01. OPAL-PR-419, CERN, Geneva, preprint not submitted to publication (Dec 2006). URL https://cds.cern.ch/record/1016509

[73] J. Beringer, et al., Review of Particle Physics (RPP), Phys. Rev. D86 (2012) 010001. doi:10.1103/PhysRevD.86.010001.

[74] G. Aad, et al., Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B726 (2013) 88–119, [Erratum: Phys. Lett.B734,406(2014)]. arXiv:1307.1427, doi:10.1016/j.physletb.2014.05. 011,10.1016/j.physletb.2013.08.010.

[75] S. Chatrchyan, et al., Measurement of the properties of a Higgs boson in the four- lepton final state, Phys. Rev. D89 (9) (2014) 092007. arXiv:1312.5353, doi:10. 1103/PhysRevD.89.092007.

[76] First combination of Tevatron and LHC measurements of the top-quark mass (2014). arXiv:1403.4427.

[77] V. Tishchenko, et al., Detailed Report of the MuLan Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant, Phys. Rev. D87 (5) (2013) 052003. arXiv:1211.0960, doi:10.1103/PhysRevD.87.052003.

[78] S. Bethke, World Summary of αs (2012)[Nucl. Phys. Proc. Suppl.234,229(2013)] (2012). arXiv:1210.0325, doi:10.1016/j.nuclphysbps.2012.12.020.

[79] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio, A. Strumia, Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089. arXiv: 1307.3536, doi:10.1007/JHEP12(2013)089.

[80] E. Bagnaschi, G. F. Giudice, P. Slavich, A. Strumia, Higgs Mass and Unnatural Super- symmetry, JHEP 09 (2014) 092. arXiv:1407.4081, doi:10.1007/JHEP09(2014)092.

[81] J. R. Ellis, K. Enqvist, D. V. Nanopoulos, F. Zwirner, Observables in Low-Energy Su- perstring Models, Mod. Phys. Lett. A1 (1986) 57. doi:10.1142/S0217732386000105.

[82] R. Barbieri, G. F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B306 (1988) 63–76. doi:10.1016/0550-3213(88)90171-X.

[83] G. F. Giudice, A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B206 (1988) 480–484. doi:10.1016/0370-2693(88)91613-9.

[84] J. L. Feng, T. Moroi, Supernatural supersymmetry: Phenomenological implications of anomaly mediated supersymmetry breaking, Phys. Rev. D61 (2000) 095004. arXiv: hep-ph/9907319, doi:10.1103/PhysRevD.61.095004.

[85] J. L. Feng, K. T. Matchev, T. Moroi, Multi - TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322–2325. arXiv:hep-ph/9908309, doi: 10.1103/PhysRevLett.84.2322.

[86] J. L. Feng, K. T. Matchev, T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D61 (2000) 075005. arXiv:hep-ph/9909334, doi:10.1103/PhysRevD.61. 075005.

[87] M. Ibe, T. Moroi, T. T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B644 (2007) 355–360. arXiv:hep-ph/0610277, doi:10.1016/j. physletb.2006.11.061.

[88] M. Ibe, T. T. Yanagida, The Lightest Higgs Boson Mass in Pure Gravity Media- tion Model, Phys. Lett. B709 (2012) 374–380. arXiv:1112.2462, doi:10.1016/j. physletb.2012.02.034.

[89] N. Arkani-Hamed, A. Gupta, D. E. Kaplan, N. Weiner, T. Zorawski, Simply Unnatural Supersymmetry (2012). arXiv:1212.6971.

[90] M. E. Machacek, M. T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B222 (1983) 83–103. doi:10.1016/0550-3213(83)90610-7.

[91] M. Farina, D. Pappadopulo, A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022. arXiv:1303.7244, doi:10.1007/ JHEP08(2013)022.

[92] L. Di Luzio, R. Gr¨ober, J. F. Kamenik, M. Nardecchia, Accidental matter at the LHC, JHEP 07 (2015) 074. arXiv:1504.00359, doi:10.1007/JHEP07(2015)074.

[93] E. Del Nobile, M. Nardecchia, P. Panci, Millicharge or Decay: A Critical Take on Minimal Dark Matter, JCAP 1604 (04) (2016) 048. arXiv:1512.05353, doi:10. 1088/1475-7516/2016/04/048.

[94] T. Gherghetta, G. F. Giudice, J. D. Wells, Phenomenological consequences of super- symmetry with anomaly induced masses, Nucl. Phys. B559 (1999) 27–47. arXiv: hep-ph/9904378, doi:10.1016/S0550-3213(99)00429-0.

[95] H. Fukuda, N. Nagata, H. Otono, S. Shirai, Higgsino Dark Matter or Not: Role of Disappearing Track Searches at the LHC and Future Colliders, Phys. Lett. B781 (2018) 306–311. arXiv:1703.09675, doi:10.1016/j.physletb.2018.03.088.

[96] M. Ibe, S. Matsumoto, R. Sato, Mass Splitting between Charged and Neutral Winos at Two-Loop Level, Phys. Lett. B721 (2013) 252–260. arXiv:1212.5989, doi:10.1016/ j.physletb.2013.03.015.

[97] N. Arkani-Hamed, A. Delgado, G. F. Giudice, The Well-tempered neutralino, Nucl. Phys. B741 (2006) 108–130. arXiv:hep-ph/0601041, doi:10.1016/j.nuclphysb. 2006.02.010.

[98] J. Hisano, S. Matsumoto, M. Nagai, O. Saito, M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B646 (2007) 34–38. arXiv: hep-ph/0610249, doi:10.1016/j.physletb.2007.01.012.

[99] T. Moroi, M. Nagai, M. Takimoto, Non-Thermal Production of Wino Dark Matter via the Decay of Long-Lived Particles, JHEP 07 (2013) 066. arXiv:1303.0948, doi: 10.1007/JHEP07(2013)066.

[100] M. Beneke, A. Bharucha, F. Dighera, C. Hellmann, A. Hryczuk, S. Recksiegel, P. Ruiz- Femenia, Relic density of wino-like dark matter in the MSSM, JHEP 03 (2016) 119. arXiv:1601.04718, doi:10.1007/JHEP03(2016)119.

[101] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta 6 (1933) 110.

[102] F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, Astrophysical Journal 86 (1937) 217.

[103] V. Trimble, Existence and Nature of Dark Matter in the Universe, Ann. Rev. Astron. Astrophys. 25 (1987) 425–472. doi:10.1146/annurev.aa.25.090187.002233.

[104] H. W. Babcock, The rotation of the Andromeda Nebula, Lick Observatory Bulletin 19 (1939) 41–51. doi:10.5479/ADS/bib/1939LicOB.19.41B.

[105] K. G. Begeman, A. H. Broeils, R. H. Sanders, Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics, Mon. Not. Roy. Astron. Soc. 249 (1991) 523.

[106] G. Jungman, M. Kamionkowski, A. Kosowsky, D. N. Spergel, Weighing the universe with the cosmic microwave background, Phys. Rev. Lett. 76 (1996) 1007–1010. arXiv: astro-ph/9507080, doi:10.1103/PhysRevLett.76.1007.

[107] G. Jungman, M. Kamionkowski, A. Kosowsky, D. N. Spergel, Cosmological parameter determination with microwave background maps, Phys. Rev. D54 (1996) 1332–1344. arXiv:astro-ph/9512139, doi:10.1103/PhysRevD.54.1332.

[108] N. Aghanim, et al., Planck 2018 results. VI. Cosmological parameters (2018). arXiv: 1807.06209.

[109] P. Gondolo, G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B360 (1991) 145–179. doi:10.1016/0550-3213(91)90438-4.

[110] G. B´elanger, F. Boudjema, A. Pukhov, A. Semenov, MicrOMEGAs: A Program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103–120. arXiv:hep-ph/0112278, doi:10.1016/S0010-4655(02)00596-9.

[111] G. B´elanger, F. Boudjema, A. Goudelis, A. Pukhov, B. Zaldivar, micrOMEGAs5.0 : Freeze-in, Comput. Phys. Commun. 231 (2018) 173–186. arXiv:1801.03509, doi: 10.1016/j.cpc.2018.04.027.

[112] J. Hisano, S. Matsumoto, M. M. Nojiri, O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D71 (2005) 063528. arXiv:hep-ph/0412403, doi:10.1103/PhysRevD.71.063528.

[113] T. Marrod´an Undagoitia, L. Rauch, Dark matter direct-detection experiments, J. Phys. G43 (1) (2016) 013001. arXiv:1509.08767, doi:10.1088/0954-3899/43/1/013001.

[114] M. W. Goodman, E. Witten, Detectability of Certain Dark Matter Candidates, Phys. Rev. D31 (1985) 3059, [,325(1984)]. doi:10.1103/PhysRevD.31.3059.

[115] E. Aprile, The XENON1T Dark Matter Search Experiment, Springer Proc. Phys. 148 (2013) 93–96. arXiv:1206.6288, doi:10.1007/978-94-007-7241-0_14.

[116] F. J. Kerr, D. Lynden-Bell, Review of galactic constants, Mon. Not. Roy. Astron. Soc. 221 (1986) 1023.

[117] A. M. Green, Astrophysical uncertainties on direct detection experiments, Mod. Phys. Lett. A27 (2012) 1230004. arXiv:1112.0524, doi:10.1142/S0217732312300042.

[118] M. C. Smith, et al., The RAVE Survey: Constraining the Local Galactic Escape Speed, Mon. Not. Roy. Astron. Soc. 379 (2007) 755–772. arXiv:astro-ph/0611671, doi:10.1111/j.1365-2966.2007.11964.x.

[119] J. D. Lewin, P. F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87–112. doi:10.1016/S0927-6505(96)00047-3.

[120] S. Knapen, T. Lin, K. M. Zurek, Light Dark Matter: Models and Constraints, Phys. Rev. D96 (11) (2017) 115021. arXiv:1709.07882, doi:10.1103/PhysRevD. 96.115021.

[121] M. Schumann, Direct Detection of WIMP Dark Matter: Concepts and Status, J. Phys. G46 (10) (2019) 103003. arXiv:1903.03026, doi:10.1088/1361-6471/ab2ea5.

[122] J. Billard, L. Strigari, E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D89 (2) (2014) 023524. arXiv:1307.5458, doi:10.1103/PhysRevD.89.023524.

[123] H. Zhang, et al., Dark matter direct search sensitivity of the PandaX-4T experiment, Sci. China Phys. Mech. Astron. 62 (3) (2019) 31011. arXiv:1806.02229, doi:10. 1007/s11433-018-9259-0.

[124] E. Aprile, et al., Physics reach of the XENON1T dark matter experiment, JCAP 1604 (04) (2016) 027. arXiv:1512.07501, doi:10.1088/1475-7516/2016/04/027.

[125] D. S. Akerib, et al., Projected WIMP Sensitivity of the LUX-ZEPLIN (LZ) Dark Matter Experiment (2018). arXiv:1802.06039.

[126] C. E. Aalseth, et al., DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS, Eur. Phys. J. Plus 133 (2018) 131. arXiv:1707.08145, doi:10.1140/epjp/i2018-11973-4.

[127] L. Roszkowski, E. M. Sessolo, A. J. Williams, What next for the CMSSM and the NUHM: Improved prospects for superpartner and dark matter detection, JHEP 08 (2014) 067. arXiv:1405.4289, doi:10.1007/JHEP08(2014)067.

[128] J. M. Gaskins, A review of indirect searches for particle dark matter, Contemp. Phys. 57 (4) (2016) 496–525. arXiv:1604.00014, doi:10.1080/00107514.2016.1175160.

[129] J. F. Navarro, C. S. Frenk, S. D. M. White, The Structure of cold dark matter halos, Astrophys. J. 462 (1996) 563–575. arXiv:astro-ph/9508025, doi:10.1086/177173.

[130] J. F. Navarro, C. S. Frenk, S. D. M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493–508. arXiv:astro-ph/9611107, doi:10. 1086/304888.

[131] M. Fornasa, A. M. Green, Self-consistent phase-space distribution function for the anisotropic dark matter halo of the Milky Way, Phys. Rev. D89 (6) (2014) 063531. arXiv:1311.5477, doi:10.1103/PhysRevD.89.063531.

[132] A. Genina, A. Ben´ıtez-Llambay, C. S. Frenk, S. Cole, A. Fattahi, J. F. Navarro, K. A. Oman, T. Sawala, T. Theuns, The core ‒ cusp problem: a matter of perspective, Monthly Notices of the Royal Astronomical Society 474 (1) (2017) 1398 ‒ 1411. doi: 10.1093/mnras/stx2855. URL http://dx.doi.org/10.1093/mnras/stx2855

[133] J. Einasto, On the Construction of a Composite Model for the Galaxy and on the Determination of the System of Galactic Parameters, Trudy Astrofizicheskogo Instituta Alma-Ata 5 (1965) 87–100.

[134] A. W. Graham, D. Merritt, B. Moore, J. Diemand, B. Terzic, Empirical models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models, Astron. J. 132 (2006) 2685–2700. arXiv:astro-ph/0509417, doi:10.1086/508988.

[135] A. Burkert, The Structure of dark matter halos in dwarf galaxies, IAU Symp. 171 (1996) 175, [Astrophys. J.447,L25(1995)]. arXiv:astro-ph/9504041, doi:10.1086/309560.

[136] A. Geringer-Sameth, S. M. Koushiappas, M. Walker, Dwarf galaxy annihilation and decay emission profiles for dark matter experiments, Astrophys. J. 801 (2) (2015) 74. arXiv:1408.0002, doi:10.1088/0004-637X/801/2/74.

[137] M. A. S¥ ’anchez-Conde, M. Cannoni, F. Zandanel, M. E. G¥ ’omez, F. Prada, Dark matter searches with cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?, Journal of Cosmology and Astroparticle Physics 2011 (12) (2011) 011–011. doi:10.1088/1475-7516/2011/12/011. URL https://doi.org/10.1088%2F1475-7516%2F2011%2F12%2F011

[138] E. E. Salpeter, H. A. Bethe A Relativistic equation for bound state problems, Phys. Rev. 84 (1951) 1232–1242. doi:10.1103/PhysRev.84.1232.

[139] M. J. Strassler, M. E. Peskin, The Heavy top quark threshold: QCD and the Higgs, Phys. Rev. D43 (1991) 1500–1514. doi:10.1103/PhysRevD.43.1500.

[140] L. D. Landau, L. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, Third Edition: Volume 3, 3rd Edition, Butterworth-Heinemann, 1981. URL http://www.worldcat.org/isbn/0750635398

[141] W. B. Atwood, A. A. Abdo, M. Ackermann, W. Althouse, B. Anderson, M. Axelsson, L. Baldini, J. Ballet, D. L. Band, G. Barbiellini, et al., The large area telescope on thefermi gamma-ray space telescopemission, The Astrophysical Journal 697 (2) (2009) 1071 ‒ 1102. doi:10.1088/0004-637x/697/2/1071. URL http://dx.doi.org/10.1088/0004-637X/697/2/1071

[142] A. Galper, O. Adriani, R. Aptekar, I. Arkhangelskaja, A. Arkhangelskiy, M. Boezio, V. Bonvicini, K. Boyarchuk, Y. Gusakov, M. Farber, M. Fradkin, V. Kachanov, V. Kaplin, M. Kheymits, A. Leonov, F. Longo, P. Maestro, P. Marrocchesi, E. Mazets, E. Mocchiutti, A. Moiseev, N. Mori, I. Moskalenko, P. Naumov, P. Papini, P. Pi- cozza, V. Rodin, M. Runtso, R. Sparvoli, P. Spillantini, S. Suchkov, M. Tavani, N. Topchiev, A. Vacchi, E. Vannuccini, Y. Yurkin, N. Zampa, V. Zverev, Status of the gamma-400 project, Advances in Space Research 51 (2) (2013) 297 – 300, the Origins of Cosmic Rays: Resolving Hess’s Century-Old Puzzle. doi:https://doi.org/10.1016/j.asr.2012.01.019. URL http://www.sciencedirect.com/science/article/pii/S0273117712000762

[143] J. Carr, et al., Prospects for Indirect Dark Matter Searches with the Cherenkov Tele- scope Array (CTA), PoS ICRC2015 (2016) 1203, [34,1203(2015)]. arXiv:1508.06128, doi:10.22323/1.236.1203.

[144] M. Benedikt, M. Capeans Garrido, F. Cerutti, B. Goddard, J. Gutleber, J. M. Jimenez, M. Mangano, V. Mertens, J. A. Osborne, T. Otto, J. Poole, W. Riegler, D. Schulte, L. J. Tavian, D. Tommasini, F. Zimmermann, Future Circular Collider, Tech. Rep. CERN-ACC-2018-0058, CERN, Geneva, submitted for publication to Eur. Phys. J. ST. (Dec 2018). URL https://cds.cern.ch/record/2651300

[145] D. Binosi, J. Collins, C. Kaufhold, L. Theussl, Jaxodraw: A graphical user interface for drawing feynman diagrams. version 2.0 release notes, Computer Physics Commu- nications 180 (9) (2009) 1709 – 1715. doi:https://doi.org/10.1016/j.cpc.2009.02.020. URL http://www.sciencedirect.com/science/article/pii/S0010465509000757

[146] J. Vermaseren, Axodraw, Computer Physics Communications 83 (1) (1994) 45 – 58. doi:https://doi.org/10.1016/0010-4655(94)90034-5. URL http://www.sciencedirect.com/science/article/pii/0010465594900345

[147] J. Gao, L. Harland-Lang, J. Rojo, The Structure of the Proton in the LHC Precision Era, Phys. Rept. 742 (2018) 1–121. arXiv:1709.04922, doi:10.1016/j.physrep. 2018.03.002.

[148] K. Kovaˇr´ık, P. M. Nadolsky, D. E. Soper, Hadron structure in high-energy collisions (2019). arXiv:1905.06957.

[149] V. N. Gribov, L. N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438–450, [Yad. Fiz.15,781(1972)].

[150] L. N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975) 94–102, [Yad. Fiz.20,181(1974)].

[151] G. Altarelli, G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B126 (1977) 298–318. doi:10.1016/0550-3213(77)90384-4.

[152] Y. L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641–653, [Zh. Eksp. Teor. Fiz.73,1216(1977)].

[153] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128. arXiv:1106.0522, doi:10.1007/JHEP06(2011)128.

[154] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next- to-leading order differential cross sections, and their matching to parton shower simu- lations, JHEP 07 (2014) 079. arXiv:1405.0301, doi:10.1007/JHEP07(2014)079.

[155] T. Sj¨ostrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159–177. arXiv:1410.3012, doi:10.1016/j.cpc.2015. 01.024.

[156] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaˆıtre, A. Mertens, M. Sel- vaggi, DELPHES 3, A modular framework for fast simulation of a generic collider ex- periment, JHEP 02 (2014) 057. arXiv:1307.6346, doi:10.1007/JHEP02(2014)057.

[157] M. L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013. arXiv:hep-ph/0611129, doi:10.1088/1126-6708/2007/01/013.

[158] R. D. Ball, V. Bertone, S. Carrazza, L. Del Debbio, S. Forte, A. Guffanti, N. P. Hartland, J. Rojo, Parton distributions with QED corrections, Nucl. Phys. B877 (2013) 290–320. arXiv:1308.0598, doi:10.1016/j.nuclphysb.2013.10.010.

[159] S. Asai, S. Chigusa, T. Kaji, T. Moroi, M. Saito, R. Sawada, J. Tanaka, K. Terashi, K. Uno, Studying gaugino masses in supersymmetric model at future 100 TeV pp collider, JHEP 05 (2019) 179. arXiv:1901.10389, doi:10.1007/JHEP05(2019)179.

[160] C. H. Chen, M. Drees, J. F. Gunion, Searching for invisible and almost invisible parti- cles at e+ e- colliders, Phys. Rev. Lett. 76 (1996) 2002–2005. arXiv:hep-ph/9512230, doi:10.1103/PhysRevLett.76.2002.

[161] S. D. Thomas, J. D. Wells, Phenomenology of Massive Vectorlike Doublet Lep- tons, Phys. Rev. Lett. 81 (1998) 34–37. arXiv:hep-ph/9804359, doi:10.1103/ PhysRevLett.81.34.

[162] M. Capeans, G. Darbo, K. Einsweiller, M. Elsing, T. Flick, M. Garcia-Sciveres, C. Gemme, H. Pernegger, O. Rohne, R. Vuillermet, ATLAS Insertable B-Layer Tech- nical Design Report, Tech. Rep. CERN-LHCC-2010-013. ATLAS-TDR-19 (Sep 2010). URL https://cds.cern.ch/record/1291633

[163] ATLAS Insertable B-Layer Technical Design Report Addendum, Tech. Rep. CERN- LHCC-2012-009. ATLAS-TDR-19-ADD-1, addendum to CERN-LHCC-2010-013, ATLAS-TDR-019 (May 2012). URL https://cds.cern.ch/record/1451888

[164] B. Abbott, et al., Production and Integration of the ATLAS Insertable B-Layer, JINST 13 (05) (2018) T05008. arXiv:1803.00844, doi:10.1088/1748-0221/13/05/T05008.

[165] M. Saito, R. Sawada, K. Terashi, S. Asai, Discovery reach for wino and higgsino dark matter with a disappearing track signature at a 100 TeV pp collider, Eur. Phys. J. C79 (6) (2019) 469. arXiv:1901.02987, doi:10.1140/epjc/s10052-019-6974-2.

[166] J. M. Lindert, et al., Precise predictions for V + jets dark matter backgrounds, Eur. Phys. J. C77 (12) (2017) 829. arXiv:1705.04664, doi:10.1140/epjc/ s10052-017-5389-1.

[167] M. Aaboud, et al., Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP 01 (2018) 126. arXiv:1711.03301, doi:10.1007/JHEP01(2018)126.

[168] M. Aaboud, et al., Search for a new heavy gauge boson resonance decaying into a lepton and missing transverse momentum in 36 fb−1 of pp collisions at √s = 13 TeV with the ATLAS experiment, Eur. Phys. J. C78 (5) (2018) 401. arXiv:1706.04786, doi:10.1140/epjc/s10052-018-5877-y.

[169] A. M. Sirunyan, et al., Search for high-mass resonances in final states with a lepton and missing transverse momentum at √s = 13 TeV, JHEP 06 (2018) 128. arXiv: 1803.11133, doi:10.1007/JHEP06(2018)128.

[170] T. Aaltonen, et al., Search for new particles decaying into dijets in proton-antiproton collisions at s**(1/2) = 1.96-TeV, Phys. Rev. D79 (2009) 112002. arXiv:0812.4036, doi:10.1103/PhysRevD.79.112002.

[171] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood- based tests of new physics, Eur. Phys. J. C71 (2011) 1554, [Erratum: Eur. Phys. J.C73,2501(2013)]. arXiv:1007.1727, doi:10.1140/epjc/s10052-011-1554-0,10. 1140/epjc/s10052-013-2501-z.

[172] A. Buckley, J. Ferrando, S. Lloyd, K. Nordstr¨om, B. Page, M. Ru¨fenacht, M. Sch¨onherr, G. Watt, LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C75 (2015) 132. arXiv:1412.7420, doi:10.1140/epjc/s10052-015-3318-8.

[173] J. Wess, J. A. Bagger, Supersymmetry and supergravity; 2nd ed., Princeton Series in Physics, Princeton Univ. Press, Princeton, NJ, 1992. URL https://cds.cern.ch/record/320631

[174] R. Haag, J. T. Lopuszanski, M. Sohnius, All Possible Generators of Supersymmetries of the s Matrix, Nucl. Phys. B88 (1975) 257, [,257(1974)]. doi:10.1016/0550-3213(75) 90279-5.

[175] S. R. Coleman, J. Mandula, All Possible Symmetries of the S Matrix, Phys. Rev. 159 (1967) 1251–1256. doi:10.1103/PhysRev.159.1251.

[176] A. Salam, J. A. Strathdee, On Kaluza-Klein Theory, Annals Phys. 141 (1982) 316–352. doi:10.1016/0003-4916(82)90291-3.

[177] S. Ferrara, J. Wess, B. Zumino, Supergauge Multiplets and Superfields, Phys. Lett. 51B (1974) 239. doi:10.1016/0370-2693(74)90283-4.

[178] J. Wess, B. Zumino, Supergauge Invariant Extension of Quantum Electrodynamics, Nucl. Phys. B78 (1974) 1. doi:10.1016/0550-3213(74)90112-6.

[179] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250–2300. arXiv:1310.1921, doi:10.1016/j.cpc.2014.04.012.

[180] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, B. Fuks, FeynRules model database. URL https://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage

[181] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201–1214. arXiv: 1108.2040, doi:10.1016/j.cpc.2012.01.022.

[182] S. Iwamoto, FeynLecture: Tools for BSM Physics. URL https://www.misho-web.com/phys/feynlecture.html

[183] F. James, MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1 (1994).

[184] C. S. Bos, A comparison of marginal likelihood computation methods, in: W. H ¥ ”ardle, B. R¥ ”onz (Eds.), Compstat, Physica-Verlag HD, Heidelberg, 2002, pp. 111–116.

[185] S. S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1) (1938) 60–62. doi:10.1214/aoms/1177732360. URL https://doi.org/10.1214/aoms/1177732360

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る