リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Problems of Thermalization in Closed and Open Quantum Many-Body Systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Problems of Thermalization in Closed and Open Quantum Many-Body Systems

濱崎, 立資 東京大学 DOI:10.15083/0002004704

2022.06.22

概要

The main theme of this Thesis is to study problems of thermalization in closed and open quantum many-body systems, which are deeply related to foundations of quantum statistical mechanics. We address how the approach to thermal equilibrium is justified from unitary dynamics of closed quantum systems, and how dynamics and other many- body properties are enriched by external dissipation in open quantum systems. These studies have attracted growing interests due to the recent development of controllable experiments of quantum many-body systems, such as cold atoms and ions.

We first discuss closed quantum systems. Quantum statistical mechanics has become an indispensable framework to understand macroscopic phenomena from the knowledge of quantum mechanics. Nevertheless, why the microcanonical ensemble correctly de- scribes the equilibrium state has not yet been justified. In particular, we ask how and when initially nonequilibrium quantum systems relax to states described by the micro- canonical ensemble only by unitary time evolution. This is the problem of thermalization in closed quantum systems.

This problem was first tacked by von Neumann [J. von Neumann, Zeit. Phys. 57, 30 (1929)]. His seminal ideas have been reformulated and developed over the last decade, motivated by experimental observations of thermalization dynamics in almost closed sys-tems. The first idea is about how a time-evolving quantum pure state |𝜓(𝑡)⟩ = 𝑒 ℏ |𝜓(0)⟩ after a long time can mimic a thermal equilibrium state given by the microcanonical en- semble, 𝜌ˆmic. While the two states are always distinct at the level of density matrices, they can be almost indistinguishable when viewed from physically relevant sets of ob-servables 𝒪ˆ (such as local, few-body, or macroscopic observables). In fact, thermalization requires ⟨𝜓(𝑡)|𝒪ˆ|𝜓(𝑡)⟩ ≃ Tr[𝜌ˆmic𝒪ˆ] for long time 𝑡 (except for rare recurrence times) in the thermodynamic limit.

The second idea is about the sufficient condition for the above thermalization, which is now known as the eigenstate thermalization hypothesis (ETH). The ETH dictates that expectation values of 𝒪𝛼𝛼 := ⟨𝐸𝛼 |𝒪ˆ|𝐸𝛼⟩ with respect to an energy eigenstate |𝐸𝛼⟩ of the Hamiltonian become almost constant over the microcanonical energy shell, i.e., Δ := max|𝐸𝛼⟩,|𝐸𝛽⟩∈microcanonical shell |𝒪𝛼𝛼 − 𝒪𝛽𝛽 | becomes negligibly small in the thermody- namic limit. While the ETH is still a conjecture, it is expected to hold true for generic nonintegrable quantum many-body systems, which exhibit random-matrix-type spectral statistics (e.g., level-spacing distributions) reflecting systems’ complexity. Note that the ETH and statistical mechanics do not hold for several systems, represented by many-body localization (MBL) caused by strong disorder.

The third idea is about why generic systems seem to satisfy the ETH. Von Neumann and his recent followers invoke the typicality argument to explain the ETH [P. Reimann, Phys. Rev. Lett. 115, 010403 (2015)]. This argument consists of two parts. First, we rewrite
𝒪𝛼𝛼 = ∑𝑖 𝑎𝑖 | ⟨𝐸𝛼 |𝑎𝑖⟩ |2, where we have diagonalized the observable as 𝒪ˆ = ∑𝑖 𝑎𝑖 |𝑎𝑖⟩ ⟨𝑎𝑖 |. We also introduce the unitary matrix 𝑈 that represents the basis transformation 𝑈𝛼𝑖 = ⟨𝐸𝛼 |𝑎𝑖⟩. Then, for almost all (i.e., typical) 𝑈’s that are chosen uniformly from the unitary Haar measure, Δ becomes exponentially small with increasing the system size. Second, one assumes that, for physically relevant Hamiltonian and observable, the corresponding 𝑈 (restricted to the microcanonoical energy shell) is typical, unless some special reasons exist, such as the MBL. If this assumption holds true, Δ becomes exponentially small, which leads to the ETH. Note that, while the first part is a mathematical fact, the second part is a conjecture.

As a first original result in this Thesis, we revisit the typicality argument and show that it does not hold true, i.e., 𝑈 is atypical, for physically relevant setups of few-body (or local) Hamiltonians and observables (see Chapter 3). To be precise, we show that Δ does not decrease exponentially with increasing the system size for few-body (local) Hamiltonians and most few-body (local) observables, when the width of the energy shell decreases at most polynomially. This work asserts that a different scenario that does not rely on the typicality argument should be required to justify the ETH.

From Chapter 4, we discuss open quantum systems, where the system exhibits non- unitary dynamics due to the coupling to external environments or ancillas. State-of-the- art technologies now enable us to manipulate such dissipation in experiments. In other words, we are at the stage of understanding nonequilibrium phenomena of open quantum many-body systems, which can be richer than those of closed systems.

One of the interesting setups for open quantum systems is continuously or repeat- edly measured quantum systems. Here, we keep measuring the stochastic outcomes due to dissipation (such as particle loss), from which we obtain a set of quantum trajecto- ries depending on the outcomes. Each of the trajectories consists of (i) non-Hermitian time-evolution and (ii) stochastic quantum jumps that suddenly change the state. If the quantum jumps are all traced out, the averaged dynamics is described by the Lindblad master equation in a certain limit. In turn, we can postselect some trajectories and dis- cuss their dynamics: for example, trajectories with null quantum jumps obey purely non-Hermitian dynamics.

As a second original result in this Thesis, we study how the non-Hermiticity in open systems affects for the physics of the MBL, which has been an important con- cept for thermalization in closed systems (see Chapter 5). We first consider an interacting model with disorder potential and asymmetric hopping that causes non-Hermiticity while keeping time-reversal symmetry (TRS). While non-interacting disordered particles with asymmetric-hopping have been well known as one of the prototypical models with non- Hermiticity [N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996)], the interaction considered here forces us to study many-body properties of the model. Consequently, we find a novel real-complex phase transition of many-body energy eigenvalues associated with the TRS: almost all eigenvalues become complex (real) below (above) the critical disorder. The real-complex transition alters the stability of thermalization dynamics in this open system. We also argue that the real-complex transition occurs upon the MBL extended to non-Hermitian systems. We demonstrate that the non-Hermitian MBL can be characterized by the level-spacing distributions on the complex plane, which changes from the non-Hermitian random-matrix (Ginibre) statistics to the Poisson statistics with increasing disorder. The non-Hermitian MBL can also be characterized by the eigenstates that obey the area law of entanglement, as in the Hermitian MBL. We also consider the non-Hermitian interacting disordered model with gain and loss, which breaks the TRS. Due to the absence of the TRS, this model does not exhibit the real-complex transition while the non-Hermitian MBL still persists.

As mentioned above, certain properties of many-body systems, such as delocalization and nonintegrability, are characterized by the level-spacing distributions of random ma- trices. This is a demonstration of the universality: some spectral statistics are described by those of the Gaussian random matrices irrespective of the detail of the matrix elements. In Hermitian matrices, such universal statistics are classified by the TRS: three distinct universal level-spacing distributions appear according to three different symmetry classes A (with no TRS), AI (with TRS whose square equals to +1), and AII (with TRS whose square equals to −1) introduced by Dyson.

On the other hand, the situation is different for non-Hermitian random matrices with TRS. Indeed, matrices in non-Hermitian classes A, AI, and AII introduced by Ginibre lead to only a single universality class in stark contrast with the Hermitian case.

As a third original result in this Thesis, we solve this problem by considering different symmetry classes called classes AI† and AII† involving transposition symmetry, which is distinct from TRS (see Chapter 6). For example, real matrices (𝐻 = 𝐻∗) in class A are distinct from the symmetric matrices (𝐻 = 𝐻𝑇) in the non-Hermitian case. We numerically demonstrate that three distinct universal level-spacing distributions appear for classes A, AI†, and AII† as in the Hermitian case, since transposition symmetry can alter interactions between nearby eigenvalues. We argue that only the three universality classes of level-spacing distributions exist among 38 types of non-Hermitian symmetry classes [K. Kawabata et al., Phys. Rev. X 9, 041015 (2019)], since symmetries other than transposition cannot alter the interactions between close eigenvalues. Finally, we show that our newly found universality classes appear in open quantum many-body systems described by a Lindblad master equation and a non-Hermitian Hamiltonian. This suggests that our work serves as a basis for characterizing nonintegrability and chaos in open quantum many-body systems.

この論文で使われている画像

参考文献

[1] Lev Davidovich Landau and EM Lifshitz. Statistical physics, part i, 1980.

[2] J v Neumann. Beweis des Ergodensatzes und des H-Theorems in der Neuen Mechanik. Zeitschrift für Physik, 57(1-2):30–70, 1929.

[3] Sheldon Goldstein, Joel L Lebowitz, Roderich Tumulka, and Nino Zanghi. Long-time behavior of macroscopic quantum systems. The European Physical Journal H, 35(2):173–200, 2010.

[4] M Fierz. Ergodensatz in der Quantenmechanik. Helvetica Phys. Acta, 28:705– 715, 1955.

[5] IE Farquhar and PT Landsberg. On the quantum-statistical ergodic and H-theorems. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 239, pages 134–144. The Royal Society, 1957.

[6] P Bocchieri and A Loinger. Ergodic theorem in quantum mechanics. Phys. Rev., 111(3):668, 1958.

[7] Sandu Popescu, Anthony J Short, and Andreas Winter. Entanglement and the foundations of statistical mechanics. Nature Physics, 2(11):754–758, 2006.

[8] Sheldon Goldstein, Joel L. Lebowitz, Roderich Tumulka, and Nino Zanghì. Canonical typicality. Phys. Rev. Lett., 96:050403, Feb 2006.

[9] Sheldon Goldstein, David A. Huse, Joel L. Lebowitz, and Roderich Tumulka. Thermal equilibrium of a macroscopic quantum system in a pure state. Phys. Rev. Lett., 115:100402, Sep 2015.

[10] Sheldon Goldstein, David A Huse, Joel L Lebowitz, and Roderich Tumulka. Macroscopic and microscopic thermal equilibrium. Annalen der Physik, 2017.

[11] Sheldon Goldstein, Joel L. Lebowitz, Christian Mastrodonato, Roderich Tu- mulka, and Nino Zanghi. Approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E, 81:011109, Jan 2010.

[12] Hal Tasaki. Typicality of thermal equilibrium and thermalization in isolated macroscopic quantum systems. Journal of Statistical Physics, 163(5):937–997, 2016.

[13] Ayumu Sugita. On the basis of quantum statistical mechanics. arXiv preprint cond-mat/0602625, 2006.

[14] Asher Peres. Ergodicity and mixing in quantum theory. I. Phys. Rev. A, 30:504–508, Jul 1984.

[15] R. V. Jensen and R. Shankar. Statistical behavior in deterministic quantum systems with few degrees of freedom. Phys. Rev. Lett., 54:1879–1882, Apr 1985.

[16] Mark Srednicki. Chaos and quantum thermalization. Phys. Rev. E, 50:888– 901, Aug 1994.

[17] J. M. Deutsch. Quantum statistical mechanics in a closed system. Phys. Rev. A, 43:2046–2049, Feb 1991.

[18] Marcos Rigol, Vanja Dunjko, and Maxim Olshanii. Thermalization and its mechanism for generic isolated quantum systems. Nature, 452(7189):854– 858, 2008.

[19] Marcos Rigol. Quantum quenches and thermalization in one-dimensional fermionic systems. Phys. Rev. A, 80:053607, Nov 2009.

[20] Giulio Biroli, Corinna Kollath, and Andreas M. Läuchli. Effect of rare fluctuations on the thermalization of isolated quantum systems. Phys. Rev. Lett., 105:250401, Dec 2010.

[21] S. Genway, A. F. Ho, and D. K. K. Lee. Thermalization of local observables in small Hubbard lattices. Phys. Rev. A, 86:023609, Aug 2012.

[22] Ehsan Khatami, Guido Pupillo, Mark Srednicki, and Marcos Rigol. Fluctuation-dissipation theorem in an isolated system of quantum dipo- lar Bosons after a quench. Phys. Rev. Lett., 111:050403, Jul 2013.

[23] R. Steinigeweg, J. Herbrych, and P. Prelovšek. Eigenstate thermalization within isolated spin-chain systems. Phys. Rev. E, 87:012118, Jan 2013.

[24] W. Beugeling, R. Moessner, and Masudul Haque. Finite-size scaling of eigenstate thermalization. Phys. Rev. E, 89:042112, Apr 2014.

[25] Hyungwon Kim, Tatsuhiko N. Ikeda, and David A. Huse. Testing whether all eigenstates obey the eigenstate thermalization hypothesis. Phys. Rev. E, 90:052105, Nov 2014.

[26] Wouter Beugeling, Roderich Moessner, and Masudul Haque. Off-diagonal matrix elements of local operators in many-body quantum systems. Phys. Rev. E, 91:012144, Jan 2015.

[27] David J. Luitz and Yevgeny Bar Lev. Anomalous thermalization in ergodic systems. Phys. Rev. Lett., 117:170404, Oct 2016.

[28] Ivan M. Khaymovich, Masudul Haque, and Paul A. McClarty. Eigenstate thermalization, random matrix theory, and behemoths. Phys. Rev. Lett., 122:070601, Feb 2019.

[29] Ryusuke Hamazaki and Masahito Ueda. Random-matrix behavior of quan- tum nonintegrable many-body systems with Dyson’s three symmetries. Phys. Rev. E, 99:042116, Apr 2019.

[30] Peter Reimann. Generalization of von Neumann’s approach to thermaliza- tion. Phys. Rev. Lett., 115:010403, Jul 2015.

[31] Ryusuke Hamazaki and Masahito Ueda. Atypicality of most few-body observables. Phys. Rev. Lett., 120:080603, Feb 2018.

[32] Heinz-Peter Breuer, Francesco Petruccione, et al. The theory of open quantum systems. Oxford University Press on Demand, 2002.

[33] J. C. Bergquist, Randall G. Hulet, Wayne M. Itano, and D. J. Wineland. Observation of quantum jumps in a single atom. Phys. Rev. Lett., 57:1699– 1702, Oct 1986.

[34] Warren Nagourney, Jon Sandberg, and Hans Dehmelt. Shelved optical electron amplifier: Observation of quantum jumps. Phys. Rev. Lett., 56:2797– 2799, Jun 1986.

[35] Th. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek. Observation of quan- tum jumps. Phys. Rev. Lett., 57:1696–1698, Oct 1986.

[36] Sebastien Gleyzes, Stefan Kuhr, Christine Guerlin, Julien Bernu, Samuel Deleglise, Ulrich Busk Hoff, Michel Brune, Jean-Michel Raimond, and Serge Haroche. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature, 446(7133):297, 2007.

[37] ZK Minev, SO Mundhada, Shyam Shankar, Philip Reinhold, Ricardo Gutiérrez-Jáuregui, RJ Schoelkopf, Mazyar Mirrahimi, HJ Carmichael, and MH Devoret. To catch and reverse a quantum jump mid-flight. Nature, page 1, 2019.

[38] Carl M. Bender and Stefan Boettcher. Real spectra in non-Hermitian Hamil- tonians having PT symmetry. Phys. Rev. Lett., 80:5243–5246, Jun 1998.

[39] Ramy El-Ganainy, Konstantinos G Makris, Mercedeh Khajavikhan, Ziad H Musslimani, Stefan Rotter, and Demetrios N Christodoulides. Non- Hermitian physics and PT symmetry. Nature Physics, 14(1):11, 2018.

[40] Richard P Feynman. Simulating physics with computers. International jour- nal of theoretical physics, 21(6):467–488, 1982.

[41] Iulia Buluta and Franco Nori. Quantum simulators. Science, 326(5949):108– 111, 2009.

[42] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86:153–185, Mar 2014.

[43] Soonwon Choi, Joonhee Choi, Renate Landig, Georg Kucsko, Hengyun Zhou, Junichi Isoya, Fedor Jelezko, Shinobu Onoda, Hitoshi Sumiya, Vedika Khemani, et al. Observation of discrete time-crystalline order in a disor- dered dipolar many-body system. Nature, 543(7644):221, 2017.

[44] J Zhang, PW Hess, A Kyprianidis, P Becker, A Lee, J Smith, G Pagano, I-D Potirniche, Andrew C Potter, A Vishwanath, et al. Observation of a discrete time crystal. Nature, 543(7644):217, 2017.

[45] Stefan Trotzky, Yu-Ao Chen, Andreas Flesch, Ian P McCulloch, Ulrich Schollwöck, Jens Eisert, and Immanuel Bloch. Probing the relaxation to- wards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nature Physics, 8(4):325–330, 2012.

[46] Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko, Philipp M. Preiss, and Markus Greiner. Quantum thermaliza- tion through entanglement in an isolated many-body system. Science, 353(6301):794–800, 2016.

[47] Govinda Clos, Diego Porras, Ulrich Warring, and Tobias Schaetz. Time- resolved observation of thermalization in an isolated quantum system. Phys. Rev. Lett., 117:170401, Oct 2016.

[48] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80:885–964, Jul 2008.

[49] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbene. Quantum simu- lations with ultracold quantum gases. Nature Physics, 8(4):267–276, 2012.

[50] Christian Gross and Immanuel Bloch. Quantum simulations with ultracold atoms in optical lattices. Science, 357(6355):995–1001, 2017.

[51] Immanuel Bloch. Ultracold quantum gases in optical lattices. Nature Physics, 1(1):23–30, 2005.

[52] Rainer Blatt and CF Roos. Quantum simulations with trapped ions. Nature Physics, 8(4):277–284, 2012.

[53] Philip Richerme, Zhe-Xuan Gong, Aaron Lee, Crystal Senko, Jacob Smith, Michael Foss-Feig, Spyridon Michalakis, Alexey V Gorshkov, and Christo- pher Monroe. Non-local propagation of correlations in quantum systems with long-range interactions. Nature, 511(7508):198–201, 2014.

[54] Rajibul Islam, Ruichao Ma, Philipp M Preiss, M Eric Tai, Alexander Lukin, Matthew Rispoli, and Markus Greiner. Measuring entanglement entropy in a quantum many-body system. Nature, 528(7580):77–83, 2015.

[55] A. Piñeiro Orioli, A. Signoles, H. Wildhagen, G. Günter, J. Berges, S. Whit- lock, and M. Weidemüller. Relaxation of an isolated dipolar-interacting Rydberg quantum spin system. Phys. Rev. Lett., 120:063601, Feb 2018.

[56] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z. Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, J. Mu- tus, P. J. J. OJMalley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. Polkovnikov, and J. M. Martinis. Ergodic dynamics and thermal- ization in an isolated quantum system. Nature Physics, 2016.

[57] Arijeet Pal and David A. Huse. Many-body localization phase transition. Phys. Rev. B, 82:174411, Nov 2010.

[58] Rahul Nandkishore and David A. Huse. Many-body localization and ther- malization in quantum statistical mechanics. Annual Review of Condensed Matter Physics, 6(1):15–38, 2015.

[59] Michael Schreiber, Sean S. Hodgman, Pranjal Bordia, Henrik P. Lüschen, Mark H. Fischer, Ronen Vosk, Ehud Altman, Ulrich Schneider, and Im- manuel Bloch. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science, 349(6250):842–845, 2015.

[60] Pranjal Bordia, Henrik P. Lüschen, Sean S. Hodgman, Michael Schreiber, Immanuel Bloch, and Ulrich Schneider. Coupling identical one-dimensional many-body localized systems. Phys. Rev. Lett., 116:140401, Apr 2016.

[61] Jae-yoon Choi, Sebastian Hild, Johannes Zeiher, Peter Schauß, Antonio Rubio-Abadal, Tarik Yefsah, Vedika Khemani, David A. Huse, Immanuel Bloch, and Christian Gross. Exploring the many-body localization transition in two dimensions. Science, 352(6293):1547–1552, 2016.

[62] Pranjal Bordia, Henrik Lüschen, Sebastian Scherg, Sarang Gopalakrishnan, Michael Knap, Ulrich Schneider, and Immanuel Bloch. Probing slow relax- ation and many-body localization in two-dimensional quasiperiodic sys- tems. Phys. Rev. X, 7:041047, Nov 2017.

[63] Pranjal Bordia, Henrik Lüschen, Ulrich Schneider, Michael Knap, and Im- manuel Bloch. Periodically driving a many-body localized quantum system. Nature Physics, 13(5):460, 2017.

[64] Alexander Lukin, Matthew Rispoli, Robert Schittko, M Eric Tai, Adam M Kaufman, Soonwon Choi, Vedika Khemani, Julian Léonard, and Markus Greiner. Probing entanglement in a many-body–localized system. Science, 364(6437):256–260, 2019.

[65] Jacob Smith, Aaron Lee, Philip Richerme, Brian Neyenhuis, Paul W Hess, Philipp Hauke, Markus Heyl, David A Huse, and Christopher Monroe. Many-body localization in a quantum simulator with programmable ran- dom disorder. Nature Physics, 12(10):907–911, 2016.

[66] Ken Xuan Wei, Chandrasekhar Ramanathan, and Paola Cappellaro. Ex- ploring localization in nuclear spin chains. Phys. Rev. Lett., 120:070501, Feb 2018.

[67] P Roushan, C Neill, J Tangpanitanon, VM Bastidas, A Megrant, R Barends, Y Chen, Z Chen, B Chiaro, A Dunsworth, et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science, 358(6367):1175–1179, 2017.

[68] Kai Xu, Jin-Jun Chen, Yu Zeng, Yu-Ran Zhang, Chao Song, Wuxin Liu, Qi- ujiang Guo, Pengfei Zhang, Da Xu, Hui Deng, Keqiang Huang, H. Wang, Xiaobo Zhu, Dongning Zheng, and Heng Fan. Emulating many-body lo- calization with a superconducting quantum processor. Phys. Rev. Lett., 120:050507, Feb 2018.

[69] Georg Kucsko, Soonwon Choi, Joonhee Choi, Peter C Maurer, Hitoshi Sumiya, Shinobu Onoda, Junich Isoya, Fedor Jelezko, Eugene Demler, Nor- man Y Yao, et al. Critical thermalization of a disordered dipolar spin system in diamond. arXiv preprint arXiv:1609.08216, 2016.

[70] Marcos Rigol. Breakdown of thermalization in finite one-dimensional sys- tems. Phys. Rev. Lett., 103:100403, Sep 2009.

[71] Toshiya Kinoshita, Trevor Wenger, and David S Weiss. A quantum Newton’s cradle. Nature, 440(7086):900–903, 2006.

[72] Michael Gring, Maximilian Kuhnert, Tim Langen, Takuya Kitagawa, Bern- hard Rauer, Matthias Schreitl, Igor Mazets, D Adu Smith, Eugene Demler, and Jörg Schmiedmayer. Relaxation and prethermalization in an isolated quantum system. Science, 337(6100):1318–1322, 2012.

[73] Tim Langen, Remi Geiger, Maximilian Kuhnert, Bernhard Rauer, and Joerg Schmiedmayer. Local emergence of thermal correlations in an isolated quantum many-body system. Nature Physics, 9(10):640–643, 2013.

[74] Tim Langen, Sebastian Erne, Remi Geiger, Bernhard Rauer, Thomas Schwei- gler, Maximilian Kuhnert, Wolfgang Rohringer, Igor E Mazets, Thomas Gasenzer, and Jörg Schmiedmayer. Experimental observation of a general- ized Gibbs ensemble. Science, 348(6231):207–211, 2015.

[75] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S Zibrov, Manuel Endres, Markus Greiner, et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551(7682):579, 2017.

[76] Christopher J Turner, Alexios A Michailidis, Dmitry A Abanin, Maksym Serbyn, and Z Papić. Weak ergodicity breaking from quantum many-body scars. Nature Physics, 14(7):745, 2018.

[77] B Neyenhuis, J Smith, AC Lee, J Zhang, P Richerme, PW Hess, Z-X Gong, AV Gorshkov, and C Monroe. Observation of prethermalization in long- range interacting spin chains. arXiv preprint arXiv:1608.00681, 2016.

[78] J. Berges, Sz. Borsányi, and C. Wetterich. Prethermalization. Phys. Rev. Lett., 93:142002, Sep 2004.

[79] Martin Eckstein, Marcus Kollar, and Philipp Werner. Thermalization after an interaction quench in the Hubbard model. Phys. Rev. Lett., 103:056403, Jul 2009.

[80] Marcus Kollar, F. Alexander Wolf, and Martin Eckstein. Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems. Phys. Rev. B, 84:054304, Aug 2011.

[81] Hyosub Kim, YeJe Park, Kyungtae Kim, H.-S. Sim, and Jaewook Ahn. De- tailed balance of thermalization dynamics in Rydberg-atom quantum sim- ulators. Phys. Rev. Lett., 120:180502, May 2018.

[82] Marc Cheneau, Peter Barmettler, Dario Poletti, Manuel Endres, Peter Schauß, Takeshi Fukuhara, Christian Gross, Immanuel Bloch, Corinna Kol- lath, and Stefan Kuhr. Light-cone-like spreading of correlations in a quan- tum many-body system. Nature, 481(7382):484–487, 2012.

[83] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature, 511(7508):202–205, 2014.

[84] Jiehang Zhang, Guido Pagano, Paul W Hess, Antonis Kyprianidis, Patrick Becker, Harvey Kaplan, Alexey V Gorshkov, Z-X Gong, and Christopher Monroe. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature, 551(7682):601, 2017.

[85] Thomas WB Kibble. Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General, 9(8):1387, 1976.

[86] Wojciech H Zurek. Cosmological experiments in superfluid helium? Nature, 317(6037):505, 1985.

[87] Giacomo Lamporesi, Simone Donadello, Simone Serafini, Franco Dalfovo, and Gabriele Ferrari. Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate. Nature Physics, 9(10):656, 2013.

[88] S Ulm, J Roßnagel, G Jacob, C Degünther, ST Dawkins, UG Poschinger, R Nigmatullin, A Retzker, MB Plenio, F Schmidt-Kaler, et al. Observation of the Kibble–Zurek scaling law for defect formation in ion crystals. Nature communications, 4:2290, 2013.

[89] Alexander Keesling, Ahmed Omran, Harry Levine, Hannes Bernien, Hannes Pichler, Soonwon Choi, Rhine Samajdar, Sylvain Schwartz, Pietro Silvi, Subir Sachdev, et al. Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature, 568(7751):207, 2019.

[90] Maximilian Prüfer, Philipp Kunkel, Helmut Strobel, Stefan Lannig, Daniel Linnemann, Christian-Marcel Schmied, Jürgen Berges, Thomas Gasenzer, and Markus K Oberthaler. Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature, 563(7730):217, 2018.

[91] Sebastian Erne, Robert Bücker, Thomas Gasenzer, Jürgen Berges, and Jörg Schmiedmayer. Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature, 563(7730):225, 2018.

[92] Ulrich Schneider, Lucia Hackermüller, Jens Philipp Ronzheimer, Sebas- tian Will, Simon Braun, Thorsten Best, Immanuel Bloch, Eugene Dem- ler, Stephan Mandt, David Rasch, et al. Fermionic transport and out-of- equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms. Nature Physics, 8(3):213–218, 2012.

[93] J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, I. P. McCulloch, F. Heidrich-Meisner, I. Bloch, and U. Schneider. Expansion dynamics of interacting Bosons in homogeneous lattices in one and two dimensions. Phys. Rev. Lett., 110:205301, May 2013.

[94] Jun Li, Ruihua Fan, Hengyan Wang, Bingtian Ye, Bei Zeng, Hui Zhai, Xinhua Peng, and Jiangfeng Du. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X, 7(3):031011, 2017.

[95] Martin Gärttner, Justin G Bohnet, Arghavan Safavi-Naini, Michael L Wall, John J Bollinger, and Ana Maria Rey. Measuring out-of-time-order corre- lations and multiple quantum spectra in a trapped-ion quantum magnet. Nature Physics, 2017.

[96] G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott. Controlling the dynamics of an open many-body quantum system with localized dissipation. Phys. Rev. Lett., 110:035302, Jan 2013.

[97] Ralf Labouvie, Bodhaditya Santra, Simon Heun, and Herwig Ott. Bistability in a driven-dissipative superfluid. Phys. Rev. Lett., 116:235302, Jun 2016.

[98] Samantha Lapp, Jackson Ang’ong’a, Fangzhao Alex An, and Bryce Gadway. Engineering tunable local loss in a synthetic lattice of momentum states. New Journal of Physics, 21(4):045006, apr 2019.

[99] Takafumi Tomita, Shuta Nakajima, Ippei Danshita, Yosuke Takasu, and Yoshiro Takahashi. Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose-Hubbard system. Science advances, 3(12):e1701513, 2017.

[100] Niels Syassen, Dominik M Bauer, Matthias Lettner, Thomas Volz, Daniel Dietze, Juan J Garcia-Ripoll, J Ignacio Cirac, Gerhard Rempe, and Stephan Dürr. Strong dissipation inhibits losses and induces correlations in cold molecular gases. Science, 320(5881):1329–1331, 2008.

[101] Bo Yan, Steven A Moses, Bryce Gadway, Jacob P Covey, Kaden RA Haz- zard, Ana Maria Rey, Deborah S Jin, and Jun Ye. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature, 501(7468):521, 2013.

[102] Ralf Labouvie, Bodhaditya Santra, Simon Heun, Sandro Wimberger, and Herwig Ott. Negative differential conductivity in an interacting quantum gas. Phys. Rev. Lett., 115:050601, Jul 2015.

[103] Y. S. Patil, S. Chakram, and M. Vengalattore. Measurement-induced local- ization of an ultracold lattice gas. Phys. Rev. Lett., 115:140402, Oct 2015.

[104] Henrik P. Lüschen, Pranjal Bordia, Sean S. Hodgman, Michael Schreiber, Saubhik Sarkar, Andrew J. Daley, Mark H. Fischer, Ehud Altman, Immanuel Bloch, and Ulrich Schneider. Signatures of many-body localization in a controlled open quantum system. Phys. Rev. X, 7:011034, Mar 2017.

[105] Manuel Endres, Hannes Bernien, Alexander Keesling, Harry Levine, Eric R Anschuetz, Alexandre Krajenbrink, Crystal Senko, Vladan Vuletic, Markus Greiner, and Mikhail D Lukin. Atom-by-atom assembly of defect-free one- dimensional cold atom arrays. Science, 354(6315):1024–1027, 2016.

[106] Daniel Barredo, Sylvain De Léséleuc, Vincent Lienhard, Thierry Lahaye, and Antoine Browaeys. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 354(6315):1021–1023, 2016.

[107] Daniel Barredo, Vincent Lienhard, Sylvain De Leseleuc, Thierry Lahaye, and Antoine Browaeys. Synthetic three-dimensional atomic structures as- sembled atom by atom. Nature, 561(7721):79, 2018.

[108] Julio T Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F Roos, Peter Zoller, and Rainer Blatt. An open-system quantum simulator with trapped ions. Nature, 470(7335):486, 2011.

[109] Tiejun Gao, E Estrecho, KY Bliokh, TCH Liew, MD Fraser, Sebastian Brod- beck, Martin Kamp, Christian Schneider, Sven Höfling, Y Yamamoto, F Nori, YS Kivshar, AG Truscott, RG Dall, and EA Ostrovskaya. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 526(7574):554, 2015.

[110] J. Raftery, D. Sadri, S. Schmidt, H. E. Türeci, and A. A. Houck. Observation of a dissipation-induced classical to quantum transition. Phys. Rev. X, 4:031043, Sep 2014.

[111] Ryusuke Hamazaki, Kohei Kawabata, and Masahito Ueda. Non-Hermitian many-body localization. Phys. Rev. Lett., 123:090603, Aug 2019.

[112] Ryusuke Hamazaki, Kohei Kawabata, Naoto Kura, and Masahito Ueda. The threefold way in non-Hermitian random matrices. arXiv preprint arXiv:1904.13082, 2019.

[113] P. Bocchieri and A. Loinger. Quantum recurrence theorem. Phys. Rev., 107:337–338, Jul 1957.

[114] L. S. Schulman. Note on the quantum recurrence theorem. Phys. Rev. A, 18:2379–2380, Nov 1978.

[115] Peter Reimann. Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett., 101:190403, Nov 2008.

[116] Mark Srednicki. The approach to thermal equilibrium in quantized chaotic systems. Journal of Physics A: Mathematical and General, 32(7):1163, 1999.

[117] Tatsuhiko N. Ikeda and Masahito Ueda. How accurately can the micro- canonical ensemble describe small isolated quantum systems? Phys. Rev. E, 92:020102, Aug 2015.

[118] Eiki Iyoda, Kazuya Kaneko, and Takahiro Sagawa. Fluctuation theorem for many-body pure quantum states. Phys. Rev. Lett., 119:100601, Sep 2017.

[119] O. Bohigas, M. J. Giannoni, and C. Schmit. Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett., 52:1–4, Jan 1984.

[120] Michael V Berry and Michael Tabor. Level clustering in the regular spec- trum. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 356, pages 375–394. The Royal Society, 1977.

[121] Michael V Berry. Regular and irregular semiclassical wavefunctions. Journal of Physics A: Mathematical and General, 10(12):2083, 1977.

[122] Naoto Shiraishi and Takashi Mori. Systematic construction of counterexam- ples to the eigenstate thermalization hypothesis. Phys. Rev. Lett., 119:030601, Jul 2017.

[123] Jean-Sébastien Caux and Jorn Mossel. Remarks on the notion of quan- tum integrability. Journal of Statistical Mechanics: Theory and Experiment, 2011(02):P02023, 2011.

[124] Marcos Rigol, Vanja Dunjko, Vladimir Yurovsky, and Maxim Olshanii. Re- laxation in a completely integrable many-body quantum system: An Ab Initio study of the dynamics of the highly excited states of 1d lattice hard- core Bosons. Phys. Rev. Lett., 98:050405, Feb 2007.

[125] Marcus Kollar and Martin Eckstein. Relaxation of a one-dimensional Mott insulator after an interaction quench. Phys. Rev. A, 78:013626, Jul 2008.

[126] Amy C. Cassidy, Charles W. Clark, and Marcos Rigol. Generalized ther- malization in an integrable lattice system. Phys. Rev. Lett., 106:140405, Apr 2011.

[127] Pasquale Calabrese, Fabian H. L. Essler, and Maurizio Fagotti. Quantum quench in the transverse-field Ising chain. Phys. Rev. Lett., 106:227203, Jun 2011.

[128] Miguel A. Cazalilla, Anibal Iucci, and Ming-Chiang Chung. Thermalization and quantum correlations in exactly solvable models. Phys. Rev. E, 85:011133, Jan 2012.

[129] Maurizio Fagotti and Fabian H. L. Essler. Reduced density matrix after a quantum quench. Phys. Rev. B, 87:245107, Jun 2013.

[130] Jorn Mossel and Jean-Sébastien Caux. Generalized TBA and generalized Gibbs. Journal of Physics A: Mathematical and Theoretical, 45(25):255001, 2012.

[131] Jean-Sébastien Caux and Robert M. Konik. Constructing the generalized Gibbs ensemble after a quantum quench. Phys. Rev. Lett., 109:175301, Oct 2012.

[132] Tatsuhiko N. Ikeda, Yu Watanabe, and Masahito Ueda. Finite-size scaling analysis of the eigenstate thermalization hypothesis in a one-dimensional interacting Bose gas. Phys. Rev. E, 87:012125, Jan 2013.

[133] Márton Kormos, Aditya Shashi, Yang-Zhi Chou, Jean-Sébastien Caux, and Adilet Imambekov. Interaction quenches in the one-dimensional Bose gas. Phys. Rev. B, 88:205131, Nov 2013.

[134] G. Mussardo. Infinite-time average of local fields in an integrable quantum field theory after a quantum quench. Phys. Rev. Lett., 111:100401, Sep 2013.

[135] B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, M. Rigol, and J.-S. Caux. Quenching the anisotropic Heisenberg chain: Exact solution and generalized Gibbs ensemble predictions. Phys. Rev. Lett., 113:117202, Sep 2014.

[136] F. H. L. Essler, G. Mussardo, and M. Panfil. Generalized Gibbs ensembles for quantum field theories. Phys. Rev. A, 91:051602, May 2015.

[137] Vincenzo Alba. Eigenstate thermalization hypothesis and integrability in quantum spin chains. Phys. Rev. B, 91:155123, Apr 2015.

[138] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L. Essler, and T. Prosen. Complete generalized Gibbs ensembles in an interacting theory. Phys. Rev. Lett., 115:157201, Oct 2015.

[139] David A. Huse, Rahul Nandkishore, and Vadim Oganesyan. Phenomenol- ogy of fully many-body-localized systems. Phys. Rev. B, 90:174202, Nov 2014.

[140] Ryusuke Hamazaki. Theoretical study on thermalization in isolated quan- tum systems, 2017. Master’s thesis, arXiv:1901.01481.

[141] Luca D’Alessio, Yariv Kafri, Anatoli Polkovnikov, and Marcos Rigol. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Advances in Physics, 65(3):239–362, 2016.

[142] Rubem Mondaini and Marcos Rigol. Eigenstate thermalization in the two- dimensional transverse field Ising model. II. off-diagonal matrix elements of observables. Phys. Rev. E, 96:012157, Jul 2017.

[143] Mario Feingold and Asher Peres. Distribution of matrix elements of chaotic systems. Phys. Rev. A, 34:591–595, Jul 1986.

[144] Freeman J Dyson. The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. Journal of Mathematical Physics, 3(6):1199–1215, 1962.

[145] Fritz Haake. Quantum signatures of chaos, volume 54. Springer Science & Business Media, 2010.

[146] Michael Berry. Quantum chaology, not quantum chaos. Physica Scripta, 40(3):335, 1989.

[147] Sebastian Müller, Stefan Heusler, Petr Braun, Fritz Haake, and Alexander Altland. Semiclassical foundation of universality in quantum chaos. Phys. Rev. Lett., 93:014103, Jul 2004.

[148] Sebastian Müller, Stefan Heusler, Petr Braun, Fritz Haake, and Alexander Altland. Periodic-orbit theory of universality in quantum chaos. Phys. Rev. E, 72:046207, Oct 2005.

[149] Pavel Kos, Marko Ljubotina, and Tomaž Prosen. Many-body quantum chaos: Analytic connection to random matrix theory. Phys. Rev. X, 8:021062, Jun 2018.

[150] Bruno Bertini, Pavel Kos, and Tomaž Prosen. Exact spectral form factor in a minimal model of many-body quantum chaos. Phys. Rev. Lett., 121:264101, Dec 2018.

[151] Petr Braun, Daniel Waltner, Maram Akila, Boris Gutkin, and Thomas Guhr. Transition from quantum chaos to localization in spin chains. arXiv preprint arXiv:1902.06265, 2019.

[152] Adam Nahum, Jonathan Ruhman, Sagar Vijay, and Jeongwan Haah. Quan- tum entanglement growth under random unitary dynamics. Phys. Rev. X, 7:031016, Jul 2017.

[153] Adam Nahum, Sagar Vijay, and Jeongwan Haah. Operator spreading in random unitary circuits. Phys. Rev. X, 8:021014, Apr 2018.

[154] C. W. von Keyserlingk, Tibor Rakovszky, Frank Pollmann, and S. L. Sondhi. Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws. Phys. Rev. X, 8:021013, Apr 2018.

[155] Amos Chan, Andrea De Luca, and J. T. Chalker. Spectral statistics in spatially extended chaotic quantum many-body systems. Phys. Rev. Lett., 121:060601, Aug 2018.

[156] Aaron J Friedman, Amos Chan, Andrea De Luca, and JT Chalker. Spectral statistics and many-body quantum chaos with conserved charge. arXiv preprint arXiv:1906.07736, 2019.

[157] Bruno Bertini, Pavel Kos, and Toma ž Prosen. Entanglement spreading in a minimal model of maximal many-body quantum chaos. Phys. Rev. X, 9:021033, May 2019.

[158] Amos Chan, Andrea De Luca, and J. T. Chalker. Solution of a minimal model for many-body quantum chaos. Phys. Rev. X, 8:041019, Nov 2018.

[159] Bela Bauer and Chetan Nayak. Area laws in a many-body localized state and its implications for topological order. Journal of Statistical Mechanics: Theory and Experiment, 2013(09):P09005, 2013.

[160] Kartiek Agarwal, Sarang Gopalakrishnan, Michael Knap, Markus Müller, and Eugene Demler. Anomalous diffusion and Griffiths effects near the many-body localization transition. Phys. Rev. Lett., 114:160401, Apr 2015.

[161] Hyungwon Kim and David A. Huse. Ballistic spreading of entanglement in a diffusive nonintegrable system. Phys. Rev. Lett., 111:127205, Sep 2013.

[162] Jens H. Bardarson, Frank Pollmann, and Joel E. Moore. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett., 109:017202, Jul 2012.

[163] AI Larkin and Yu N Ovchinnikov. Quasiclassical method in the theory of superconductivity. Sov Phys JETP, 28(6):1200–1205, 1969.

[164] A Kitaev. A simple model of quantum holography. In KITP strings seminar and Entanglement, 2015.

[165] Alexei Kitaev. Hidden correlations in the Hawking radiation and thermal noise. In talk given at Fundamental Physics Prize Symposium, 2014.

[166] Juan Maldacena, Stephen H. Shenker, and Douglas Stanford. A bound on chaos. Journal of High Energy Physics, 2016(8):106, 2016.

[167] Yichen Huang, Yong-Liang Zhang, and Xie Chen. Out-of-time-ordered correlators in many-body localized systems. Annalen der Physik, 529(7), 2017.

[168] Ruihua Fan, Pengfei Zhang, Huitao Shen, and Hui Zhai. Out-of-time-order correlation for many-body localization. Science Bulletin, 2017.

[169] Brian Swingle and Debanjan Chowdhury. Slow scrambling in disordered quantum systems. Phys. Rev. B, 95:060201, Feb 2017.

[170] Jonas A. Kjäll, Jens H. Bardarson, and Frank Pollmann. Many-body local- ization in a disordered quantum Ising chain. Phys. Rev. Lett., 113:107204, Sep 2014.

[171] Roderich Moessner and Shivaji Lal Sondhi. Equilibration and order in quantum Floquet matter. Nature Physics, 13(5):424, 2017.

[172] Maksym Serbyn, Z. Papić, and Dmitry A. Abanin. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett., 111:127201, Sep 2013.

[173] David J. Luitz, Nicolas Laflorencie, and Fabien Alet. Many-body localization edge in the random-field Heisenberg chain. Physical Review B, 91:081103(R), Feb 2015.

[174] M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert. Many-body localization implies that eigenvectors are matrix-product states. Phys. Rev. Lett., 114:170505, May 2015.

[175] Xiongjie Yu, David Pekker, and Bryan K. Clark. Finding matrix product state representations of highly excited eigenstates of many-body localized Hamiltonians. Phys. Rev. Lett., 118:017201, Jan 2017.

[176] Frank Schindler, Nicolas Regnault, and Titus Neupert. Probing many-body localization with neural networks. Phys. Rev. B, 95:245134, Jun 2017.

[177] Yi-Ting Hsu, Xiao Li, Dong-Ling Deng, and S. Das Sarma. Machine learning many-body localization: Search for the elusive nonergodic metal. Phys. Rev. Lett., 121:245701, Dec 2018.

[178] Jan Šuntajs, J Bonča, Tomaz Prosen, and Lev Vidmar. Quantum chaos challenges many-body localization. arXiv preprint arXiv:1905.06345, 2019.

[179] John Z. Imbrie. Diagonalization and many-body localization for a disor- dered quantum spin chain. Phys. Rev. Lett., 117:027201, Jul 2016.

[180] John Z Imbrie. On many-body localization for quantum spin chains. Journal of Statistical Physics, 163(5):998–1048, 2016.

[181] Wojciech De Roeck and Fran çois Huveneers. Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B, 95:155129, Apr 2017.

[182] Thorsten B Wahl, Arijeet Pal, and Steven H Simon. Signatures of the many- body localized regime in two dimensions. Nature Physics, 15(2):164, 2019.

[183] Andrew C. Potter and Romain Vasseur. Symmetry constraints on many- body localization. Phys. Rev. B, 94:224206, Dec 2016.

[184] Vedika Khemani, D. N. Sheng, and David A. Huse. Two universality classes for the many-body localization transition. Phys. Rev. Lett., 119:075702, Aug 2017.

[185] Maksym Serbyn, Z. Papić, and Dmitry A. Abanin. Criterion for many- body localization-delocalization phase transition. Phys. Rev. X, 5:041047, Dec 2015.

[186] Ronen Vosk, David A. Huse, and Ehud Altman. Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X, 5:031032, Sep 2015.

[187] Andrew C. Potter, Romain Vasseur, and S. A. Parameswaran. Universal properties of many-body delocalization transitions. Phys. Rev. X, 5:031033, Sep 2015.

[188] Vedika Khemani, S. P. Lim, D. N. Sheng, and David A. Huse. Critical properties of the many-body localization transition. Phys. Rev. X, 7:021013, Apr 2017.

[189] Samy Mailoud, Fausto Borgonovi, and Felix Izrailev. Can quantum many- body systems behave as strongly chaotic, being completely integrable? arXiv preprint arXiv:1907.01893, 2019.

[190] E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106:620–630, May 1957.

[191] E. T. Jaynes. Information theory and statistical mechanics. II. Phys. Rev., 108:171–190, Oct 1957.

[192] Ryusuke Hamazaki, Tatsuhiko N. Ikeda, and Masahito Ueda. Generalized Gibbs ensemble in a nonintegrable system with an extensive number of local symmetries. Phys. Rev. E, 93:032116, Mar 2016.

[193] Eric J. Heller. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits. Phys. Rev. Lett., 53:1515–1518, Oct 1984.

[194] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić. Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations. Phys. Rev. B, 98:155134, Oct 2018.

[195] Zongping Gong, Nobuyuki Yoshioka, Naoyuki Shibata, and Ryusuke Hamazaki. Universal error bound for constrained quantum dynamics. arXiv preprint arXiv:2001.03419, 2020.

[196] Zongping Gong, Nobuyuki Yoshioka, Naoyuki Shibata, and Ryusuke Hamazaki. Error bounds for constrained dynamics in gapped quantum sys- tems: Rigorous results and generalizations. arXiv preprint arXiv:2001.03421, 2020.

[197] Vedika Khemani, Chris R. Laumann, and Anushya Chandran. Signatures of integrability in the dynamics of Rydberg-blockaded chains. Phys. Rev. B, 99:161101, Apr 2019.

[198] Wen Wei Ho, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin. Periodic orbits, entanglement, and quantum many-body scars in constrained models: Matrix product state approach. Phys. Rev. Lett., 122:040603, Jan 2019.

[199] Cheng-Ju Lin and Olexei I. Motrunich. Exact quantum many-body scar states in the Rydberg-blockaded atom chain. Phys. Rev. Lett., 122:173401, Apr 2019.

[200] Sanjay Moudgalya, Stephan Rachel, B. Andrei Bernevig, and Nicolas Reg- nault. Exact excited states of nonintegrable models. Phys. Rev. B, 98:235155, Dec 2018.

[201] Sanjay Moudgalya, Nicolas Regnault, and B. Andrei Bernevig. Entangle- ment of exact excited states of affleck-kennedy-lieb-tasaki models: Exact results, many-body scars, and violation of the strong eigenstate thermaliza- tion hypothesis. Phys. Rev. B, 98:235156, Dec 2018.

[202] Andrew J. A. James, Robert M. Konik, and Neil J. Robinson. Nonthermal states arising from confinement in one and two dimensions. Phys. Rev. Lett., 122:130603, Apr 2019.

[203] Thomas Iadecola and Marko Žnidarič. Exact localized and ballistic eigen- states in disordered chaotic spin ladders and the Fermi-Hubbard model. Phys. Rev. Lett., 123:036403, Jul 2019.

[204] Michael Schecter and Thomas Iadecola. Weak ergodicity breaking and quantum many-body scars in spin-1 XY magnets. Phys. Rev. Lett., 123:147201, Oct 2019.

[205] Shriya Pai, Michael Pretko, and Rahul M. Nandkishore. Localization in fractonic random circuits. Phys. Rev. X, 9:021003, Apr 2019.

[206] Takashi Mori and Naoto Shiraishi. Thermalization without eigenstate ther- malization hypothesis after a quantum quench. Phys. Rev. E, 96:022153, Aug 2017.

[207] Subir Sachdev. Bekenstein-Hawking entropy and strange metals. Phys. Rev. X, 5:041025, Nov 2015.

[208] Juan Maldacena and Douglas Stanford. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D, 94(10):106002, 2016.

[209] Pavan Hosur, Xiao-Liang Qi, Daniel A Roberts, and Beni Yoshida. Chaos in quantum channels. Journal of High Energy Physics, 2016(2):4, 2016.

[210] Ryusuke Hamazaki, Kazuya Fujimoto, and Masahito Ueda. Operator noncomutativity and irreversibility in quantum chaos. arXiv preprint arXiv:1807.02360, 2018.

[211] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang. Dynamic scaling of growing interfaces. Phys. Rev. Lett., 56:889–892, Mar 1986.

[212] Samuel Frederick Edwards and DR Wilkinson. The surface statistics of a granular aggregate. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 381(1780):17–31, 1982.

[213] Manas Kulkarni, David A. Huse, and Herbert Spohn. Fluctuating hydrody- namics for a discrete Gross-Pitaevskii equation: Mapping onto the Kardar- Parisi-Zhang universality class. Phys. Rev. A, 92:043612, Oct 2015.

[214] Marko Ljubotina, Marko Žnidarič, and Toma ž Prosen. Kardar-Parisi-Zhang physics in the quantum Heisenberg magnet. Phys. Rev. Lett., 122:210602, May 2019.

[215] Maxime Dupont and Joel E Moore. Universal spin dynamics in infinite-temperature one-dimensional quantum magnets. arXiv preprint arXiv:1907.12115, 2019.

[216] Kazuya Fujimoto, Ryusuke Hamazaki, and Yuki Kawaguchi. Family-Vicsek scaling of roughness growth in a strongly interacting Bose gas. arXiv preprint arXiv:1911.10707, 2019.

[217] Felix Weiner, Peter Schmitteckert, Soumya Bera, and Ferdinand Evers. High- temperature spin dynamics in the Heisenberg chain: Magnon propagation and emerging Kardar-Parisi-Zhang scaling in the zero-magnetization limit. Phys. Rev. B, 101:045115, Jan 2020.

[218] Henk van Beijeren. Exact results for anomalous transport in one- dimensional Hamiltonian systems. Phys. Rev. Lett., 108:180601, Apr 2012.

[219] Herbert Spohn. Nonlinear fluctuating hydrodynamics for anharmonic chains. Journal of Statistical Physics, 154(5):1191–1227, 2014.

[220] A-L Barabási and Harry Eugene Stanley. Fractal concepts in surface growth. Cambridge university press, 1995.

[221] Alan J Bray. Theory of phase-ordering kinetics. Advances in Physics, 51(2):481–587, 2002.

[222] Johannes Hofmann, Stefan S. Natu, and S. Das Sarma. Coarsening dynamics of binary Bose condensates. Phys. Rev. Lett., 113:095702, Aug 2014.

[223] Kazue Kudo and Yuki Kawaguchi. Coarsening dynamics driven by vortex- antivortex annihilation in ferromagnetic Bose-Einstein condensates. Phys. Rev. A, 91:053609, May 2015.

[224] Lewis A. Williamson and P. B. Blakie. Universal coarsening dynamics of a quenched ferromagnetic spin-1 condensate. Phys. Rev. Lett., 116:025301, Jan 2016.

[225] Kazuya Fujimoto, Ryusuke Hamazaki, and Masahito Ueda. Unconventional universality class of one-dimensional isolated coarsening dynamics in a spinor Bose gas. Phys. Rev. Lett., 120:073002, Feb 2018.

[226] Jürgen Berges, Alexander Rothkopf, and Jonas Schmidt. Nonthermal fixed points: Effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett., 101:041603, Jul 2008.

[227] Sandu Popescu, Anthony J Short, and Andreas Winter. The foundations of statistical mechanics from entanglement: Individual states vs. averages. arXiv preprint quant-ph/0511225, 2005.

[228] Marcos Rigol and Mark Srednicki. Alternatives to eigenstate thermalization. Phys. Rev. Lett., 108:110601, Mar 2012.

[229] E. J. Torres-Herrera and Lea F. Santos. Local quenches with global effects in interacting quantum systems. Phys. Rev. E, 89:062110, Jun 2014.

[230] Marcin Mierzejewski and Lev Vidmar. Eigenstate thermalization hypothesis and integrals of motion. arXiv preprint arXiv:1908.08569, 2019.

[231] Luca D30,fe,ff0"80"99Alessio and Marcos Rigol. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X, 4(4):041048, 2014.

[232] Achilleas Lazarides, Arnab Das, and Roderich Moessner. Equilibrium states of generic quantum systems subject to periodic driving. Phys. Rev. E, 90(1):012110, 2014.

[233] Andrew J Daley. Quantum trajectories and open many-body quantum sys- tems. Advances in Physics, 63(2):77–149, 2014.

[234] Ali Mostafazadeh. Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. Journal of Mathematical Physics, 43(1):205–214, 2002.

[235] Naomichi Hatano and David R. Nelson. Localization transitions in non- Hermitian quantum mechanics. Phys. Rev. Lett., 77:570–573, Jul 1996.

[236] Naomichi Hatano and David R. Nelson. Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B, 56:8651–8673, Oct 1997.

[237] Naomichi Hatano and David R. Nelson. Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B, 58:8384–8390, Oct 1998.

[238] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Mussli- mani. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 100:103904, Mar 2008.

[239] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides. Optical solitons in PT periodic potentials. Phys. Rev. Lett., 100:030402, Jan 2008.

[240] S. Longhi. Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett., 103:123601, Sep 2009.

[241] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides. Observation of PT -symmetry breaking in complex optical potentials. Phys. Rev. Lett., 103:093902, Aug 2009.

[242] Christian E Rüter, Konstantinos G Makris, Ramy El-Ganainy, Demetrios N Christodoulides, Mordechai Segev, and Detlef Kip. Observation of parity– time symmetry in optics. Nature Physics, 6(3):192, 2010.

[243] Vladimir V. Konotop, Jianke Yang, and Dmitry A. Zezyulin. Nonlinear waves in PT -symmetric systems. Rev. Mod. Phys., 88:035002, Jul 2016.

[244] Zongping Gong, Yuto Ashida, Kohei Kawabata, Kazuaki Takasan, Sho Hi- gashikawa, and Masahito Ueda. Topological phases of non-Hermitian sys- tems. Phys. Rev. X, 8:031079, Sep 2018.

[245] Kohei Kawabata, Sho Higashikawa, Zongping Gong, Yuto Ashida, and Masahito Ueda. Topological unification of time-reversal and particle-hole symmetries in non-Hermitian physics. Nature Communications, 10(1):297, 2019.

[246] Kohei Kawabata, Ken Shiozaki, Masahito Ueda, and Masatoshi Sato. Sym- metry and topology in non-Hermitian physics. Phys. Rev. X, 9:041015, Oct 2019.

[247] Rainer Grobe, Fritz Haake, and Hans-Jürgen Sommers. Quantum distinc- tion of regular and chaotic dissipative motion. Phys. Rev. Lett., 61:1899–1902, Oct 1988.

[248] Rainer Grobe and Fritz Haake. Universality of cubic-level repulsion for dissipative quantum chaos. Phys. Rev. Lett., 62:2893–2896, Jun 1989.

[249] J. T. Chalker and Z. Jane Wang. Diffusion in a random velocity field: Spectral properties of a non-Hermitian Fokker-Planck operator. Phys. Rev. Lett., 79:1797–1800, Sep 1997.

[250] David R. Nelson and Nadav M. Shnerb. Non-Hermitian localization and population biology. Phys. Rev. E, 58:1383–1403, Aug 1998.

[251] H. J. Sommers, A. Crisanti, H. Sompolinsky, and Y. Stein. Spectrum of large random asymmetric matrices. Phys. Rev. Lett., 60:1895–1898, May 1988.

[252] Herbert Spohn and Joel L Lebowitz. Irreversible thermodynamics for quan- tum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys, 38:109– 142, 1978.

[253] Tatsuhiko Shirai and Takashi Mori. Thermalization in open many-body systems based on eigenstate thermalization hypothesis. arXiv preprint arXiv:1812.09713, 2018.

[254] Sebastian Diehl, A Micheli, A Kantian, B Kraus, HP Büchler, and P Zoller. Quantum states and phases in driven open quantum systems with cold atoms. Nature Physics, 4(11):878, 2008.

[255] Frank Verstraete, Michael M Wolf, and J Ignacio Cirac. Quantum computa- tion and quantum-state engineering driven by dissipation. Nature physics, 5(9):633, 2009.

[256] Sebastian Diehl, Enrique Rico, Mikhail A Baranov, and Peter Zoller. Topol- ogy by dissipation in atomic quantum wires. Nature Physics, 7(12):971, 2011.

[257] Jiasen Jin, Alberto Biella, Oscar Viyuela, Leonardo Mazza, Jonathan Keel- ing, Rosario Fazio, and Davide Rossini. Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Phys. Rev. X, 6:031011, Jul 2016.

[258] Jiasen Jin, Alberto Biella, Oscar Viyuela, Cristiano Ciuti, Rosario Fazio, and Davide Rossini. Phase diagram of the dissipative quantum Ising model on a square lattice. Phys. Rev. B, 98:241108, Dec 2018.

[259] Tomaž Prosen and Marko Žnidarič. Matrix product simulations of non- equilibrium steady states of quantum spin chains. Journal of Statistical Me- chanics: Theory and Experiment, 2009(02):P02035, 2009.

[260] Tomaž Prosen and Enej Ilievski. Families of quasilocal conservation laws and quantum spin transport. Phys. Rev. Lett., 111:057203, Aug 2013.

[261] Zongping Gong, Ryusuke Hamazaki, and Masahito Ueda. Discrete time- crystalline order in cavity and circuit QED systems. Phys. Rev. Lett., 120:040404, Jan 2018.

[262] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M. Dalmonte, and R. Fazio. Boundary time crystals. Phys. Rev. Lett., 121:035301, Jul 2018.

[263] Tomaž Prosen. Third quantization: a general method to solve master equa- tions for quadratic open Fermi systems. New Journal of Physics, 10(4):043026, 2008.

[264] Mariya V. Medvedyeva, Fabian H. L. Essler, and Tomaz Prosen. Exact Bethe Ansatz spectrum of a tight-binding chain with dephasing noise. Phys. Rev. Lett., 117:137202, Sep 2016.

[265] Zi Cai and Thomas Barthel. Algebraic versus exponential decoherence in dissipative many-particle systems. Phys. Rev. Lett., 111:150403, Oct 2013.

[266] Jian Cui, J. Ignacio Cirac, and Mari Carmen Bañuls. Variational matrix product operators for the steady state of dissipative quantum systems. Phys. Rev. Lett., 114(22):220601, jan 2015.

[267] Hendrik Weimer. Variational principle for steady states of dissipative quan- tum many-body systems. Phys. Rev. Lett., 114:040402, Jan 2015.

[268] A. H. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J. Eisert, and S. Mon- tangero. Positive tensor network approach for simulating open quantum many-body systems. Phys. Rev. Lett., 116:237201, Jun 2016.

[269] Jiasen Jin, Alberto Biella, Oscar Viyuela, Leonardo Mazza, Jonathan Keel- ing, Rosario Fazio, and Davide Rossini. Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Phys. Rev. X, 6:031011, Jul 2016.

[270] Adil A. Gangat, Te I, and Ying-Jer Kao. Steady states of infinite-size dis- sipative quantum chains via imaginary time evolution. Phys. Rev. Lett., 119:010501, Jul 2017.

[271] Augustine Kshetrimayum, Hendrik Weimer, and Román Orús. A simple tensor network algorithm for two-dimensional steady states. Nature com- munications, 8(1):1291, 2017.

[272] Nobuyuki Yoshioka and Ryusuke Hamazaki. Constructing neural station- ary states for open quantum many-body systems. Phys. Rev. B, 99:214306, Jun 2019.

[273] Michael J. Hartmann and Giuseppe Carleo. Neural-network approach to dissipative quantum many-body dynamics. arXiv:1902.05131, 2019.

[274] Alexandra Nagy and Vincenzo Savona. Variational quantum Monte Carlo with neural network ansatz for open quantum systems. arXiv preprint arXiv:1902.09483, 2019.

[275] Filippo Vicentini, Alberto Biella, Nicolas Regnault, and Cristiano Ciuti. Vari- ational neural network ansatz for steady states in open quantum systems. arXiv preprint arXiv:1902.10104, 2019.

[276] Emanuele Levi, Markus Heyl, Igor Lesanovsky, and Juan P. Garrahan. Ro- bustness of many-body localization in the presence of dissipation. Phys. Rev. Lett., 116:237203, Jun 2016.

[277] Mariya V. Medvedyeva, Tomaz Prosen, and Marko Znidaric. Influence of dephasing on many-body localization. Phys. Rev. B, 93:094205, Mar 2016.

[278] Mark H Fischer, Mykola Maksymenko, and Ehud Altman. Dynamics of a many-body-localized system coupled to a bath. Phys. Rev. Lett., 116:160401, Apr 2016.

[279] I. Yusipov, T. Laptyeva, S. Denisov, and M. Ivanchenko. Localization in open quantum systems. Phys. Rev. Lett., 118:070402, Feb 2017.

[280] I. Vakulchyk, I. Yusipov, M. Ivanchenko, S. Flach, and S. Denisov. Signatures of many-body localization in steady states of open quantum systems. Phys. Rev. B, 98:020202, Jul 2018.

[281] Yuto Ashida, Keiji Saito, and Masahito Ueda. Thermalization and heating dynamics in open generic many-body systems. Phys. Rev. Lett., 121:170402, Oct 2018.

[282] Yaodong Li, Xiao Chen, and Matthew P. A. Fisher. Quantum Zeno effect and the many-body entanglement transition. Phys. Rev. B, 98:205136, Nov 2018.

[283] Brian Skinner, Jonathan Ruhman, and Adam Nahum. Measurement- induced phase transitions in the dynamics of entanglement. Phys. Rev. X, 9:031009, Jul 2019.

[284] Amos Chan, Rahul M. Nandkishore, Michael Pretko, and Graeme Smith. Unitary-projective entanglement dynamics. Phys. Rev. B, 99:224307, Jun 2019.

[285] M. Szyniszewski, A. Romito, and H. Schomerus. Entanglement transition from variable-strength weak measurements. Phys. Rev. B, 100:064204, Aug 2019.

[286] Qicheng Tang and W Zhu. Measurement-induced phase transition: A case study in the non-integrable model by density-matrix renormalization group calculations. arXiv preprint arXiv:1908.11253, 2019.

[287] Soonwon Choi, Yimu Bao, Xiao-Liang Qi, and Ehud Altman. Quantum error correction and entanglement phase transition in random unitary circuits with projective measurements. arXiv preprint arXiv:1903.05124, 2019.

[288] Yimu Bao, Soonwon Choi, and Ehud Altman. Theory of the phase transition in random unitary circuits with measurements. arXiv preprint arXiv:1908.04305, 2019.

[289] Michael J Gullans and David A Huse. Scalable probes of measurement- induced criticality. arXiv preprint arXiv:1910.00020, 2019.

[290] Michael J Gullans and David A Huse. Dynamical purification phase tran- sition induced by quantum measurements. arXiv preprint arXiv:1905.05195, 2019.

[291] Yuto Ashida and Masahito Ueda. Full-counting many-particle dynamics: Nonlocal and chiral propagation of correlations. Phys. Rev. Lett., 120:185301, May 2018.

[292] Masaya Nakagawa, Naoto Tsuji, Norio Kawakami, and Masahito Ueda. Negative-temperature quantum magnetism in open dissipative systems. arXiv preprint arXiv:1904.00154, 2019.

[293] K. B. Efetov. Directed quantum chaos. Phys. Rev. Lett., 79:491–494, Jul 1997.

[294] Joshua Feinberg and A Zee. Non-Gaussian non-Hermitian random ma- trix theory: phase transition and addition formalism. Nuclear Physics B, 501(3):643–669, 1997.

[295] Ilya Ya. Goldsheid and Boris A. Khoruzhenko. Distribution of eigenvalues in non-Hermitian Anderson models. Phys. Rev. Lett., 80:2897–2900, Mar 1998.

[296] H. Markum, R. Pullirsch, and T. Wettig. Non-Hermitian random matrix theory and lattice QCD with chemical potential. Phys. Rev. Lett., 83:484–487, Jul 1999.

[297] Joshua Feinberg and A. Zee. Non-Hermitian localization and delocalization. Phys. Rev. E, 59:6433–6443, Jun 1999.

[298] Stefano Longhi, Davide Gatti, and Giuseppe Della Valle. Non-Hermitian transparency and one-way transport in low-dimensional lattices by an imag- inary gauge field. Phys. Rev. B, 92:094204, Sep 2015.

[299] Stefano Longhi, Davide Gatti, and Giuseppe Della Valle. Robust light trans- port in non-Hermitian photonic lattices. Scientific Reports, 5:13376, 2015.

[300] Evert PL van Nieuwenburg, J Yago Malo, Andrew J Daley, and Mark Hannes Fischer. Dynamics of many-body localization in the presence of particle loss. Quantum Science and Technology, 3(1):01LT02, 2017.

[301] Doochul Kim. Bethe Ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar-Parisi-Zhang-type growth model. Phys. Rev. E, 52:3512–3524, Oct 1995.

[302] Marko Žnidarič, Tomaž Prosen, and Peter Prelovšek. Many-body local- ization in the Heisenberg XXZ magnet in a random field. Phys. Rev. B, 77:064426, Feb 2008.

[303] Henning Schomerus. Random matrix approaches to open quantum sys- tems. Stochastic Processes and Random Matrices: Lecture Notes of the Les Houches Summer School: Volume 104, July 2015, 104:409, 2017.

[304] Madan Lal Mehta. Random matrices, volume 142. Academic press, 2004.

[305] Dorje C Brody. Biorthogonal quantum mechanics. Journal of Physics A: Mathematical and Theoretical, 47(3):035305, 2013.

[306] Tomaž Prosen. PT-symmetric quantum Liouvillean dynamics. Phys. Rev. Lett., 109:090404, Aug 2012.

[307] Moos van Caspel and Vladimir Gritsev. Symmetry-protected coherent re- laxation of open quantum systems. Phys. Rev. A, 97:052106, May 2018.

[308] Tony E. Lee and Ching-Kit Chan. Heralded magnetism in non-Hermitian atomic systems. Phys. Rev. X, 4:041001, Oct 2014.

[309] Jean Ginibre. Statistical ensembles of complex, quaternion, and real matri- ces. Journal of Mathematical Physics, 6(3):440–449, 1965.

[310] Alexander Altland and Martin R. Zirnbauer. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B, 55:1142–1161, Jan 1997.

[311] Nils Lehmann and Hans-Jürgen Sommers. Eigenvalue statistics of random real matrices. Phys. Rev. Lett., 67:941–944, Aug 1991.

[312] Alan Edelman and Eric Kostlan. How many zeros of a random polynomial are real? Bulletin of the American Mathematical Society, 32(1):1–37, 1995.

[313] J. T. Chalker and B. Mehlig. Eigenvector statistics in non-Hermitian random matrix ensembles. Phys. Rev. Lett., 81:3367–3370, Oct 1998.

[314] Eugene Kanzieper and Gernot Akemann. Statistics of real eigenvalues in ginibre’s ensemble of random real matrices. Phys. Rev. Lett., 95:230201, Nov 2005.

[315] Peter J. Forrester and Taro Nagao. Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett., 99:050603, Aug 2007.

[316] Zdzislaw Burda, Jacek Grela, Maciej A. Nowak, Wojciech Tarnowski, and Piotr Warchoł. Dysonian dynamics of the Ginibre ensemble. Phys. Rev. Lett., 113:104102, Sep 2014.

[317] Denis Bernard and André LeClair. A classification of non-Hermitian ran- dom matrices. In Statistical Field Theories, pages 207–214. Springer, 02.

[318] Ulrika Magnea. Random matrices beyond the cartan classification. Journal of Physics A: Mathematical and Theoretical, 41(4):045203, 2008.

[319] Kenta Esaki, Masatoshi Sato, Kazuki Hasebe, and Mahito Kohmoto. Edge states and topological phases in non-Hermitian systems. Phys. Rev. B, 84:205128, Nov 2011.

[320] Masatoshi Sato, Kazuki Hasebe, Kenta Esaki, and Mahito Kohmoto. Time- reversal symmetry in non-Hermitian systems. Progress of Theoretical Physics, 127(6):937–974, 2012.

[321] Cumulants that are higher than the second are not necessarily captured by small matrices, since we neglect the influence of close eigenvalues other than two closest ones when we compute psmall(s).

[322] Jun John Sakurai. Advanced quantum mechanics. Pearson Education India, 1967.

[323] Mario Feingold, Nimrod Moiseyev, and Asher Peres. Ergodicity and mixing in quantum theory. II. Phys. Rev. A, 30:509–511, Jul 1984.

[324] Lea F. Santos and Marcos Rigol. Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E, 81:036206, Mar 2010.

[325] Rubem Mondaini, Keith R. Fratus, Mark Srednicki, and Marcos Rigol. Eigen- state thermalization in the two-dimensional transverse field Ising model. Phys. Rev. E, 93:032104, Mar 2016.

[326] Here, a superoperator is a linear operator that acts on a vector space of linear operators. We also call the solution of eigen-equation about superoperators as supereigenvalues and supereigenstates.

[327] Tony E. Lee, H. Häffner, and M. C. Cross. Collective quantum jumps of Rydberg atoms. Phys. Rev. Lett., 108:023602, Jan 2012.

[328] Peter Reimann. Typical fast thermalization processes in closed many-body systems. Nature Communications, 7, 2016.

[329] Sheldon Goldstein, Takashi Hara, and Hal Tasaki. Extremely quick ther- malization in a macroscopic quantum system for a typical nonequilibrium subspace. New Journal of Physics, 17(4):045002, 2015.

[330] Kihong Kim and David R. Nelson. Interaction effects in non-Hermitian models of vortex physics. Phys. Rev. B, 64:054508, Jul 2001.

[331] Several work [187, 188] suggested that the resonant regions are distributed over the whole sites, even when they are rare. We expect that our discussion is qualitatively true for that situation as well.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る