リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of optical platforms for elucidating the intracellular molecular mechanisms and immune cell dynamics induced by multispectral near infrared laser (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of optical platforms for elucidating the intracellular molecular mechanisms and immune cell dynamics induced by multispectral near infrared laser (本文)

片桐, 渉 慶應義塾大学

2020.09.21

概要

This thesis aims to elucidate the mechanism of immune cells response to near-infrared (NIR) laser light in vivo and to investigate the potential applications of a new optical method, the NIR technique. The technique can be used to observe the migration of antigen-presenting cells (APCs) and the intracellular signals induced by NIR lasers in cell culture systems in real-time.

Fluorescent nanoparticles for the non-invasive observation of vaccines were prepared by binding ovalbumin, an antigen, to silicon nanoparticles with diameters of 20 nm and 100 nm and labelling them with a zwitterionic NIR fluorescent molecule. In mouse models, the vaccine reached the lymph nodes via the lymphatic vessels and was quantitatively observed. The results showed that the fluorescent nanoparticles were superior to existing methods and were useful for tracking APCs.

In order to elucidate the molecular mechanism, the absorption spectrum of cytochrome C oxidase, a candidate photoreceptor among intracellular proteins was simulated. Calculation of absorption wavelengths using time-dependent density functional theory (DFT) suggested that in addition to the known visible region, absorption peaks exist in the NIR region of around 961 nm and 1319 nm.

In addition, an experimental system to observe the behaviour of intracellular molecules in real time by simultaneously irradiating them at 1064 nm and 1270 nm was established. The results showed that the combination of 1064 nm at 300 mW/cm2 and 1270 nm at 50 mW/cm2 irradiance inhibited the accumulation of intracellular signal transmitters.

In summary, this study developed two novel optical systems for observing the behaviour of immune cells in response to NIR laser light, revealing the effect of light on biological immunity. This system can be applied to other wavelengths, cell types and intracellular molecules, and is expected to provide a platform for clarifying the biological effects of NIR light.

参考文献

1. Liang, F. & Loré, K. Local innate immune responses in the vaccine adjuvant-injected muscle. Clin. Transl. Immunol. 5, e74 (2016).

2. Egemen, A. et al. Low-dose intradermal versus intramuscular administration of recombinant hepatitis B vaccine: A comparison of immunogenicity in infants and preschool children. Vaccine 16, 1511–1515 (1998).

3. Kashiwagi, S. et al. Near-infrared laser adjuvant for influenza vaccine. PLoS One 8, (2013).

4. Morse, K. et al. Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine. J. Immunol. ji1601873 (2017) doi:10.4049/jimmunol.1601873.

5. Katagiri, W. et al. Real-Time Imaging of Vaccine Biodistribution Using Zwitterionic NIR Nanoparticles. Adv. Healthc. Mater. 8, e1900035 (2019).

6. Kimizuka, Y. et al. Semiconductor diode laser device adjuvanting intradermal vaccine. Vaccine 35, 2404–2412 (2017).

7. Kashiwagi, S., Brauns, T. & Poznansky, M. C. Classification of Laser Vaccine Adjuvants. J. Vaccines 7, 1–11 (2016).

8. Kashiwagi, S., Brauns, T., Gelfand, J. & Poznansky, M. C. Laser vaccine adjuvants: History, progress, and potential. Hum. Vaccines Immunother. 10, 1892–1907 (2014).

9. Katagiri, W. et al. High-throughput single-cell live imaging of photobiomodulation with multispectral near-infrared lasers in cultured T cells. J. Biomed. Opt. 25, 036003 (2020).

10. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

11. Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science (80-. ). 300, 339–342 (2003).

12. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune Disease as a Consequence of Developmental Abnormality of a T Cell Subpopulation. J. Exp. Med. 184, 384–396 (1996).

13. Scheffel, M. J. et al. Efficacy of adoptive T-cell therapy isimproved by treatment with the antioxidant N-acetyl cysteine, which limits activation-induced T-cell death. Cancer Res. 76, 6006–6016 (2016).

14. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 1–18 (2020) doi:10.1038/s41577-020-0306-5.

15. Liu, X. & Cho, W. C. Precision medicine in immune checkpoint blockade therapy for non-small cell lung cancer. Clin. Transl. Med. 6, 4–7 (2017).

16. Gajewski, T. F., Schreiber, H. & Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

17. Petitprez, F. et al. Quantitative Analyses of the Tumor Microenvironment Composition and Orientation in the Era of Precision Medicine. Front. Oncol. 8, 1–6 (2018).

18. Nirschl, C. J. et al. IFNγ-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell 170, 127-141.e15 (2017).

19. Chowdhury, P. S., Chamoto, K. & Honjo, T. Combination therapy strategies for improving PD-1 blockade efficacy: a new era in cancer immunotherapy. J. Intern. Med. 283, 110–120 (2018).

20. Chamoto, K. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl. Acad. Sci. 114, E761–E770 (2017).

21. Luan, Y. Y. et al. Effect of regulatory T cells on promoting apoptosis of t lymphocyte and its regulatory mechanism in sepsis. J. Interf. Cytokine Res. 35, 969–980 (2015).

22. Pustylnikov, S., Costabile, F., Beghi, S. & Facciabene, A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl. Res. 202, 35–51 (2018).

23. Marrache, S., Tundup, S., Harn, D. A. & Dhar, S. Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy. ACS Nano 7, 7392–7402 (2013).

24. Golchin, A. & Farahany, T. Z. Biological Products: Cellular Therapy and FDA Approved Products. Stem Cell Rev. Reports 15, 166–175 (2019).

25. Barrett, D. M., Singh, N., Porter, D. L., Grupp, S. A. & June, C. H. Chimeric Antigen Receptor Therapy for Cancer. Annu. Rev. Med. 65, 333–347 (2014).

26. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

27. Gilham, D. E., Debets, R., Pule, M., Hawkins, R. E. & Abken, H. CAR-T cells and solid tumors: Tuning T cells to challenge an inveterate foe. Trends Mol. Med. 18, 377–384 (2012).

28. Jackson, H. J. et al. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370–383 (2017).

29. Sukumar, M. et al. Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metab. 23, 63–76 (2016).

参考文献をもっと見る