リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Increase in oxidized low-density lipoprotein level according to hyperglycemia in patients with cardiovascular disease: A study by structure equation modeling」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Increase in oxidized low-density lipoprotein level according to hyperglycemia in patients with cardiovascular disease: A study by structure equation modeling

山田, 崇之 東京慈恵会医科大学 DOI:info:doi/10.1016/j.diabres.2020.108036

2021.08.11

概要

Aims: Malondialdehyde-modified low-density lipoprotein (MDA-LDL) level has been reported to be strongly associated with the pathogenesis of cardiovascular diseases. We focused on diabetic status and investigated its possible contribution to MDA-LDL level.

Methods: The study sample consisted of 2705 patients who were admitted to our hospital and underwent cardiac catheterization. Blood samples were obtained to measure the levels of fasting blood sugar (FBS), hemoglobin A1c (HbA1c), insulin, LDL, MDA-LDL and others. Body mass index (BMI) was also used in constructing structural equation modeling and Bayesian estimation.

Results: To explore the factors theoretically associated with MDA-LDL level, we performed structural equation modeling. We generated a path model that revealed that BMI, LDL level and FBS were significantly associated with MDA-LDL level (P < 0.001 for each factor), whereas insulin level and HbA1c level were not significantly associated (P = NS for both fac- tors). Noted above was clearly demonstrated on the image of 2-D contour line by Bayesian structure equation modeling.

Conclusions: This study clearly showed that hyperglycemia affects MDA-LDL level. An inter- action between diabetes and dyslipidemia was shown in terms of activation of lipid oxidation.

参考文献

[1] Kotani K, Maekawa M, Kanno T, Kondo A, Toda N, Manabe M. Distribution of immunoreactive malondialdehyde-modified low-density lipoprotein in human serum. Biochim Biophys Acta 1994;1215:121–5.

[2] Kitano S, Kanno T, Maekawa M, Sakurabayashi I, Kotani K, Hisatomi H, et al. Improved method for the immunological detection of malondialdehyde-modified low-density lipoproteins in human serum. Anal Chim Acta 2004;509:229–35.

[3] Tanaga K, Bujo H, Inoue M, Mikami K, Kotani K, Takahashi K, et al. Increased circulating malondialdehyde-modified LDL levels in patients with coronary artery diseases and their association with peak sizes of LDL particles. Arterioscler Thromb Vasc Biol 2002;22:662–6.

[4] Shigematsu S, Takahashi N, Hara M, Yoshimatsu H, Saikawa T. Increased incidence of coronary in-stent restenosis in type 2 diabetic patients is related to elevated serum malondialdehyde-modified low-density lipoprotein. Circ J: Off J Japanese Circ Soc 2007;71:1697–702.

[5] Ogawa K, Tanaka T, Nagoshi T, Sekiyama H, Arase S, Minai K, et al. Increase in the oxidised low-density lipoprotein level by smoking and the possible inhibitory effect of statin therapy in patients with cardiovascular disease: a retrospective study. BMJ Open 2015;5 e005455.

[6] Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–20.

[7] Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:860–7.

[8] El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008;205:2409–17.

[9] Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006;440:944–8.

[10] Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Investig 2001;108:1341–8.

[11] Kugiyama K, Yasue H, Okumura K, Ogawa H, Fujimoto K, Nakao K, et al. Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina. Circulation 1996;94:266–71.

[12] Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, et al. T-786–>C mutation in the 5’-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 1999;99:2864–70.

[13] Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999;340:115–26.

[14] Gimbrone Jr MA, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016;118:620–36.

[15] Collins SP, Lindsell CJ, Pang PS, Storrow AB, Peacock WF, Levy P, et al. Bayesian adaptive trial design in acute heart failure syndromes: moving beyond the mega trial. Am Heart J 2012;164:138–45.

[16] Kinoshita K, Kawai M, Minai K, Ogawa K, Inoue Y, Yoshimura M. Potent influence of obesity on suppression of plasma B- type natriuretic peptide levels in patients with acute heart failure: an approach using covariance structure analysis. Int J Cardiol 2016;215:283–90.

[17] Modan M, Halkin H, Almog S, Lusky A, Eshkol A, Shefi M, et al. A link between hypertension obesity and glucose intolerance. J Clin Investig 1985;75:809–17.

[18] Dankner R, Chetrit A, Shanik MH, Raz I, Roth J. Basal-state hyperinsulinemia in healthy normoglycemic adults is predictive of type 2 diabetes over a 24-year follow-up: a preliminary report. Diabetes Care 2009;32:1464–6.

[19] Fernandez-Twinn DS, Blackmore HL, Siggens L, Giussani DA, Cross CM, Foo R, et al. The programming of cardiac hypertrophy in the offspring by maternal obesity is associated with hyperinsulinemia, AKT, ERK, and mTOR activation. Endocrinology 2012;153:5961–71.

[20] Fiorentino TV, Prioletta A, Zuo P, Folli F. Hyperglycemia- induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 2013;19:5695–703.

[21] Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol Med 1991;11:81–128.

[22] Halliwell B. Oxidation of low-density lipoproteins: questions of initiation, propagation, and the effect of antioxidants. Am J Clin Nutrit 1995;61:670s–7s.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る