リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「RAPD Analysis of Genotoxic Effects of Nano–Scale SiO_2 and TiO_2 on Broad Bean (Vicia Faba L.)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

RAPD Analysis of Genotoxic Effects of Nano–Scale SiO_2 and TiO_2 on Broad Bean (Vicia Faba L.)

GALAL, A. Ola THABET, F. Ahmad TUDA, Midori 津田, みどり ツダ, ミドリ El–SAMAHY, F.M. Magdy 九州大学

2020.02

概要

Growing use of oxide nanoparticles has driven their access to the natural environment, including bio- logical interactions within the ecosystem, despite a lack of knowledge about their genotoxic potential on exposed plant tissue. In this study, seeds of broad beans (Vicia faba L.), one of the major carbohydrate food sources as well as an ecotoxicological model plant, were treated with three concentrations (25, 50 and 75 mg/L) of two different types of nanoscale materials (n–), n–SiO2 and n–TiO2, to assess their safe use. Seeds were soaked in n–SiO2 and n–TiO2 each for 24 h, then germinated in peat moss for two weeks. DNA was isolated from leaves for RAPD (Random Amplified Polymorphic DNA) profile analyses. Results revealed a concentration dependent genotoxic effect for n–SiO2 (however it seems to maintain genetic material stability) and high genotoxic effect for n–TiO2.

この論文で使われている画像

参考文献

Aboulila, A. A. and O. A. Galal 2019 Evaluation of silica nanopar- ticles (SiO2NP) and somaclonal variation effects on genome template stability in rice using RAPD and SSR markers. Egypt. J. Genet. Cytol., 48: 1–16

Aboulila, A. A., O. A. Galal and M. I. Abo–Youssef 2019 Molecular characterization of drought tolerance in nine Egyptian rice gen- otypes using RAPD, SCOT and SSR markers. Egypt. J. Genet. Cytol., 48: 17–37

Almutairi, Z.M. 2016 Effect of nano–silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. POJ 9: 106–114

Asgari, F., A. Majd, P. Jonoubi and F. Najafi 2018 Effects of sili- con nanoparticles on molecular, chemical, structural and ultras- tructural characteristics of oat (Avena sativa L.). Plant Physiol. Bioch., 127: 152–160

Atienzar, F. A. and A. N. Jha 2006 The random amplified poly- morphic DNA (RAPD assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat. Res., 613: 76–102

Atienzar, F. A., B. Cordi, M. B. Donkin, A. J. Evenden, A. N. Jha and M. H. Depledge 2000 Comparison of ultraviolet–induced geno- toxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macro algae Palmaria palmata. Aquat. Toxicol., 50: 1–12

Castiglione, M. R., L. Giorgetti, L. Bellani, S. Muccifora, S. Bottega and C. Spano 2016 Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba. L. Environ. Exp. Bot., 130: 11–21

Cenkci, S., M. Yildiz, I. Cigerci, M. Konuk and A. Bozdag 2009 Toxic chemical induced genotoxicity detected by random ampli- fied polymorphic DNA (RAPD) in bean (Phaseolus vulgaris) seedlings. Chemosphere, 76: 900–906

Cenkci, S., I. H. Cigerci, M. Yildiz, C. Ozay, A. Bozdag and H. Terzi 2010 Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ. Exp. Bot., 67: 467–473

Droge, W. 2002 Free radicals in the physiological control of cell function. Physiol. Rev., 82: 47–95

Elespuru, R., S. Pfuhler, M. J. Aardema, T. Chen, S. H. Doak, A. Doherty, C. S. Farabaugh, J. Kenny, M. Manjanatha, B. Mahadevan, M. M. Moore, G. Ouedraogo, L. F. Stankowski and J. Y. Tanira 2018 Genotoxicity assessment of nanomaterials: recommendations on best practices, assays, and methods. Toxcol. Sci., 164: 391–416

Elsadany, M. F. I., A. A. Aboulila, T. M. Abo–Sein and R. I. E. Magouz 2015 Effect of silica nano–particles in control of mite, Tetranychus cucurbitacearum (Sayed) and agronomic traits of soybean plants and qualitative assessment of its genotoxicity using total protein and RAPD analysis. J. Agric. Chem. Biotechn. Mansoura Univ., 6: 529–544

Galal, O. A. and M. F. M. El–Samahy 2012 Genetical effects of using silica nanoparticles as biopesticide on Drosophila mela- nogaster. Egypt. J. Genet. Cytol., 41: 87–106

Galal, O. A. and A. F. Thabet 2018 Cytological and molecular effects of silver nanoparticles (AgNPs) on Vicia faba M1 plants. J. Agric. Chem. Biotechn. Mansoura Univ., 9: 269–275

Gao, Y., P. Zhou, M. Liang, E. Z. Yue and J. S. Wan 2010 Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure: modi- fied ecological dose response model and PCR–RAPD. Environ. Earth Sci., 60: 603–6012

Ghosh, M., M. Bandyopadhyay and A. Mukherjee 2010 Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere, 81: 1253–1262

Golbamaki, N., B. Rasulev, A. Cassano, R. L. M. Robinson, E. Benfenati, J. Leszczynski and M. T. D. Cronin 2015 Genotoxicity of metal oxide nanomaterials: Review of recent data and discussion of possible mechanisms. Nanoscale, 7: 2154–2198

Hatami, M., M. Ghorbanpour and H. Salehiarjomand 2014 Nanoanatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. J. Biol. Environ. Sci., 8: 53–59

Khan, Z. and M. Y. K. Ansari 2018 Impact of engineered Si nano- particles on seed germination, vigour index and genotoxicity assessment via DNA damage of root tip cells in Lens culinaris. J. Plant Biochem. Physiol., 6: 5243–5246

Koce, J. D. 2017 Effects of exposure to nano and bulk sized TiO2 and CuO in Lemna minor. Plant Physiol. Bioch., 119: 43e49

Kumari, M., A. Mukherjee and N. Chandrasekaran 2009 Genotoxicity of silver nanoparticles in Allium cepa. Sci. Total Environ., 407: 5243–5246

Landa, P., R. Vankova, J. Andrlova, J. Hodek, P. Marsik, H. Storchova, J. C. White and T. Vanek 2012 Nanoparticle–spe- cific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J. Hazard. Mater., 241–242: 55– 62

Laware, S. L. and S. Raskar 2014 Effect of titanium dioxide nano- particles on hydrolytic and antioxidant enzymes during seed germination in onion. Int. J. Curr. Microbiol. App. Sci., 3: 749–760

Liu, W., P. J. Li, X. M. Qi, Q. X. Zhou, L. Zheng, T. H. Sun and Y. S. Yang 2005 DNA changes in barely (Hordeum vulgare) seed- lings induced by cadmium pollution using RAPD. Chemosphere, 61: 158–167

López–Moreno, M. L., G. de la Rosa, J. A. Hernández–Viezcas, H. Castillo–Michel, C. E. Botez, J. R. Peralta–Videa and J. L. Gardea–Torresdey 2010 Evidence of the differential biotrans- formation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ. Sci. Technol., 44: 7315–7320

Luceri, C., C. Filippo, G. Caderni, L. Gambacciani, M. Salvadori, A. Giannini and P. Dolara 2000 Detection of somatic DNA altera- tions in azoxymethane–induced F344 rat colon tumors by ran- dom amplified polymorphic DNA analysis. Carcinogenesis, 21: 1753–1756

Mehrian, S. K. and D. R. Lima 2016 Nanoparticles cyto and geno- toxicity in plants: mechanisms and abnormalities. Environ. Nanotech. Monit. Manag., 6: 184–193

Moreno–Olivas, F., V. U. Gant Jr, K. L. Johnson, J. R. Peralta–Videa and J. L. Gardea–Torresdey 2014 Random amplified polymor- phic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo. J. Zhejiang Univ.–Sci. A (Appl. Phys. Eng.), 15: 618–623

Mutlu, F., F. Yurekli, B. Mutlu, F. B. Emre, F. Okusluk and O. Ozgl 2018 Assessment of phytotoxic and genotoxic effects of anatase TiO2 nanoparticles on maize cultivar by using RAPD analysis. Fresen. Environ. Bull., 27: 436–445

Petkovic´, J., B. Zegura, M. Stevanovic´, N. Drnovšek, D. Uskokovic´, S. Novak and M. Filipicˇ 2011 DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology, 5: 341–353

Qari, S. H. M. 2010 DNA–RAPD fingerprinting and cytogenetic screening of genotoxic and antigenotoxic effects of aqueous extracts of Costus speciosus (Koen.). JKAU: Sci., 22: 133–152

Roldan–Ruiz, I. J. D., E. Van Bockstaele, A. Depicker and M. De Loose 2000 AFLP markers reveal high polymorphic rates in Ryegrasses (Lolium spp.). Mol. Breed., 6: 125–134

Savva, D. 2000 The use of arbitrarily primed PCR (AP–PCR) fin- gerprinting to detect exposure to genotoxic chemicals. Ecotoxicology, 9: 341–353

Sharma, K. K., N. W. Zaidi, V. S. Pundhir and U. S. Singh 2010 Study of genetic diversity in rhizospheric Trichoderma isolates from Uttarakhand. Ann. Pl. Protec. Sci., 18: 403–410

Silva, S., H. Oliveira, S. C. Craveiro, A. J. Calado and C. Santos 2016 Pure anatase and rutile + anatase nanoparticles differ- ently affect wheat seedlings. Chemosphere, 151: 68–75

Singh, N., B. Manshian, G. J. S. Jenkins, S. M. Griffiths, P. M. Williams, T. G. G. Maffeis, C. J. Wright and S. H. Doak 2009 Nanogenotoxicology: The DNA damaging potential of engi- neered nanomaterials. Biomaterials, 30: 3891–914

Song, U., M. Shin, G. Lee, J. Roh, Y. Kim and E. J. Lee 2013 Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol. Trace. Elem. Res., 155: 93–103

Thabet, A. F. 2015 Efficiency and safety of silica nanoparticles in controlling the main insect pests on faba bean and soybean. M. Sc. thesis, Economic Entomology Department, Faculty of Agriculture, Kafrelsheikh Univ., Egypt, 100 pp.

Thabet, A. F., O. A. Galal, M. F. M. El–Samahy and M. Tuda 2019 Higher toxicity of nano–scale TiO2 and dose–dependent geno- toxicity of nano–scale SiO2 on the cytology and seedling devel- opment of broad bean Vicia faba. SN Appl. Sci., 1: 956

Tripathi, D. K., Shweta, S. Singh, S. Singh, R. Pandey, V. P. Singh, N. C. Sharma, S. M. Prasad, N. K. Dubey and D. K. Chauhan 2017 An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Bioch., 110: 2–12

Tumburu, L., C. Andersen, P. Rygiewicz and J. Reichman 2014 Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. Environ. Toxicol. Chem., 34: 70–83

Van Hoecke, K., K. A. De Schamphelaere, P. Van der Meeren, S. Lucas and C. R. Janssen 2008 Ecotoxicity of silica nanoparti- cles to the green alga Pseudokirchneriella subcapitata: impor- tance of surface area. Environ. Toxicol. Chem., 27: 1948–1957

Williams, K., A. Kubelik, K. Livak, J. Rafalski and V. Tingey 1990 DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531–6535

Xue, C., J. Wu, F. Lan, W. Liu, X. Yang, F. Zeng and H. Xu 2010 Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. J. Nanosci. Nanotech., 10: 8500–8507

Yang, Z., J. Chen, R. Dou, X. Gao, C. Mao and L. Wang 2015 Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int. J. Environ. Res. Public Health, 12: 15100–15109

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る