リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Alpha-Arbutin Promotes Wound Healing by Lowering ROS and Upregulating Insulin/IGF-1 Pathway in Human Dermal Fibroblast」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Alpha-Arbutin Promotes Wound Healing by Lowering ROS and Upregulating Insulin/IGF-1 Pathway in Human Dermal Fibroblast

Polouliakh Natalia 横浜市立大学

2021.03.25

概要

1. Introduction
Skin is the body’s largest organ, representing the interface between self and nonself. Skin aging is most prominently caused by extrinsic factors, mainly the permanent exposure of this organ to oxidative environmental stimuli, such as solar radiation, cigarette smoke, and other pollutants.The second most important contributor to skin aging is an intrinsic factor: the age- related mitochondrial enzyme dysfunction that inhibits epidermal regeneration. Skin aging is clinically characterized by water loss, reduced skin thickness, sagging, and wrinkle formation. At the molecular level, skin aging is characterized by reduced procollagen synthesis and degradation of the extracellular matrix, which mainly comprises collagen, glycosaminoglycan, and elastin. Aged skin fibroblasts become detached from the destabilized extracellular matrix, leading to a rounded and collapsed appearance. This in turn upregulates matrix metalloproteinase expression, activating a positive-feedback loop that further accelerates collagen matrix degradation. Based on evidence that oxidative stress plays pivotal roles in both intrinsic and extrinsic aging, it has been suggested that antioxidants may be an efficient means of defense against aging processes. Numerous studies have examined compounds derived from marine and botanical organisms that show cosmetically useful antioxidant and antiaging activities.

2. Methods
Alpha-arbutin (4-hydroxyphenyl alpha-glucopyranoside) is a known inhibitor of tyrosinase in keratinocytes; however, its effect on other genes and pathways in other skin cells has not been thoroughly investigated. In this study, we investigate the mechanism of alpha-arbutin activity in human dermal fibroblast cultures for 48 hours.

3. Results
Results showed that the oxidative stress pathway was activated as alpha-arbutin reduced reactive oxygen species (ROS). In addition, we found a high possibility of wound healing and the upregulation of the insulin-like growth factor 1 receptor (IFG1R) pathway. We also investigated the role of the NRF2 gene in mediating the alpha-arbutin response. In silico comparative genomics analysis conducted using our original tool, SHOE, suggested transcription factors with a role in tumor suppression and toxicity response as candidates for regulating the alpha-arbutin mediated pathway.

4. Conclusions
Our study determined the anti-oxidative activity of alpha-arbutin to the human dermal fibroblast in 48 hours after supplementation. Our study showed that alpha-arbutin enhances the wound healing process in human dermal fibroblasts via activation of the MMP3, EGFR, and COL1A1 genes and suppression of the FOXO1 and SIRT1 genes. We also found that a decrease in ROS activates the Ins/IGF-1 signaling pathway, which is indispensable for the skin autophagic process. Further, thirty-four genes of the oxidative stress pathway undergo significant change upon alpha-arbutin supplementation, and NFE2L2 (Nrf2) gene is a candidate for mediating its external signal. We believe that the positive effect of alpha-arbutin will offer insights into healthy skin maintenance, which, together with oral supplementation, may be crucial in the treatment and prevention of age-susceptible diseases.

参考文献

Bebeshko, V. G., Bruslova, K. M., Pushkareva, T. I., Tsvietkova, N. M., Lyashenko, L. O., Sergeeva, A. S., et al. (2017). Cortisol level as risk factor for malignant hematologic pathology in children exposed to ionizing radiation after Chornobyl accident. Probl. Radiac. Med. Radiobiol. 22, 306–315.

Caley, M. P., Martins, V. L., and O’Toole, E. A. (2015). Metalloproteinases and wound healing. Adv. Wound Care 4, 225–234. doi: 10.1089/wound.2014.0581

Cheng, S. L., Liu, R. H., Sheu, J. N., Chen, S. T., Sinchaikul, S., and Tsay, G. J. (2007). Toxicogenomics of A375 human malignant melanoma cells treated with arbutin. J. Biomed. Sci. 14, 87–105. doi: 10.1007/s11373-006-9130-6

Cho, S., Shin, M. H., Kim, Y. K., Seo, J. E., Lee, Y. M., Park, C. H., et al. (2009). Effects of infrared radiation and heat on human skin aging in vivo. J. Invest. Dermatol. Symp. Proc. 14, 15–19. doi: 10.1038/jidsymp. 2009.7

Dadgar, M., Pouramir, M., Dastan, Z., Ghasemi-Kasman, M., Ashrafpour, M., Moghadamnia, A. A., et al. (2018). Arbutin attenuates behavioral impairment and oxidative stress in an animal model of Parkinson’s disease. Avicenna J. Phytomed. 8, 533–542.

Ding, Y., Kong, D., Zhou, T., Yang, N. D., Xin, C., Xu, J., et al. (2020). Alpha-arbutin protects against Parkinson’s Disease-associated mitochondrial dysfunction in vitro and in vivo. Neuromol. Med. 22, 56–67. doi: 10.1007/ s12017-019-08562-6

Ebadollahi, S. H., Pouramir, M., Zabihi, E., Golpour, M., and Aghajanpour-Mir, M. (2020). The effect of arbutin on the expression of tumor suppressor P53, BAX/BCL-2 ratio and oxidative stress induced by tert-butyl hydroperoxide in fibroblast and LNcap cell lines. Cell J. 22, 532–541. doi: 10.22074/cellj.2021.6902

Funahashi, A., Jouraku, A., Matsuoka, Y., and Kitano, H. (2007). Integration of CellDesigner and SABIO-RK. In Silico Biol. 7(2 Suppl.), S81–S90.

Gross, D. N., Wan, M., and Birnbaum, M. J. (2009). The role of FOXO in the regulation of metabolism. Curr. Diab. Rep. 9, 208–214. doi: 10.1007/s11892- 009-0034-5

Hughes, K. J., Meares, G. P., Hansen, P. A., and Corbett, J. A. (2011). FoxO1 and SIRT1 regulate beta-cell responses to nitric oxide. J. Biol. Chem. 286, 8338–8348. doi: 10.1074/jbc.M110.204768

Jin, S. P., Han, S. B., Kim, Y. K., Park, E. E., Doh, E. J., Kim, K. H., et al. (2016). Changes in tight junction protein expression in intrinsic aging and photoaging in human skin in vivo. J. Dermatol. Sci. 84, 99–101. doi: 10.1016/j.jdermsci.2016. 07.002

Kousteni, S. (2011). FoxO1: a molecule for all seasons. J. Bone Miner Res. 26, 912–917. doi: 10.1002/jbmr.306

Kusukawa, J., Harada, H., Shima, I., Sasaguri, Y., Kameyama, T., and Morimatsu, M. (1996). The significance of epidermal growth factor receptor and matrix metalloproteinase-3 in squamous cell carcinoma of the oral cavity. Eur. J. Cancer B Oral. Oncol. 32B, 217–221. doi: 10.1016/0964-1955(96)00016-4

Li, H., Jeong, Y. M., Kim, S. Y., Kim, M. K., and Kim, D. S. (2011). Arbutin inhibits TCCSUP human bladder cancer cell proliferation via up-regulation of p21. Pharmazie 66, 306–309.

Mori, R., Tanaka, K., de Kerckhove, M., Okamoto, M., Kashiyama, K., Tanaka, K., et al. (2014). Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring. Am. J. Pathol. 184, 2465–2479. doi: 10.1016/j.ajpath.2014. 05.012

Papaconstantinou, J. (2009). Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol. Cell Endocrinol. 299, 89–100. doi: 10.1016/j.mce.2008.11.025

Polouliakh, N., Horton, P., Shibanai, K., Takata, K., Ludwig, V., Ghosh, S., et al. (2018). Sequence homology in eukaryotes (SHOE): interactive visual tool for promoter analysis. BMC Genomics 19:715. doi: 10.1186/s12864-018- 5101-3

Quan, C., Cho, M. K., Perry, D., and Quan, T. (2015). Age-associated reduction of cell spreading induces mitochondrial DNA common deletion by oxidative stress in human skin dermal fibroblasts: implication for human skin connective tissue aging. J. Biomed. Sci. 22:62. doi: 10.1186/s12929-015- 0167-6

Skobowiat, C., Sayre, R. M., Dowdy, J. C., and Slominski, A. T. (2013). Ultraviolet radiation regulates cortisol activity in a waveband-dependent manner in human skin ex vivo. Br. J. Dermatol. 168, 595–601. doi: 10.1111/bjd.12096

Sugimoto, K., Nishimura, T., Nomura, K., Sugimoto, K., and Kuriki, T. (2004). Inhibitory effects of alpha-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biol. Pharm. Bull. 27, 510–514. doi: 10.1248/bpb.27.510

Sugita, K., Altunbulakli, C., Morita, H., Sugita, A., Kubo, T., Kimura, R., et al. (2019). Human type 2 innate lymphoid cells disrupt skin keratinocyte tight junction barrier by IL-13. Allergy 74, 2534–2537. doi: 10.1111/all.13935

Tada, M., Kohno, M., and Niwano, Y. (2014). Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with L-tyrosine and L-DOPA. BMC Biochem. 15:23. doi: 10.1186/1471-2091-15-23

Thongchai, W., Liawruangrath, B., and Liawruangrath, S. (2007). High- performance liquid chromatographic determination of arbutin in skin- whitening creams and medicinal plant extracts. J. Cosmet Sci. 58, 35–44.

van der Veeken, J., Oliveira, S., Schiffelers, R. M., Storm, G., and Roovers, R. C. (2009). Crosstalk between epidermal growth factor receptor- and insulin-like growth factor-1 receptor signaling: implications for cancer therapy. Curr. Cancer Drug Targets 9, 748–760. doi: 10.2174/156800909789271495

Wu, L. H., Li, P., Zhao, Q. L., Piao, J. L., Jiao, Y. F., Kadowaki, M., et al. (2014). Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis 19, 1654–1663. doi: 10. 1007/s10495-014-1032-x

Yoshino, A., Polouliakh, N., Meguro, A., Takeuchi, M., Kawagoe, T., and Mizuki, N. (2016). Chum salmon egg extracts induce upregulation of collagen type I and exert antioxidative effects on human dermal fibroblast cultures. Clin. Interv. Aging 11, 1159–1168. doi: 10.2147/CIA.S102092

Zellmer, S., Schmidt-Heck, W., Godoy, P., Weng, H., Meyer, C., Lehmann, T., et al. (2010). Transcription factors ETF, E2F, and SP-1 are involved in cytokine- independent proliferation of murine hepatocytes. Hepatology 52, 2127–2136. doi: 10.1002/hep.23930

参考文献をもっと見る