リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「コンシューマーエレクトロニクスの紙基板分析デバイスへの統合 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

コンシューマーエレクトロニクスの紙基板分析デバイスへの統合 (本文)

前島, 健人 慶應義塾大学

2020.09.21

概要

1.5節まで、紙の説明から始まりµPADsの誕生、そして現状の技術仕様や課題を説明してきた。その際に時代時代における研究の移り変わり、SWOTおよびPEST分析、CLIA等の規制に重点を置き説明してきた。その流れの中で何度か問題視された課題を、より具体化して3つここに挙げるとする。

・課題1:dPADsにおける容積依存性および長い分析時間の排除がなされていない。
・課題2:目視分析を排除しかつ特別なソフト、アクセサリーを必要としない半定量分析法がこれまでない。
・課題3:量産化に直結するワックス印刷に変わるµPADsの作製方法が提案されていない。

本研究ではこの3点の課題の解決を行い、µPADsの社会実装を前進させることが目的である。しかしながら、単なる既存技術の正当的な進化・発展では限界があり、事実これら上記の課題 は13年にもおよぶµPADs分野での研究において未だにないがしろにされ続けてきた。そこで、 これまでの技術の動向・限界・課題を踏まえつつ、分野横断的な見地から既存の量販基盤での 製品化に成功してきた技術基盤との融合を行うことで、新たな相乗効果を創出し課題解決を目 指す。すなわち市販の電子製品・画像認識・生産技術等の周辺分野からの知見を取り込み、以 下3つの新規手法を提案する。

・提案1:調達が簡便な市販製品であるDVDプレーヤーおよびマイクロコンピューターを用いた、迅速かつ容積秤量可能なdPADsの開発
・提案2:QRコード型µPADsによる半定量分析技術の確立
・提案3:環境負荷が小さく大量生産に適応可能な作製技術の確立
Fig.1-21に本研究のアウトラインを示す。

Chapter 1では、紙やµPADsについての成り立ち、発展、研究の動向および課題についてのまとめ、およびµPADsのSWOT分析、PEST分析やCLIA waiverへの道筋、その他関連している技術の説明を行う。

Chapter 2ではdPADsのための容積秤量及び迅速分析法の開発を行う。本目的の達成のため、安価な DVDプレーヤーとマイクロコンピューターのArduino を用いることで、DVDプレーヤー の遠心力による①流速の迅速化、②流す容積の制御の達成を試みた。ろ紙とラミネートフィル ムを組み合わせて、CD大(φ12 cm)の µPADs(CD-PADs) の作製を実施した。作製には再 現性に優れたワックスプリンター、インクジェットプリンターおよびオートカッターを用いた。このCD-PADsには24個の検体チャンバーおよび検出領域流路が備わっており、最大24個の検体 を同時に測定できる。その結果、従来法では20-45分かかっていた分析が、最短1.5分に短縮さ れた。また、マイクロピペット無しにチャンバーの大きさにて容積を秤量できる、精度もマイ クロピペット使用時と同等またはそれ以上のチャンバーの作製技術を確立した。機能実証とし て、ニッケルイオン(Ni2+)の測定を目的とするCD-PADsのプロトタイプを実施した。Arduinoに よるプログラムにて自動化された回転プロトコルの最適化により、従来のdPADsと比較して最 もLODと測定時間に優れ、CVも同等の分析性能を達成することができた。

Chapter 3 では、スマートフォンによる複数の QRコード検出による半定量分析が可能な µPADs の開発を目指す。使用者が試料を滴下し、表示された QRコードをスマートフォンで読 み取ることで結果を得る。段階的な半定量を達成するため、dPADsと同等の検出原理を採用し た。すなわち、検出領域内に並べられた複数のQRコードの色変化する検体濃度が異なることを 利用して、読取可能なQRコードによって検体濃度を知ることができる。また、別の色へと変色 する比色指示薬の採用のため、変色前の指示薬と同色のマスク色素をQRコードの周りに配置し、 QRコードを”擬態”させる。このマスク色素により変色前のQRコードは読み取れず、変色後に初 めて読取可能となる。A4大に切り取ったろ紙とラミネートフィルムを組み合わせて、QRコード アレイ型µPADsの作製を実施した。作製には再現性に優れたワックスプリンターおよびインク ジェットプリンターを用いた。機能実証として2価の銅イオン(Cu2+)を測定対象としたQRコ ード アレイ型 µPADsのプロトタイプの作製を行い、分析には市販のスマートフォンにて無料で 入手可能なバーコードリーダーアプリを用いた。AndroidやiPhoneといった機種差および室内 光の差異は読取結果に影響せず、またQRコードの配置間隔を変えることで、読取可能濃度の調 整に成功した。

Chapter 4ではインクジェット印刷によるµPADs作製技術の確立を目指す。具体的には、イ ンクジェットプリンターを用いてろ紙基板に疎水性の紫外線硬化性材料を印刷し、その後紫外 線を照射することで紙基板上にマイクロ流路の作製を行う。この際、指示薬も同一のインクジ ェットプリンターを用いて印刷を実施する。紫外線硬化性材料にはOctadecyl acrylate(モノマ ー)、1,10-Decandiol diacrylate(架橋剤および不揮発性溶媒)、Irgacure 651(開始剤)を 最適な配合比で調合し、調製した。これらの材料は揮発性の有機溶媒(VOC)を用いないため、環境負荷が小さく、大量生産に適用しやすいものとなる。また、この紫外線硬化性インクは実 際に幅広い製品に対して産業応用されている技術でもある。機能実証として過酸化水素を測定 対象としたµPADsのプロトタイプの作製を行った。

Chapter 5ではこれまでの結果のまとめ、および将来的な発展の展望を述べる。

この論文で使われている画像

参考文献

(1) 磯貝明. セルロースの科学; 朝倉書店: 東京, 2003; Vol. 初版.

(2) Credou, J.; Berthelot, T. Cellulose: From Biocompatible to Bioactive Material. J. Mater. Chem. B 2014, 2 (30), 4767–4788. https://doi.org/10.1039/C4TB00431K.

(3) Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40 (7), 3941–3994. https://doi.org/10.1039/C0CS00108B.

(4) 磯貝明. セルロースの材料科学, 初版.; 東京大学出版会: 東京, 2001.

(5) Bechtold, T.; Manian, A. P.; Öztürk, H. B.; Paul, U.; Široká, B.; Široký, J.; Soliman, H.; Vo, L. T. T.; Vu- Manh, H. Ion-Interactions as Driving Force in Polysaccharide Assembly. Carbohydrate Polymers 2013, 93 (1), 316–323. https://doi.org/10.1016/j.carbpol.2012.01.064.

(6) Schabel, S.; Biesalski, M. The Role of Paper Chemistry and Paper Manufacture in the Design of Paper- Based Diagnostics. In Paper-based Diagnostics: Current Status and Future Applications; Land, K. J., Ed.; Springer International Publishing: Cham, 2019; pp 23–46. https://doi.org/10.1007/978-3-319-96870- 4_2.

(7) Carlisle, R.; American, S. Scientific American Inventions and Discoveries; ohn Wiley & Sons, Inc.: New Jersey, 2004; Vol. 1.

(8) Comer, J. P. Semiquantitative Specific Test Paper for Glucose in Urine. Anal. Chem. 1956, 28 (11), 1748– 1750. https://doi.org/10.1021/ac60119a030.

(9) Free, A. H.; Adams, E. C.; Kercher, M. L.; Free, H. M.; Cook, M. H. Simple Specific Test for Urine Glucose. Clin Chem 1957, 3 (3), 163–168. https://doi.org/10.1093/clinchem/3.3.163.

(10) Landmark Papers in Clinical Chemistry - 1st Edition https://www.elsevier.com/books/landmark-papers- in-clinical-chemistry/rocco/978-0-444-51950-4 (accessed Mar 25, 2020).

(11) Nery, E. W.; Kubota, L. T. Sensing Approaches on Paper-Based Devices: A Review. Anal Bioanal Chem 2013, 405 (24), 7573–7595. https://doi.org/10.1007/s00216-013-6911-4.

(12) Solid Phase Assay with Visual Readout, February 14, 1984.

(13) Solid Phase Assay Employing Capillary Flow, May 13, 1987.

(14) 倉敷紡績株式会社 バイオメディカル部. 新型コロナウイルス(SARS-CoV-2)抗体検査試薬キット(イムノクロマト法) https://www.kurabo.co.jp/bio/product/products.php?M=D&PID=232 (accessed Mar 25, 2020).

(15) Posthuma-Trumpie, G. A.; Korf, J.; van Amerongen, A. Lateral Flow (Immuno)Assay: Its Strengths, Weaknesses, Opportunities and Threats. A Literature Survey. Anal Bioanal Chem 2009, 393 (2), 569–582. https://doi.org/10.1007/s00216-008-2287-2.

(16) Anfossi, L.; Baggiani, C.; Giovannoli, C.; D’Arco, G.; Giraudi, G. Lateral-Flow Immunoassays for Mycotoxins and Phycotoxins: A Review. Anal Bioanal Chem 2013, 405 (2), 467–480. https://doi.org/10.1007/s00216-012-6033-4.

(17) Chen, A.; Yang, S. Replacing Antibodies with Aptamers in Lateral Flow Immunoassay. Biosensors and Bioelectronics 2015, 71, 230–242. https://doi.org/10.1016/j.bios.2015.04.041.

(18) Shan, S.; Lai, W.; Xiong, Y.; Wei, H.; Xu, H. Novel Strategies To Enhance Lateral Flow Immunoassay Sensitivity for Detecting Foodborne Pathogens. J. Agric. Food Chem. 2015, 63 (3), 745–753. https://doi.org/10.1021/jf5046415.

(19) Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on Microfluidic Paper-Based Analytical Devices towards Commercialisation. Analytica Chimica Acta 2018, 1001, 1–17. https://doi.org/10.1016/j.aca.2017.11.010.

(20) Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on Microfluidic Paper-Based Analytical Devices towards Commercialisation. Analytica Chimica Acta 2018, 1001, 1–17. https://doi.org/10.1016/j.aca.2017.11.010.

(21) Land, K. J.; Smith, S.; Peeling, R. W. Unmet Diagnostics Needs for the Developing World. In Paper- based Diagnostics: Current Status and Future Applications; Land, K. J., Ed.; Springer International Publishing: Cham, 2019; pp 1–21. https://doi.org/10.1007/978-3-319-96870-4_1.

(22) Mahato, K.; Srivastava, A.; Chandra, P. Paper Based Diagnostics for Personalized Health Care: Emerging Technologies and Commercial Aspects. Biosensors and Bioelectronics 2017, 96, 246–259. https://doi.org/10.1016/j.bios.2017.05.001.

(23) Gao, B.; Li, X.; Yang, Y.; Chu, J.; He, B. Emerging Paper Microfluidic Devices. Analyst 2019, 144 (22), 6497–6511. https://doi.org/10.1039/C9AN01275C.

(24) Abe, K.; Kotera, K.; Suzuki, K.; Citterio, D. Inkjet-Printed Paperfluidic Immuno-Chemical Sensing Device. Anal Bioanal Chem 2010, 398 (2), 885–893. https://doi.org/10.1007/s00216-010-4011-2.

(25) Zhang, D.; Gao, B.; Chen, Y.; Liu, H. Converting Colour to Length Based on the Coffee-Ring Effect for Quantitative Immunoassays Using a Ruler as Readout. Lab Chip 2018, 18 (2), 271–275. https://doi.org/10.1039/C7LC01127J.

(26) Hossain, S. M. Z.; Luckham, R. E.; McFadden, M. J.; Brennan, J. D. Reagentless Bidirectional Lateral Flow Bioactive Paper Sensors for Detection of Pesticides in Beverage and Food Samples. Anal. Chem. 2009, 81 (21), 9055–9064. https://doi.org/10.1021/ac901714h.

(27) Mentele, M. M.; Cunningham, J.; Koehler, K.; Volckens, J.; Henry, C. S. Microfluidic Paper-Based Analytical Device for Particulate Metals. Anal. Chem. 2012, 84 (10), 4474–4480. https://doi.org/10.1021/ac300309c.

(28) Cha, R.; Wang, D.; He, Z.; Ni, Y. Development of Cellulose Paper Testing Strips for Quick Measurement of Glucose Using Chromogen Agent. Carbohydrate Polymers 2012, 88 (4), 1414–1419. https://doi.org/10.1016/j.carbpol.2012.02.028.

(29) Evans, E.; Gabriel, E. F. M.; Benavidez, T. E.; Coltro, W. K. T.; Garcia, C. D. Modification of Microfluidic Paper-Based Devices with Silica Nanoparticles. Analyst 2014, 139 (21), 5560–5567. https://doi.org/10.1039/C4AN01147C.

(30) Evans, E.; Gabriel, E. F. M.; Coltro, W. K. T.; Garcia, C. D. Rational Selection of Substrates to Improve Color Intensity and Uniformity on Microfluidic Paper-Based Analytical Devices. Analyst 2014, 139 (9), 2127–2132. https://doi.org/10.1039/C4AN00230J.

(31) Garcia, P. de T.; Cardoso, T. M. G.; Garcia, C. D.; Carrilho, E.; Coltro, W. K. T. A Handheld Stamping Process to Fabricate Microfluidic Paper-Based Analytical Devices with Chemically Modified Surface for Clinical Assays. RSC Adv. 2014, 4 (71), 37637–37644. https://doi.org/10.1039/C4RA07112C.

(32) Wang, J.; Bowie, D.; Zhang, X.; Filipe, C.; Pelton, R.; Brennan, J. D. Morphology and Entrapped Enzyme Performance in Inkjet-Printed Sol–Gel Coatings on Paper. Chem. Mater. 2014, 26 (5), 1941–1947. https://doi.org/10.1021/cm500206s.

(33) Gabriel, E. F. M.; Garcia, P. T.; Cardoso, T. M. G.; Lopes, F. M.; Martins, F. T.; Coltro, W. K. T. Highly Sensitive Colorimetric Detection of Glucose and Uric Acid in Biological Fluids Using Chitosan-Modified Paper Microfluidic Devices. Analyst 2016, 141 (15), 4749–4756. https://doi.org/10.1039/C6AN00430J.

(34) Lam, T.; Devadhasan, J. P.; Howse, R.; Kim, J. A Chemically Patterned Microfluidic Paper-Based Analytical Device (C-ΜPAD) for Point-of-Care Diagnostics. Scientific Reports 2017, 7 (1), 1–10. https://doi.org/10.1038/s41598-017-01343-w.

(35) Kudo, H.; Yamada, K.; Watanabe, D.; Suzuki, K.; Citterio, D. Paper-Based Analytical Device for Zinc Ion Quantification in Water Samples with Power-Free Analyte Concentration. Micromachines 2017, 8 (4), 127. https://doi.org/10.3390/mi8040127.

(36) Park, C.; Han, Y. D.; Kim, H. V.; Lee, J.; Yoon, H. C.; Park, S. Double-Sided 3D Printing on Paper towards Mass Production of Three-Dimensional Paper-Based Microfluidic Analytical Devices (3D- ΜPADs). Lab Chip 2018, 18 (11), 1533–1538. https://doi.org/10.1039/C8LC00367J.

(37) Devadhasan, J. P.; Kim, J. A Chemically Functionalized Paper-Based Microfluidic Platform for Multiplex Heavy Metal Detection. Sensors and Actuators B: Chemical 2018, 273, 18–24. https://doi.org/10.1016/j.snb.2018.06.005.

(38) Jang, H.; Park, J.-H.; Oh, J.; Kim, K.; Kim, M.-G. Advanced Colorimetric Paper Sensors Using Color Focusing Effect Based on Asymmetric Flow of Fluid. ACS Sens. 2019, 4 (4), 1103–1108. https://doi.org/10.1021/acssensors.9b00390.

(39) Li, F.; Wang, X.; Liu, J.; Hu, Y.; He, J. Double-Layered Microfluidic Paper-Based Device with Multiple Colorimetric Indicators for Multiplexed Detection of Biomolecules. Sensors and Actuators B: Chemical 2019, 288, 266–273. https://doi.org/10.1016/j.snb.2019.02.116.

(40) Hilberg, V.; Avrutina, O.; Ebenig, A.; Yanakieva, D.; Meckel, T.; Biesalski, M.; Kolmar, H. Light- Controlled Chemoenzymatic Immobilization of Proteins towards Engineering of Bioactive Papers. Chemistry – A European Journal 2019, 25 (7), 1746–1751. https://doi.org/10.1002/chem.201804889.

(41) Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angewandte Chemie International Edition 2007, 46 (8), 1318–1320. https://doi.org/10.1002/anie.200603817.

(42) Yagoda, H. Applications of Confined Spot Tests in Analytical Chemistry: Preliminary Paper. Ind. Eng. Chem. Anal. Ed. 1937, 9 (2), 79–82. https://doi.org/10.1021/ac50106a012.

(43) Müller, R. H.; Clegg, D. L. Automatic Paper Chromatography. Anal. Chem. 1949, 21 (9), 1123–1125. https://doi.org/10.1021/ac60033a032.

(44) He, Y.; Wu, Y.; Fu, J.-Z.; Wu, W.-B. Fabrication of Paper-Based Microfluidic Analysis Devices: A Review. RSC Adv. 2015, 5 (95), 78109–78127. https://doi.org/10.1039/C5RA09188H.

(45) Sher, M.; Zhuang, R.; Demirci, U.; Asghar, W. Paper-Based Analytical Devices for Clinical Diagnosis: Recent Advances in the Fabrication Techniques and Sensing Mechanisms. Expert Rev Mol Diagn 2017, 17 (4), 351–366. https://doi.org/10.1080/14737159.2017.1285228.

(46) Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward Practical Application of Paper-Based Microfluidics for Medical Diagnostics: State-of-the-Art and Challenges. Lab Chip 2017, 17 (7), 1206–1249. https://doi.org/10.1039/C6LC01577H.

(47) Kar, S.; Das, S. S.; Laha, S.; Chakraborty, S. Microfluidics on Porous Substrates Mediated by Capillarity- Driven Transport. Ind. Eng. Chem. Res. 2020, 59 (9), 3644–3654. https://doi.org/10.1021/acs.iecr.9b04772.

(48) Alsaeed, B.; Mansour, F. R. Distance-Based Paper Microfluidics; Principle, Technical Aspects and Applications. Microchemical Journal 2020, 155, 104664. https://doi.org/10.1016/j.microc.2020.104664.

(49) Liu, W.; Cassano, C. L.; Xu, X.; Fan, Z. H. Laminated Paper-Based Analytical Devices (LPAD) with Origami-Enabled Chemiluminescence Immunoassay for Cotinine Detection in Mouse Serum. Anal. Chem. 2013, 85 (21), 10270–10276. https://doi.org/10.1021/ac402055n.

(50) Renault, C.; Koehne, J.; Ricco, A. J.; Crooks, R. M. Three-Dimensional Wax Patterning of Paper Fluidic Devices. Langmuir 2014, 30 (23), 7030–7036. https://doi.org/10.1021/la501212b.

(51) Fu, E.; Kauffman, P.; Lutz, B.; Yager, P. Chemical Signal Amplification in Two-Dimensional Paper Networks. Sensors and Actuators B: Chemical 2010, 149 (1), 325–328. https://doi.org/10.1016/j.snb.2010.06.024.

(52) Chitnis, G.; Ding, Z.; Chang, C.-L.; Savran, C. A.; Ziaie, B. Laser-Treated Hydrophobic Paper: An Inexpensive Microfluidic Platform. Lab Chip 2011, 11 (6), 1161–1165. https://doi.org/10.1039/C0LC00512F.

(53) Fang, X.; Wei, S.; Kong, J. Paper-Based Microfluidics with High Resolution, Cut on a Glass Fiber Membrane for Bioassays. Lab Chip 2014, 14 (5), 911–915. https://doi.org/10.1039/C3LC51246K.

(54) Fenton, E. M.; Mascarenas, M. R.; López, G. P.; Sibbett, S. S. Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping. ACS Appl. Mater. Interfaces 2009, 1 (1), 124–129. https://doi.org/10.1021/am800043z.

(55) Spicar-Mihalic, P.; Toley, B.; Houghtaling, J.; Liang, T.; Yager, P.; Fu, E. CO2 Laser Cutting and Ablative Etching for the Fabrication of Paper-Based Devices. J. Micromech. Microeng. 2013, 23 (6), 067003. https://doi.org/10.1088/0960-1317/23/6/067003.

(56) Mahmud, M. A.; Blondeel, E. J. M.; Kaddoura, M.; MacDonald, B. D. Features in Microfluidic Paper- Based Devices Made by Laser Cutting: How Small Can They Be? Micromachines 2018, 9 (5), 220. https://doi.org/10.3390/mi9050220.

(57) Martinez, A. W.; Phillips, S. T.; Wiley, B. J.; Gupta, M.; Whitesides, G. M. FLASH: A Rapid Method for Prototyping Paper-Based Microfluidic Devices. Lab Chip 2008, 8 (12), 2146–2150. https://doi.org/10.1039/B811135A.

(58) Carrilho, E.; Phillips, S. T.; Vella, S. J.; Martinez, A. W.; Whitesides, G. M. Paper Microzone Plates. Anal. Chem. 2009, 81 (15), 5990–5998. https://doi.org/10.1021/ac900847g.

(59) Martínez, A. V.; Amengual, A.; de la Peña, E. Pasado, presente y futuro de los sistemas de protección del motociclistas. Securitas Vialis 2010, 2 (1), 3–10. https://doi.org/10.1007/s12615-010-9019-z.

(60) Klasner, S. A.; Price, A. K.; Hoeman, K. W.; Wilson, R. S.; Bell, K. J.; Culbertson, C. T. Paper-Based Microfluidic Devices for Analysis of Clinically Relevant Analytes Present in Urine and Saliva. Anal Bioanal Chem 2010, 397 (5), 1821–1829. https://doi.org/10.1007/s00216-010-3718-4.

(61) Songok, J.; Tuominen, M.; Teisala, H.; Haapanen, J.; Mäkelä, J.; Kuusipalo, J.; Toivakka, M. Paper- Based Microfluidics: Fabrication Technique and Dynamics of Capillary-Driven Surface Flow. ACS Appl. Mater. Interfaces 2014, 6 (22), 20060–20066. https://doi.org/10.1021/am5055806.

(62) OuYang, L.; Wang, C.; Du, F.; Zheng, T.; Liang, H. Electrochromatographic Separations of Multi- Component Metal Complexes on a Microfluidic Paper-Based Device with a Simplified Photolithography. RSC Adv. 2013, 4 (3), 1093–1101. https://doi.org/10.1039/C3RA43625J.

(63) He, Y.; Wu, W.; Fu, J. Rapid Fabrication of Paper-Based Microfluidic Analytical Devices with Desktop Stereolithography 3D Printer. RSC Adv. 2014, 5 (4), 2694–2701. https://doi.org/10.1039/C4RA12165A.

(64) Asano, H.; Shiraishi, Y. Development of Paper-Based Microfluidic Analytical Device for Iron Assay Using Photomask Printed with 3D Printer for Fabrication of Hydrophilic and Hydrophobic Zones on Paper by Photolithography. Analytica Chimica Acta 2015, 883, 55–60. https://doi.org/10.1016/j.aca.2015.04.014.

(65) Xia, Y.; Si, J.; Li, Z. Fabrication Techniques for Microfluidic Paper-Based Analytical Devices and Their Applications for Biological Testing: A Review. Biosensors and Bioelectronics 2016, 77, 774–789. https://doi.org/10.1016/j.bios.2015.10.032.

(66) Bruzewicz, D. A.; Reches, M.; Whitesides, G. M. Low-Cost Printing of Poly(Dimethylsiloxane) Barriers To Define Microchannels in Paper. Anal. Chem. 2008, 80 (9), 3387–3392. https://doi.org/10.1021/ac702605a.

(67) Abe, K.; Suzuki, K.; Citterio, D. Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper. Anal. Chem. 2008, 80 (18), 6928–6934. https://doi.org/10.1021/ac800604v.

(68) Abe, K.; Kotera, K.; Suzuki, K.; Citterio, D. Inkjet-Printed Paperfluidic Immuno-Chemical Sensing Device. Anal Bioanal Chem 2010, 398 (2), 885–893. https://doi.org/10.1007/s00216-010-4011-2.

(69) Songjaroen, T.; Dungchai, W.; Chailapakul, O.; Laiwattanapaisal, W. Novel, Simple and Low-Cost Alternative Method for Fabrication of Paper-Based Microfluidics by Wax Dipping. Talanta 2011, 85 (5), 2587–2593. https://doi.org/10.1016/j.talanta.2011.08.024.

(70) Songjaroen, T.; Dungchai, W.; Chailapakul, O.; Henry, C. S.; Laiwattanapaisal, W. Blood Separation on Microfluidic Paper-Based Analytical Devices. Lab Chip 2012, 12 (18), 3392–3398. https://doi.org/10.1039/C2LC21299D.

(71) Olkkonen, J.; Lehtinen, K.; Erho, T. Flexographically Printed Fluidic Structures in Paper. Anal. Chem. 2010, 82 (24), 10246–10250. https://doi.org/10.1021/ac1027066.

(72) Dungchai, W.; Chailapakul, O.; Henry, C. S. A Low-Cost, Simple, and Rapid Fabrication Method for Paper-Based Microfluidics Using Wax Screen-Printing. Analyst 2010, 136 (1), 77–82. https://doi.org/10.1039/C0AN00406E.

(73) Sameenoi, Y.; Nongkai, P. N.; Nouanthavong, S.; Henry, C. S.; Nacapricha, D. One-Step Polymer Screen-Printing for Microfluidic Paper-Based Analytical Device (ΜPAD) Fabrication. Analyst 2014, 139 (24), 6580–6588. https://doi.org/10.1039/C4AN01624F.

(74) Carrilho, E.; Martinez, A. W.; Whitesides, G. M. Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Anal. Chem. 2009, 81 (16), 7091–7095. https://doi.org/10.1021/ac901071p.

(75) Altundemir, S.; Uguz, A. K.; Ulgen, K. A Review on Wax Printed Microfluidic Paper-Based Devices for International Health. Biomicrofluidics 2017, 11 (4), 041501. https://doi.org/10.1063/1.4991504.

(76) Li, Z.; Yang, J.; Zhu, L.; Tang, W. Fabrication of Paper Micro-Devices with Wax Jetting. RSC Adv. 2016, 6 (22), 17921–17928. https://doi.org/10.1039/C5RA26255K.

(77) Tenda, K.; Ota, R.; Yamada, K.; Henares, T. G.; Suzuki, K.; Citterio, D. High-Resolution Microfluidic Paper-Based Analytical Devices for Sub-Microliter Sample Analysis. Micromachines 2016, 7 (5), 80. https://doi.org/10.3390/mi7050080.

(78) Lu, Y.; Shi, W.; Jiang, L.; Qin, J.; Lin, B. Rapid Prototyping of Paper-Based Microfluidics with Wax for Low-Cost, Portable Bioassay. ELECTROPHORESIS 2009, 30 (9), 1497–1500. https://doi.org/10.1002/elps.200800563.

(79) Curto, V. F.; Lopez-Ruiz, N.; Capitan-Vallvey, L. F.; Palma, A. J.; Benito-Lopez, F.; Diamond, D. Fast Prototyping of Paper-Based Microfluidic Devices by Contact Stamping Using Indelible Ink. RSC Adv. 2013, 3 (41), 18811–18816. https://doi.org/10.1039/C3RA43825B.

(80) Akyazi, T.; Saez, J.; Elizalde, J.; Benito-Lopez, F. Fluidic Flow Delay by Ionogel Passive Pumps in Microfluidic Paper-Based Analytical Devices. Sensors and Actuators B: Chemical 2016, 233, 402–408. https://doi.org/10.1016/j.snb.2016.04.116.

(81) Li, X.; Tian, J.; Nguyen, T.; Shen, W. Paper-Based Microfluidic Devices by Plasma Treatment. Anal. Chem. 2008, 80 (23), 9131–9134. https://doi.org/10.1021/ac801729t.

(82) Li, X.; Tian, J.; Shen, W. Progress in Patterned Paper Sizing for Fabrication of Paper-Based Microfluidic Sensors. Cellulose 2010, 17 (3), 649–659. https://doi.org/10.1007/s10570-010-9401-2.

(83) Kao, P.-K.; Hsu, C.-C. One-Step Rapid Fabrication of Paper-Based Microfluidic Devices Using Fluorocarbon Plasma Polymerization. Microfluid Nanofluid 2014, 16 (5), 811–818. https://doi.org/10.1007/s10404-014-1347-5.

(84) Delaney, J. L.; Hogan, C. F.; Tian, J.; Shen, W. Electrogenerated Chemiluminescence Detection in Paper- Based Microfluidic Sensors. Anal. Chem. 2011, 83 (4), 1300–1306. https://doi.org/10.1021/ac102392t.

(85) Maejima, K.; Tomikawa, S.; Suzuki, K.; Citterio, D. Inkjet Printing: An Integrated and Green Chemical Approach to Microfluidic Paper-Based Analytical Devices. RSC Adv. 2013, 3 (24), 9258–9263. https://doi.org/10.1039/C3RA40828K.

(86) Li, X.; Tian, J.; Garnier, G.; Shen, W. Fabrication of Paper-Based Microfluidic Sensors by Printing. Colloids and Surfaces B: Biointerfaces 2010, 76 (2), 564–570. https://doi.org/10.1016/j.colsurfb.2009.12.023.

(87) Wang, J.; Monton, M. R. N.; Zhang, X.; Filipe, C. D. M.; Pelton, R.; Brennan, J. D. Hydrophobic Sol–Gel Channel Patterning Strategies for Paper-Based Microfluidics. Lab Chip 2014, 14 (4), 691–695. https://doi.org/10.1039/C3LC51313K.

(88) Xu, C.; Cai, L.; Zhong, M.; Zheng, S. Low-Cost and Rapid Prototyping of Microfluidic Paper-Based Analytical Devices by Inkjet Printing of Permanent Marker Ink. RSC Adv. 2014, 5 (7), 4770–4773. https://doi.org/10.1039/C4RA13195A.

(89) Haller, P. D.; Flowers, C. A.; Gupta, M. Three-Dimensional Patterning of Porous Materials Using Vapor Phase Polymerization. Soft Matter 2011, 7 (6), 2428–2432. https://doi.org/10.1039/C0SM01214A.

(90) Kwong, P.; Gupta, M. Vapor Phase Deposition of Functional Polymers onto Paper-Based Microfluidic Devices for Advanced Unit Operations. Anal. Chem. 2012, 84 (22), 10129–10135. https://doi.org/10.1021/ac302861v.

(91) Demirel, G.; Babur, E. Vapor-Phase Deposition of Polymers as a Simple and Versatile Technique to Generate Paper-Based Microfluidic Platforms for Bioassay Applications. Analyst 2014, 139 (10), 2326–2331. https://doi.org/10.1039/C4AN00022F.

(92) Cai, L.; Xu, C.; Lin, S.; Luo, J.; Wu, M.; Yang, F. A Simple Paper-Based Sensor Fabricated by Selective Wet Etching of Silanized Filter Paper Using a Paper Mask. Biomicrofluidics 2014, 8 (5), 056504. https://doi.org/10.1063/1.4898096.

(93) Jiang, Y.; Hao, Z.; He, Q.; Chen, H. A Simple Method for Fabrication of Microfluidic Paper-Based Analytical Devices and on-Device Fluid Control with a Portable Corona Generator. RSC Adv. 2016, 6 (4), 2888–2894. https://doi.org/10.1039/C5RA23470K.

(94) Strong, E. B.; Schultz, S. A.; Martinez, A. W.; Martinez, N. W. Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs). Scientific Reports 2019, 9 (1), 1–9. https://doi.org/10.1038/s41598-018-37029-0.

(95) Kudo, H.; Maejima, K.; Hiruta, Y.; Citterio, D. Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin. SLAS TECHNOLOGY 2020, 25 (1), 47–57.

(96) Fava, E. L.; Silva, T. A.; Prado, T. M. do; Moraes, F. C. de; Faria, R. C.; Fatibello-Filho, O. Electrochemical Paper-Based Microfluidic Device for High Throughput Multiplexed Analysis. Talanta 2019, 203, 280–286. https://doi.org/10.1016/j.talanta.2019.05.081.

(97) Ozer, T.; McMahon, C.; Henry, C. S. Advances in Paper-Based Analytical Devices. Annual Review of Analytical Chemistry 2020, 13 (1), null. https://doi.org/10.1146/annurev-anchem-061318-114845.

(98) Chiang, C.-K.; Kurniawan, A.; Kao, C.-Y.; Wang, M.-J. Single Step and Mask-Free 3D Wax Printing of Microfluidic Paper-Based Analytical Devices for Glucose and Nitrite Assays. Talanta 2019, 194, 837– 845. https://doi.org/10.1016/j.talanta.2018.10.104.

(99) Hossain, S. M. Z.; Luckham, R. E.; Smith, A. M.; Lebert, J. M.; Davies, L. M.; Pelton, R. H.; Filipe, C. D. M.; Brennan, J. D. Development of a Bioactive Paper Sensor for Detection of Neurotoxins Using Piezoelectric Inkjet Printing of Sol−Gel-Derived Bioinks. Anal. Chem. 2009, 81 (13), 5474–5483. https://doi.org/10.1021/ac900660p.

(100) Li, X.; Tian, J.; Garnier, G.; Shen, W. Fabrication of Paper-Based Microfluidic Sensors by Printing. Colloids and Surfaces B: Biointerfaces 2010, 76 (2), 564–570. https://doi.org/10.1016/j.colsurfb.2009.12.023.

(101) Hossain, S. M. Z.; Brennan, J. D. β-Galactosidase-Based Colorimetric Paper Sensor for Determination of Heavy Metals. Anal. Chem. 2011, 83 (22), 8772–8778. https://doi.org/10.1021/ac202290d.

(102) Hossain, S. M. Z.; Ozimok, C.; Sicard, C.; Aguirre, S. D.; Ali, M. M.; Li, Y.; Brennan, J. D. Multiplexed Paper Test Strip for Quantitative Bacterial Detection. Anal Bioanal Chem 2012, 403 (6), 1567–1576. https://doi.org/10.1007/s00216-012-5975-x.

(103) Apilux, A.; Ukita, Y.; Chikae, M.; Chailapakul, O.; Takamura, Y. Development of Automated Paper- Based Devices for Sequential Multistep Sandwich Enzyme-Linked Immunosorbent Assays Using Inkjet Printing. Lab Chip 2012, 13 (1), 126–135. https://doi.org/10.1039/C2LC40690J.

(104) Soga, T.; Jimbo, Y.; Suzuki, K.; Citterio, D. Inkjet-Printed Paper-Based Colorimetric Sensor Array for the Discrimination of Volatile Primary Amines. Anal. Chem. 2013, 85 (19), 8973–8978. https://doi.org/10.1021/ac402070z.

(105) Jayawardane, B. M.; Wei, S.; McKelvie, I. D.; Kolev, S. D. Microfluidic Paper-Based Analytical Device for the Determination of Nitrite and Nitrate. Anal. Chem. 2014, 86 (15), 7274–7279. https://doi.org/10.1021/ac5013249.

(106) Creran, B.; Li, X.; Duncan, B.; Kim, C. S.; Moyano, D. F.; Rotello, V. M. Detection of Bacteria Using Inkjet-Printed Enzymatic Test Strips. ACS Appl. Mater. Interfaces 2014, 6 (22), 19525–19530. https://doi.org/10.1021/am505689g.

(107) Zhang, Y.; Lyu, F.; Ge, J.; Liu, Z. Ink-Jet Printing an Optimal Multi-Enzyme System. Chem. Commun. 2014, 50 (85), 12919–12922. https://doi.org/10.1039/C4CC06158F.

(108) Yamada, K.; Takaki, S.; Komuro, N.; Suzuki, K.; Citterio, D. An Antibody-Free Microfluidic Paper- Based Analytical Device for the Determination of Tear Fluid Lactoferrin by Fluorescence Sensitization of Tb3+. Analyst 2014, 139 (7), 1637–1643. https://doi.org/10.1039/C3AN01926H.

(109) Cate, D. M.; Noblitt, S. D.; Volckens, J.; Henry, C. S. Multiplexed Paper Analytical Device for Quantification of Metals Using Distance-Based Detection. Lab Chip 2015, 15 (13), 2808–2818. https://doi.org/10.1039/C5LC00364D.

(110) Yamada, K.; Henares, T. G.; Suzuki, K.; Citterio, D. Paper-Based Inkjet-Printed Microfluidic Analytical Devices. Angewandte Chemie International Edition 2015, 54 (18), 5294–5310. https://doi.org/10.1002/anie.201411508.

(111) Yamada, K.; Suzuki, K.; Citterio, D. Text-Displaying Colorimetric Paper-Based Analytical Device. ACS Sens. 2017, 2 (8), 1247–1254. https://doi.org/10.1021/acssensors.7b00464.

(112) Ruecha, N.; Chailapakul, O.; Suzuki, K.; Citterio, D. Fully Inkjet-Printed Paper-Based Potentiometric Ion-Sensing Devices. Anal. Chem. 2017, 89 (19), 10608–10616. https://doi.org/10.1021/acs.analchem.7b03177.

(113) Henares, T. G.; Yamada, K.; Takaki, S.; Suzuki, K.; Citterio, D. “Drop-Slip” Bulk Sample Flow on Fully Inkjet-Printed Microfluidic Paper-Based Analytical Device. Sensors and Actuators B: Chemical 2017, 244, 1129–1137. https://doi.org/10.1016/j.snb.2017.01.088.

(114) Soda, Y.; Shibata, H.; Yamada, K.; Suzuki, K.; Citterio, D. Selective Detection of K+ by Ion-Selective Optode Nanoparticles on Cellulosic Filter Paper Substrates. ACS Appl. Nano Mater. 2018, 1 (4), 1792– 1800. https://doi.org/10.1021/acsanm.8b00222.

(115) Hamedpour, V.; Leardi, R.; Suzuki, K.; Citterio, D. Fabrication of Paper-Based Analytical Devices Optimized by Central Composite Design. Analyst 2018, 143 (9), 2102–2108. https://doi.org/10.1039/C8AN00332G.

(116) Hamedpour, V.; Postma, G. J.; van den Heuvel, E.; Jansen, J. J.; Suzuki, K.; Citterio, D. Chemometrics- Assisted Microfluidic Paper-Based Analytical Device for the Determination of Uric Acid by Silver Nanoparticle Plasmon Resonance. Anal Bioanal Chem 2018, 410 (9), 2305–2313. https://doi.org/10.1007/s00216-018-0879-z.

(117) Yamada, K.; Citterio, D.; Henry, C. S. “Dip-and-Read” Paper-Based Analytical Devices Using Distance- Based Detection with Color Screening. Lab Chip 2018, 18 (10), 1485–1493. https://doi.org/10.1039/C8LC00168E.

(118) Kuwahara, K.; Yamada, K.; Suzuki, K.; Citterio, D. Simplified Determination of Complex Stoichiometry for Colorimetric Metal Indicators by Inkjet Printing. Analyst 2018, 143 (5), 1234–1241. https://doi.org/10.1039/C7AN01962A.

(119) Ota, R.; Yamada, K.; Suzuki, K.; Citterio, D. Quantitative Evaluation of Analyte Transport on Microfluidic Paper-Based Analytical Devices (ΜPADs). Analyst 2018, 143 (3), 643–653. https://doi.org/10.1039/C7AN01702B.

(120) Shibata, H.; Hiruta, Y.; Citterio, D. Fully Inkjet-Printed Distance-Based Paper Microfluidic Devices for Colorimetric Calcium Determination Using Ion-Selective Optodes. Analyst 2019, 144 (4), 1178–1186. https://doi.org/10.1039/C8AN02146E.

(121) Komuro, N.; Takaki, S.; Suzuki, K.; Citterio, D. Inkjet Printed (Bio)Chemical Sensing Devices. Anal Bioanal Chem 2013, 405 (17), 5785–5805. https://doi.org/10.1007/s00216-013-7013-z.

(122) Cassano, C. L.; Fan, Z. H. Laminated Paper-Based Analytical Devices (LPAD): Fabrication, Characterization, and Assays. Microfluid Nanofluid 2013, 15 (2), 173–181. https://doi.org/10.1007/s10404-013-1140-x.

(123) Thompson, B. L.; Ouyang, Y.; Duarte, G. R. M.; Carrilho, E.; Krauss, S. T.; Landers, J. P. Inexpensive, Rapid Prototyping of Microfluidic Devices Using Overhead Transparencies and a Laser Print, Cut and Laminate Fabrication Method. Nature Protocols 2015, 10 (6), 875–886. https://doi.org/10.1038/nprot.2015.051.

(124) Channon, R. B.; Srisa-Art, M.; Boehle, K.; Henry, C. Critical Components and Innovations in Paper- Based Analytical Devices. In Paper-based Diagnostics: Current Status and Future Applications; Land, K. J., Ed.; Springer International Publishing: Cham, 2019; pp 47–87. https://doi.org/10.1007/978-3-319- 96870-4_3.

(125) Fu, L.-M.; Wang, Y.-N. Detection Methods and Applications of Microfluidic Paper-Based Analytical Devices. TrAC Trends in Analytical Chemistry 2018, 107, 196–211. https://doi.org/10.1016/j.trac.2018.08.018.

(126) Xu, Y.; Liu, M.; Kong, N.; Liu, J. Lab-on-Paper Micro- and Nano-Analytical Devices: Fabrication, Modification, Detection and Emerging Applications. Microchim Acta 2016, 183 (5), 1521–1542. https://doi.org/10.1007/s00604-016-1841-4.

(127) Fu, E. Enabling Robust Quantitative Readout in an Equipment-Free Model of Device Development. Analyst 2014, 139 (19), 4750–4757. https://doi.org/10.1039/C4AN01003E.

(128) Lewis, G. G.; DiTucci, M. J.; Phillips, S. T. Quantifying Analytes in Paper-Based Microfluidic Devices Without Using External Electronic Readers. Angewandte Chemie International Edition 2012, 51 (51), 12707–12710. https://doi.org/10.1002/anie.201207239.

(129) Jeong, S.-G.; Lee, S.-H.; Choi, C.-H.; Kim, J.; Lee, C.-S. Toward Instrument-Free Digital Measurements: A Three-Dimensional Microfluidic Device Fabricated in a Single Sheet of Paper by Double-Sided Printing and Lamination. Lab Chip 2015, 15 (4), 1188–1194. https://doi.org/10.1039/C4LC01382D.

(130) Zhang, Y.; Fan, J.; Nie, J.; Le, S.; Zhu, W.; Gao, D.; Yang, J.; Zhang, S.; Li, J. Timing Readout in Paper Device for Quantitative Point-of-Use Hemin/G-Quadruplex DNAzyme-Based Bioassays. Biosensors and Bioelectronics 2015, 73, 13–18. https://doi.org/10.1016/j.bios.2015.04.081.

(131) Cate, D. M.; Dungchai, W.; Cunningham, J. C.; Volckens, J.; Henry, C. S. Simple, Distance-Based Measurement for Paper Analytical Devices. Lab Chip 2013, 13 (12), 2397–2404. https://doi.org/10.1039/C3LC50072A.

(132) Tian, T.; Bi, Y.; Xu, X.; Zhu, Z.; Yang, C. Integrated Paper-Based Microfluidic Devices for Point-of-Care Testing. Anal. Methods 2018, 10 (29), 3567–3581. https://doi.org/10.1039/C8AY00864G.

(133) Chung, S.; Jennings, C. M.; Yoon, J.-Y. Distance versus Capillary Flow Dynamics-Based Detection Methods on a Microfluidic Paper-Based Analytical Device (ΜPAD). Chemistry – A European Journal 2019, 25 (57), 13070–13077. https://doi.org/10.1002/chem.201901514.

(134) Karita, S.; Kaneta, T. Acid–Base Titrations Using Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2014, 86 (24), 12108–12114. https://doi.org/10.1021/ac5039384.

(135) Karita, S.; Kaneta, T. Chelate Titrations of Ca2+ and Mg2+ Using Microfluidic Paper-Based Analytical Devices. Analytica Chimica Acta 2016, 924, 60–67. https://doi.org/10.1016/j.aca.2016.04.019.

(136) Lewis, G. G.; Robbins, J. S.; Phillips, S. T. Point-of-Care Assay Platform for Quantifying Active Enzymes to Femtomolar Levels Using Measurements of Time as the Readout. Anal. Chem. 2013, 85 (21), 10432–10439. https://doi.org/10.1021/ac402415v.

(137) Lewis, G. G.; Robbins, J. S.; Phillips, S. T. A Prototype Point-of-Use Assay for Measuring Heavy Metal Contamination in Water Using Time as a Quantitative Readout. Chem. Commun. 2014, 50 (40), 5352– 5354. https://doi.org/10.1039/C3CC47698G.

(138) Fu, E. Enabling Robust Quantitative Readout in an Equipment-Free Model of Device Development. Analyst 2014, 139 (19), 4750–4757. https://doi.org/10.1039/C4AN01003E.

(139) Taprab, N.; Sameenoi, Y. Rapid Screening of Formaldehyde in Food Using Paper-Based Titration. Analytica Chimica Acta 2019, 1069, 66–72. https://doi.org/10.1016/j.aca.2019.03.063.

(140) Magro, L.; Escadafal, C.; Garneret, P.; Jacquelin, B.; Kwasiborski, A.; Manuguerra, J.-C.; Monti, F.; Sakuntabhai, A.; Vanhomwegen, J.; Lafaye, P.; Tabeling, P. Paper Microfluidics for Nucleic Acid Amplification Testing (NAAT) of Infectious Diseases. Lab Chip 2017, 17 (14), 2347–2371. https://doi.org/10.1039/C7LC00013H.

(141) WHO | Consolidated guidelines on HIV testing services http://www.who.int/hiv/pub/guidelines/hiv- testing-services/en/ (accessed Apr 2, 2020).

(142) Mabey, D.; Peeling, R. W.; Ustianowski, A.; Perkins, M. D. Diagnostics for the Developing World. Nature Reviews Microbiology 2004, 2 (3), 231–240. https://doi.org/10.1038/nrmicro841.

(143) Land, K. J.; Boeras, D. I.; Chen, X.-S.; Ramsay, A. R.; Peeling, R. W. REASSURED Diagnostics to Inform Disease Control Strategies, Strengthen Health Systems and Improve Patient Outcomes. Nature Microbiology 2019, 4 (1), 46–54. https://doi.org/10.1038/s41564-018-0295-3.

(144) Smith, S.; Korvink, J. G.; Mager, D.; Land, K. The Potential of Paper-Based Diagnostics to Meet the ASSURED Criteria. RSC Adv. 2018, 8 (59), 34012–34034. https://doi.org/10.1039/C8RA06132G.

(145) Kappi, F. A.; Tsogas, G. Z.; Christodouleas, D. C.; Giokas, D. L. Calibrant-Loaded Paper-Based Analytical Devices for Standard Addition Quantitative Assays. Sensors and Actuators B: Chemical 2017, 253, 860–867. https://doi.org/10.1016/j.snb.2017.07.007.

(146) Wei, X.; Tian, T.; Jia, S.; Zhu, Z.; Ma, Y.; Sun, J.; Lin, Z.; Yang, C. J. Microfluidic Distance Readout Sweet Hydrogel Integrated Paper-Based Analytical Device (ΜDiSH-PAD) for Visual Quantitative Point- of-Care Testing. Anal. Chem. 2016, 88 (4), 2345–2352. https://doi.org/10.1021/acs.analchem.5b04294.

(147) Wang, T.; Xu, G.; Wu, W.; Wang, X.; Chen, X.; Zhou, S.; You, F. A Novel Combination of Quick Response Code and Microfluidic Paper-Based Analytical Devices for Rapid and Quantitative Detection. Biomed Microdevices 2018, 20 (3), 79. https://doi.org/10.1007/s10544-018-0325-1.

(148) Tenda, K.; van Gerven, B.; Arts, R.; Hiruta, Y.; Merkx, M.; Citterio, D. Paper-Based Antibody Detection Devices Using Bioluminescent BRET-Switching Sensor Proteins. Angewandte Chemie International Edition 2018, 57 (47), 15369–15373. https://doi.org/10.1002/anie.201808070.

(149) Washburn, E. W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17 (3), 273–283. https://doi.org/10.1103/PhysRev.17.273.

(150) DARCY, H. P. G. Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc; V. Dalamont, 1856.

(151) Liu, Z.; He, X.; Han, J.; Zhang, X.; Li, F.; Li, A.; Qu, Z.; Xu, F. Liquid Wicking Behavior in Paper-like Materials: Mathematical Models and Their Emerging Biomedical Applications. Microfluid Nanofluid 2018, 22 (11), 132. https://doi.org/10.1007/s10404-018-2151-4.

(152) Jeong, S.-G.; Kim, J.; Jin, S. H.; Park, K.-S.; Lee, C.-S. Flow Control in Paper-Based Microfluidic Device for Automatic Multistep Assays: A Focused Minireview. Korean J. Chem. Eng. 2016, 33 (10), 2761– 2770. https://doi.org/10.1007/s11814-016-0161-z.

(153) Giokas, D. L.; Tsogas, G. Z.; Vlessidis, A. G. Programming Fluid Transport in Paper-Based Microfluidic Devices Using Razor-Crafted Open Channels. Anal. Chem. 2014, 86 (13), 6202–6207. https://doi.org/10.1021/ac501273v.

(154) Renault, C.; Li, X.; Fosdick, S. E.; Crooks, R. M. Hollow-Channel Paper Analytical Devices. Anal. Chem. 2013, 85 (16), 7976–7979. https://doi.org/10.1021/ac401786h.

(155) B. Channon, R.; P. Nguyen, M.; G. Scorzelli, A.; M. Henry, E.; Volckens, J.; S. Dandy, D.; S. Henry, C. Rapid Flow in Multilayer Microfluidic Paper-Based Analytical Devices. Lab on a Chip 2018, 18 (5), 793– 802. https://doi.org/10.1039/C7LC01300K.

(156) Shou, D.; Fan, J. Design of Nanofibrous and Microfibrous Channels for Fast Capillary Flow. Langmuir 2018, 34 (4), 1235–1241. https://doi.org/10.1021/acs.langmuir.7b01797.

(157) Songok, J.; Toivakka, M. Controlling Capillary-Driven Surface Flow on a Paper-Based Microfluidic Channel. Microfluid Nanofluid 2016, 20 (4), 63. https://doi.org/10.1007/s10404-016-1726-1.

(158) Camplisson, C. K.; Schilling, K. M.; Pedrotti, W. L.; Stone, H. A.; Martinez, A. W. Two-Ply Channels for Faster Wicking in Paper-Based Microfluidic Devices. Lab Chip 2015, 15 (23), 4461–4466. https://doi.org/10.1039/C5LC01115A.

(159) Liu, Q.; Xu, C.; Liang, H. Laser Carved Micro-Crack Channels in Paper-Based Dilution Devices. Talanta 2017, 175, 289–296. https://doi.org/10.1016/j.talanta.2017.07.009.

(160) Glavan, A. C.; Martinez, R. V.; Maxwell, E. J.; Subramaniam, A. B.; Nunes, R. M. D.; Soh, S.; Whitesides, G. M. Rapid Fabrication of Pressure-Driven Open-Channel Microfluidic Devices in Omniphobic RF Paper. Lab Chip 2013, 13 (15), 2922–2930. https://doi.org/10.1039/C3LC50371B.

(161) Shin, J.-H.; Lee, G.-J.; Kim, W.; Choi, S. A Stand-Alone Pressure-Driven 3D Microfluidic Chemical Sensing Analytic Device. Sensors and Actuators B: Chemical 2016, 230, 380–387. https://doi.org/10.1016/j.snb.2016.02.085.

(162) Mendez, S.; Fenton, E. M.; Gallegos, G. R.; Petsev, D. N.; Sibbett, S. S.; Stone, H. A.; Zhang, Y.; López, G. P. Imbibition in Porous Membranes of Complex Shape: Quasi-Stationary Flow in Thin Rectangular Segments. Langmuir 2010, 26 (2), 1380–1385. https://doi.org/10.1021/la902470b.

(163) Madou, M.; Zoval, J.; Jia, G.; Kido, H.; Kim, J.; Kim, N. Lab on a Cd. Annu. Rev. Biomed. Eng. 2006, 8 (1), 601–628. https://doi.org/10.1146/annurev.bioeng.8.061505.095758.

(164) Kong, L. X.; Perebikovsky, A.; Moebius, J.; Kulinsky, L.; Madou, M. Lab-on-a-CD: A Fully Integrated Molecular Diagnostic System. J Lab Autom. 2016, 21 (3), 323–355. https://doi.org/10.1177/2211068215588456.

(165) Wiederoder, M. S.; Smith, S.; Madzivhandila, P.; Mager, D.; Moodley, K.; DeVoe, D. L.; Land, K. J. Novel Functionalities of Hybrid Paper-Polymer Centrifugal Devices for Assay Performance Enhancement. Biomicrofluidics 2017, 11 (5), 054101. https://doi.org/10.1063/1.5002644.

(166) Shen, M.; Chen, Y.; Zhu, Y.; Zhao, M.; Xu, Y. Enhancing the Sensitivity of Lateral Flow Immunoassay by Centrifugation-Assisted Flow Control. Anal. Chem. 2019, 91 (7), 4814–4820. https://doi.org/10.1021/acs.analchem.9b00421.

(167) Fu, E.; Downs, C. Progress in the Development and Integration of Fluid Flow Control Tools in Paper Microfluidics. Lab Chip 2017, 17 (4), 614–628. https://doi.org/10.1039/C6LC01451H.

(168) Noh, H.; Phillips, S. T. Metering the Capillary-Driven Flow of Fluids in Paper-Based Microfluidic Devices. Anal. Chem. 2010, 82 (10), 4181–4187. https://doi.org/10.1021/ac100431y.

(169) Noh, H.; Phillips, S. T. Fluidic Timers for Time-Dependent, Point-of-Care Assays on Paper. Anal. Chem. 2010, 82 (19), 8071–8078. https://doi.org/10.1021/ac1005537.

(170) Weng, C.-H.; Chen, M.-Y.; Shen, C.-H.; Yang, R.-J. Colored Wax-Printed Timers for Two-Dimensional and Three-Dimensional Assays on Paper-Based Devices. Biomicrofluidics 2014, 8 (6), 066502. https://doi.org/10.1063/1.4902246.

(171) Shin, J. H.; Park, J.; Kim, S. H.; Park, J.-K. Programmed Sample Delivery on a Pressurized Paper. Biomicrofluidics 2014, 8 (5), 054121. https://doi.org/10.1063/1.4899773.

(172) Fu, E.; Lutz, B.; Kauffman, P.; Yager, P. Controlled Reagent Transport in Disposable 2D Paper Networks. Lab Chip 2010, 10 (7), 918. https://doi.org/10.1039/b919614e.

(173) Lutz, B.; Liang, T.; Fu, E.; Ramachandran, S.; Kauffman, P.; Yager, P. Dissolvable Fluidic Time Delays for Programming Multi-Step Assays in Instrument-Free Paper Diagnostics. Lab Chip 2013, 13 (14), 2840–2847. https://doi.org/10.1039/C3LC50178G.

(174) Toley, B. J.; McKenzie, B.; Liang, T.; Buser, J. R.; Yager, P.; Fu, E. Tunable-Delay Shunts for Paper Microfluidic Devices. Anal. Chem. 2013, 85 (23), 11545–11552. https://doi.org/10.1021/ac4030939.

(175) Silva, E. T. S. G. da; Santhiago, M.; Souza, F. R. de; Coltro, W. K. T.; Kubota, L. T. Triboelectric Effect as a New Strategy for Sealing and Controlling the Flow in Paper-Based Devices. Lab Chip 2015, 15 (7), 1651–1655. https://doi.org/10.1039/C5LC00022J.

(176) Jahanshahi-Anbuhi, S.; Chavan, P.; Sicard, C.; Leung, V.; Hossain, S. M. Z.; Pelton, R.; Brennan, J. D.; Filipe, C. D. M. Creating Fast Flow Channels in Paper Fluidic Devices to Control Timing of Sequential Reactions. Lab Chip 2012, 12 (23), 5079–5085. https://doi.org/10.1039/C2LC41005B.

(177) Shangguan, J.-W.; Liu, Y.; Wang, S.; Hou, Y.-X.; Xu, B.-Y.; Xu, J.-J.; Chen, H.-Y. Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices. ACS Sens. 2018, 3 (7), 1416– 1423. https://doi.org/10.1021/acssensors.8b00335.

(178) Mutlu, A. Y.; Kılıç, V.; Özdemir, G. K.; Bayram, A.; Horzum, N.; Solmaz, M. E. Smartphone-Based Colorimetric Detection via Machine Learning. Analyst 2017, 142 (13), 2434–2441. https://doi.org/10.1039/C7AN00741H.

(179) Kong, T.; You, J. B.; Zhang, B.; Nguyen, B.; Tarlan, F.; Jarvi, K.; Sinton, D. Accessory-Free Quantitative Smartphone Imaging of Colorimetric Paper-Based Assays. Lab Chip 2019, 19 (11), 1991–1999. https://doi.org/10.1039/C9LC00165D.

(180) Guo, J.; Wong, J. X. H.; Cui, C.; Li, X.; Yu, H.-Z. A Smartphone-Readable Barcode Assay for the Detection and Quantitation of Pesticide Residues. Analyst 2015, 140 (16), 5518–5525. https://doi.org/10.1039/C5AN00874C.

(181) Yang, M.; Zhang, W.; Yang, J.; Hu, B.; Cao, F.; Zheng, W.; Chen, Y.; Jiang, X. Skiving Stacked Sheets of Paper into Test Paper for Rapid and Multiplexed Assay. Sci Adv 2017, 3 (12). https://doi.org/10.1126/sciadv.aao4862.

(182) Yang, M.; Zhang, W.; Zheng, W.; Cao, F.; Jiang, X. Inkjet-Printed Barcodes for a Rapid and Multiplexed Paper-Based Assay Compatible with Mobile Devices. Lab Chip 2017, 17 (22), 3874–3882. https://doi.org/10.1039/C7LC00780A.

(183) Mthembu, C. L.; Sabela, M. I.; Mlambo, M.; Madikizela, L. M.; Kanchi, S.; Gumede, H.; Mdluli, P. S. Google Analytics and Quick Response for Advancement of Gold Nanoparticle-Based Dual Lateral Flow Immunoassay for Malaria – Plasmodium Lactate Dehydrogenase (PLDH). Anal. Methods 2017, 9 (41), 5943–5951. https://doi.org/10.1039/C7AY01645J.

(184) Scherr, T. F.; Gupta, S.; Wright, D. W.; Haselton, F. R. An Embedded Barcode for “Connected” Malaria Rapid Diagnostic Tests. Lab Chip 2017, 17 (7), 1314–1322. https://doi.org/10.1039/C6LC01580H.

(185) Burklund, A.; Saturley-Hall, H. K.; Franchina, F. A.; Hill, J. E.; Zhang, J. X. J. Printable QR Code Paper Microfluidic Colorimetric Assay for Screening Volatile Biomarkers. Biosensors and Bioelectronics 2019, 128, 97–103. https://doi.org/10.1016/j.bios.2018.12.026.

(186) Salles, M. O.; Meloni, G. N.; Araujo, W. R. de; Paixão, T. R. L. C. Explosive Colorimetric Discrimination Using a Smartphone, Paper Device and Chemometrical Approach. Anal. Methods 2014, 6 (7), 2047–2052. https://doi.org/10.1039/C3AY41727A.

(187) Muhammad-aree, S.; Teepoo, S. On-Site Detection of Heavy Metals in Wastewater Using a Single Paper Strip Integrated with a Smartphone. Anal Bioanal Chem 2020, 412 (6), 1395–1405. https://doi.org/10.1007/s00216-019-02369-x.

(188) Rothaermel, F. T. Competitive Advantage in Technology Intensive Industries. In Technological Innovation: Generating Economic Results; Advances in the Study of Entrepreneurship, Innovation and Economic Growth; Emerald Group Publishing Limited, 2016; Vol. 26, pp 233–256. https://doi.org/10.1108/S1048-473620160000026008.

(189) Recommendations for Clinical Laboratory Improvement Amendments of 1988 (CLIA) Waiver Applications for Manufacturers of In Vitro Diagnostic Devices - Guidance for Industry and Food and Drug Administration Staff. 32.

(190) Mao, K.; Zhang, H.; Yang, Z. Can a Paper-Based Device Trace COVID-19 Sources with Wastewater- Based Epidemiology? Environ. Sci. Technol. 2020. https://doi.org/10.1021/acs.est.0c01174.

(191) Pollock, N. R.; Rolland, J. P.; Kumar, S.; Beattie, P. D.; Jain, S.; Noubary, F.; Wong, V. L.; Pohlmann, R. A.; Ryan, U. S.; Whitesides, G. M. A Paper-Based Multiplexed Transaminase Test for Low-Cost, Point- of-Care Liver Function Testing. Science Translational Medicine 2012, 4 (152), 152ra129-152ra129. https://doi.org/10.1126/scitranslmed.3003981.

(192) Pollock, N. R.; McGray, S.; Colby, D. J.; Noubary, F.; Nguyen, H.; Nguyen, T. A.; Khormaee, S.; Jain, S.; Hawkins, K.; Kumar, S.; Rolland, J. P.; Beattie, P. D.; Chau, N. V.; Quang, V. M.; Barfield, C.; Tietje, K.; Steele, M.; Weigl, B. H. Field Evaluation of a Prototype Paper-Based Point-of-Care Fingerstick Transaminase Test. PLOS ONE 2013, 8 (9), e75616. https://doi.org/10.1371/journal.pone.0075616.

(193) Jain, S.; Rajasingham, R.; Noubary, F.; Coonahan, E.; Schoeplein, R.; Baden, R.; Curry, M.; Afdhal, N.; Kumar, S.; Pollock, N. R. Performance of an Optimized Paper-Based Test for Rapid Visual Measurement of Alanine Aminotransferase (ALT) in Fingerstick and Venipuncture Samples. PLOS ONE 2015, 10 (5), e0128118. https://doi.org/10.1371/journal.pone.0128118.

(194) Nosrati, R.; Gong, M. M.; San Gabriel, M. C.; Pedraza, C. E.; Zini, A.; Sinton, D. Paper-Based Quantification of Male Fertility Potential. Clin Chem 2016, 62 (3), 458–465. https://doi.org/10.1373/clinchem.2015.250282.

(195) Matsuura, K.; Huang, H.-W.; Chen, M.-C.; Chen, Y.; Cheng, C.-M. Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity Using Paper-Based Devices. Scientific Reports 2017, 7 (1), 1–9. https://doi.org/10.1038/srep46213.

(196) Trinh, T. N. D.; Lee, N. Y. A Foldable Isothermal Amplification Microdevice for Fuchsin-Based Colorimetric Detection of Multiple Foodborne Pathogens. Lab Chip 2019, 19 (8), 1397–1405. https://doi.org/10.1039/C8LC01389F.

(197) Yang, X.; Forouzan, O.; Brown, T. P.; Shevkoplyas, S. S. Integrated Separation of Blood Plasma from Whole Blood for Microfluidic Paper-Based Analytical Devices. Lab Chip 2011, 12 (2), 274–280. https://doi.org/10.1039/C1LC20803A.

(198) Vella, S. J.; Beattie, P.; Cademartiri, R.; Laromaine, A.; Martinez, A. W.; Phillips, S. T.; Mirica, K. A.; Whitesides, G. M. Measuring Markers of Liver Function Using a Micropatterned Paper Device Designed for Blood from a Fingerstick. Anal. Chem. 2012, 84 (6), 2883–2891. https://doi.org/10.1021/ac203434x.

(199) Connelly, J. T.; Rolland, J. P.; Whitesides, G. M. “Paper Machine” for Molecular Diagnostics. Anal. Chem. 2015, 87 (15), 7595–7601. https://doi.org/10.1021/acs.analchem.5b00411.

(200) Berry, S. B.; Fernandes, S. C.; Rajaratnam, A.; DeChiara, N. S.; Mace, C. R. Measurement of the Hematocrit Using Paper-Based Microfluidic Devices. Lab Chip 2016, 16 (19), 3689–3694. https://doi.org/10.1039/C6LC00895J.

(201) Yamada, K.; Henares, T. G.; Suzuki, K.; Citterio, D. Distance-Based Tear Lactoferrin Assay on Microfluidic Paper Device Using Interfacial Interactions on Surface-Modified Cellulose. ACS Appl. Mater. Interfaces 2015, 7 (44), 24864–24875. https://doi.org/10.1021/acsami.5b08124.

(202) Li, M.; Tian, J.; Al‐Tamimi, M.; Shen, W. Paper-Based Blood Typing Device That Reports Patient’s Blood Type “in Writing.” Angewandte Chemie International Edition 2012, 51 (22), 5497–5501. https://doi.org/10.1002/anie.201201822.

(203) Xiao, W.; Hu, H.; Huang, J. Colorimetric Detection of Cysteine by Surface Functionalization of Natural Cellulose Substance. Sensors and Actuators B: Chemical 2012, 171–172, 878–885. https://doi.org/10.1016/j.snb.2012.05.087.

(204) Wang, S.; Ge, L.; Song, X.; Yu, J.; Ge, S.; Huang, J.; Zeng, F. Paper-Based Chemiluminescence ELISA: Lab-on-Paper Based on Chitosan Modified Paper Device and Wax-Screen-Printing. Biosensors and Bioelectronics 2012, 31 (1), 212–218. https://doi.org/10.1016/j.bios.2011.10.019.

(205) Zhu, Y.; Xu, X.; Brault, N. D.; Keefe, A. J.; Han, X.; Deng, Y.; Xu, J.; Yu, Q.; Jiang, S. Cellulose Paper Sensors Modified with Zwitterionic Poly(Carboxybetaine) for Sensing and Detection in Complex Media. Anal. Chem. 2014, 86 (6), 2871–2875. https://doi.org/10.1021/ac500467c.

(206) Krauss, S. T.; Nauman, A. Q.; Garner, G. T.; Landers, J. P. Color Manipulation through Microchip Tinting for Colorimetric Detection Using Hue Image Analysis. Lab Chip 2017, 17 (23), 4089–4096. https://doi.org/10.1039/C7LC00796E.

(207) Cheng, C.-M.; Martinez, A. W.; Gong, J.; Mace, C. R.; Phillips, S. T.; Carrilho, E.; Mirica, K. A.; Whitesides, G. M. Paper-Based ELISA. Angewandte Chemie International Edition 2010, 49 (28), 4771–4774. https://doi.org/10.1002/anie.201001005.

(208) Mazzu-Nascimento, T.; Morbioli, G. G.; Milan, L. A.; Silva, D. F.; Donofrio, F. C.; Mestriner, C. A.; Carrilho, E. Improved Assessment of Accuracy and Performance Indicators in Paper-Based ELISA. Anal. Methods 2017, 9 (18), 2644–2653. https://doi.org/10.1039/C7AY00505A.

(209) Wei, X.; Tian, T.; Jia, S.; Zhu, Z.; Ma, Y.; Sun, J.; Lin, Z.; Yang, C. J. Target-Responsive DNA Hydrogel Mediated “Stop-Flow” Microfluidic Paper-Based Analytic Device for Rapid, Portable and Visual Detection of Multiple Targets. Anal. Chem. 2015, 87 (8), 4275–4282. https://doi.org/10.1021/acs.analchem.5b00532.

(210) Consden, R.; Gordon, A. H.; Martin, A. J. P. Qualitative Analysis of Proteins: A Partition Chromatographic Method Using Paper. Biochem J 1944, 38 (3), 224–232. https://doi.org/10.1042/bj0380224.

(211) Freundlich, H. Over the Adsorption in Solution,. Journal of Physical Chemistry 1906, 57, 385–470.

(212) Langmuir, I. THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. | Journal of the American Chemical Society. Journal of the American Chemical Society 1918, 40 (9), 1361–1403.

(213) Liu, P.; Garrido, B.; Oksman, K.; Mathew, A. P. Adsorption Isotherms and Mechanisms of Cu(II) Sorption onto TEMPO-Mediated Oxidized Cellulose Nanofibers. RSC Adv. 2016, 6 (109), 107759–107767. https://doi.org/10.1039/C6RA22397D.

(214) Saito, T.; Isogai, A. Ion-Exchange Behavior of Carboxylate Groups in Fibrous Cellulose Oxidized by the TEMPO-Mediated System. Carbohydrate Polymers 2005, 61 (2), 183–190. https://doi.org/10.1016/j.carbpol.2005.04.009.

(215) Rahbar, M.; Nesterenko, P. N.; Paull, B.; Macka, M. Geometrical Alignment of Multiple Fabrication Steps for Rapid Prototyping of Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2017, 89 (22), 11918–11923. https://doi.org/10.1021/acs.analchem.7b03796.

(216) Pu, Q.; Sarkanen, K. Donnan Equilibria in Wood-Alkali Interactions. Part I. Quantitative Determination of Carboxyl-, Carboxyl Ester and Phenolic Hydroxyl Groups. Journal of Wood Chemistry and Technology 1989, 9 (3), 293–312. https://doi.org/10.1080/02773818908050301.

(217) Nilghaz, A.; Ballerini, D. R.; Fang, X.-Y.; Shen, W. Semiquantitative Analysis on Microfluidic Thread- Based Analytical Devices by Ruler. Sensors and Actuators B: Chemical 2014, 191, 586–594. https://doi.org/10.1016/j.snb.2013.10.023.

(218) Yamada, K.; Citterio, D.; Henry, C. S. “Dip-and-Read” Paper-Based Analytical Devices Using Distance- Based Detection with Color Screening. Lab Chip 2018, 18 (10), 1485–1493. https://doi.org/10.1039/C8LC00168E.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る