リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「黒毛和種の飼料利用性に関する遺伝育種学的研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

黒毛和種の飼料利用性に関する遺伝育種学的研究

竹田 将悠規 東北大学

2020.03.25

概要

黒毛和種の飼料利用性に関しては、これまで直接検定集団(Okanishi ら 2008、Hoque ら 2014)や間接検定集団(Inoue ら 2011)における遺伝的パラメーター推定や、直接検定集団を用いた GWAS(Okada ら 2018)に関する成果が報告されているが、ゲノミック評価に関する報告例はない。国内の黒毛和種の飼料利用性において、ゲノム情報を用いた育種改良が可能になれば、正確かつ速度の速い改良が期待でき、ひいては、高能力種雄牛が全国で供用されるようになることで、長期的視野で見れば肥育生産の低コスト化が実現できると期待する。

そこで本研究では、黒毛和種肥育牛における飼料利用性の総合的な育種改良法を探ることを目的とし、4つの章に分けて検討した。第1章から第3章では実際の黒毛和種集団(過去の間接検定記録)を、第4章ではコンピューターシミュレーションによって生成した集団を用いた。まず、第1章では、飼料利用性形質における遺伝的パラメーターを推定し、飼料利用性の選抜指標となる形質について検討した。第2章では、GWAS により各形質のゲノムレベルでの遺伝的組成を解明し、マーカーアシスト選抜の可能性を検討した。第3章では、ゲノミック評価を行い、従来法の推定育種価(EBV)および GEBV の予測精度からゲノミック選抜の実用化の可能性を検討した。第4章では、第1章から第3章で用いた集団を基準に集団規模のパターンをいくつか仮定したシミュレーション集団を用いて、飼料利用性形質を想定した仮想形質に対して GWAS およびゲノミック評価を行い、飼料利用性において育種改良を効率的に進めるための資源集団の条件について検討した。

この論文で使われている画像

参考文献

Abe, T., Saburi, J., Hasebe, H., Nakagawa, T., Misumi, S., Nade, T., Nakajima, H.,Shoji, N., Kobayashi, M., & Kobayashi, E. (2009). Novel mutations of the FASN gene and their effect on fatty acid composition in Japanese Black beef. Biochemical genetics, 47(5-6), 397-411.

Andersson, L. (2009). Genome-wide association analysis in domestic animals: a powerful approach for genetic dissection of trait loci. Genetica, 136(2), 341-349.

Arthur, P. F., J. A. Archer, D. J. Johnson, R. M. Herd, E. C. Richardson, & P. F. Parnell. (2001a). Genetic and phenotypic variance and covariance components for feed intake, feed effi ciency and other postweaning traits in Angus cattle. Journal of animal science. 79:2805–2811.

Arthur, P. F., G. Renand, G. Krauss. (2001b). Genetic parameters for growth and feed efficiency in weaner versus yearling charolais bulls. Australian Journal of Agricultural Reaseach. 52:471–476. doi:10.1071/AR00070

Abo-Ismail, M. K., Kelly, M. J., Squires, E. J., Swanson, K. C., Bauck, S., & Miller, S. P. (2013). Identification of single nucleotide polymorphisms in genes involved in digestive and metabolic processes associated with feed efficiency and performance traits in beef cattle. Journal of animal science, 91(6), 2512-2529.

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., & Lawlor, T. J. (2010). Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of dairy science, 93(2), 743-752.

Basarab, J. A., Price, M. A., Aalhus, J. L., Okine, E. K., Snelling, W. M., & Lyle, K. L. (2003). Residual feed intake and body composition in young growing cattle. Canadian Journal of animal science, 83(2), 189-204.

Berry, D. P., & J. J. Crowley. (2012). Residual intake and gain: A new measure of efficiency in growing cattle. Journal of animal science. 90:109–115. doi:10.2527/jas.2011-4245

Berry, D. P., & J. J. Crowley. (2013). Cell biology symposium: Genetics of feed efficiency in dairy and beef cattle. Journal of animal science. 91(4):1594–1613. doi:10.2527/jas.2012-5862

Berry, D., & J. Pryce. (2014). Feed efficiency in growing and mature animals. Proc. 10th World Congr. Genet. Appl. Livest. Prod., Vancouver, Canada. American Society of Animal Science, Champaign, IL.

Bolormaa, S., Pryce, J. E., Kemper, K., Savin, K., Hayes, B. J., Barendse, W., Zhang, Y., Reich, C. M., Mason, B. A., Bunch, R. J., Harrison, B. E., Reverter, A., Herd, R. M., Tier, B., Graser, H. –U., & Goddard, M. E. (2013). Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle. Journal of animal science, 91(7), 3088-3104.

Bouquet, A., M.-N. Fouilloux, G. Renand, & F. Phocas. (2010). Genetic parameters for growth, muscularity, feed effi ciency and carcass traits of young beef bulls. Livestock Science. 129:38–48.

Brito, F. V., Neto, J. B., Sargolzaei, M., Cobuci, J. A., & Schenkel, F. S. (2011). Accuracy of genomic selection in simulated populations mimicking the extent of linkage disequilibrium in beef cattle. BMC genetics, 12(1), 80.

Browning, B. L., & Browning, S. R. (2016). Genotype imputation with millions of reference samples. The American Journal of Human Genetics, 98(1), 116-126.

Carvajal-Rodríguez, A. (2010). Simulation of genes and genomes forward in time. Current genomics, 11(1), 58-61.

Ceacero, T. M., M. E. Z. Mercadante, J. N. S. G. Cyrillo, R. C. Canesin, S. F. M. Bonilha, & L. G. Albuquerque. (2016). Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight. PLoS ONE 11(8): e0161366. doi:10.1371/journal.pone.0161366

Chen, L., Vinsky, M., & Li, C. (2015). Accuracy of predicting genomic breeding values for carcass merit traits in Angus and C harolais beef cattle. Animal genetics, 46(1), 55-59.

Coyne, J. M., K. Matilainen, D. P. Berry, M. L. Sevon‐Aimonen, E. A. Mäntysaari, J. Juga, T. Serenius, & N. McHugh. (2017). Estimation of genetic (co) variances of Gompertz growth function parameters in pigs. Journal of animal breeding and genetics. 134:136-143. doi: 10.1111/jbg.12237

Crispim, A. C., M. J. Kelly, S. E. F. Guimarães, F. F. e Silva, M. R. S. Fortes, R. R. Wenceslau, & S. Moore. (2015). Multi-trait GWAS and new candidate genes annotation for growth curve parameters in Brahman cattle. PLoS One 10(10):e0139906. doi:10.1371/journal.pone.0139906

Crowley, J. J., Evans, R. D., Mc Hugh, N., Kenny, D. A., McGee, M., Crews Jr, D. H., & Berry, D. P. (2011). Genetic relationships between feed efficiency in growing males and beef cow performance. Journal of animal science, 89(11), 3372-3381.

Daetwyler, H. D., Pong-Wong, R., Villanueva, B., & Woolliams, J. A. (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185(3), 1021-1031.

Dekkers, J. C. (2004). Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. Journal of animal science, 82(suppl_13), E313-E328.

Do, D. N., Ostersen, T., Strathe, A. B., Mark, T., Jensen, J., & Kadarmideen, H. N. (2014a). Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. BMC genetics, 15(1), 27.

Do, D. N., Strathe, A. B., Ostersen, T., Pant, S. D., & Kadarmideen, H. N. (2014b). Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Frontiers in genetics, 5, 307.

Dzeja, P., & Terzic, A. (2009). Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. International journal of molecular sciences, 10(4), 1729-1772.

Exton, S. C., R. M. Herd, L. Davies, J. A. Archer, & P. F. Arthur. (2000). Commercial benefits to the beef industry for genetic improvement in net fed efficiency. Asian-Australas. Journal of animal science. 13:338–341

Fitzhugh, H. A. J. (1976). Analysis of growth curves and strategies for altering their shape. Journal of animal science. 42:1036–1051. doi:10.2527/jas1976.4241036x

Forni, S., D. Gianola, & G. J. M. Rosa. (2009). Predictive ability and covariance parameters of dynamic linear models for analysis of longitudinal traits. Journal of animal science. 87:3854-3864. doi:10.2527/jas.2008-1515

Garrick, D. J., Taylor, J. F., & Fernando, R. L. (2009). Deregressing estimated breeding values and weighting information for genomic regression analyses. Genetics Selection Evolution, 41(1), 55.

Garrick, D. J. (2011). The nature, scope and impact of genomic prediction in beef cattle in the United States. Genetics Selection Evolution, 43(1), 17.

Gilmour, A. R., B. J. Gogel, B. R. Cullis, & R. Thompson. ASReml User Guide Release 3.0. (2009).VSN International Ltd., Hemel Hempstead, UK.

Gotoh, T., Nishimura, T., Kuchida, K., & Mannen, H. (2018). The Japanese Wagyu beef industry: current situation and future prospects—a review. Asian-Australasian Journal of animal sciences, 31(7), 933.

Goddard, M. E., & Hayes, B. J. (2007). Genomic selection. Journal of animal breeding and genetics, 124(6), 323-330.

Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Berzi, P., Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R., Georges, M., & Snell, R. (2002). Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome research, 12(2), 222-231.

Gunia, M., Saintilan, R., Venot, E., Hoze, C., Fouilloux, M. N., & Phocas, F. (2014). Genomic prediction in French Charolais beef cattle using high-density single nucleotide polymorphism markers. Journal of animal science, 92(8), 3258-3269.

Gunsett, F. C. (1984). Linear index selection to improve traits defined as ratios. Journal of animal science. 59:1185–1193. doi:10.2527/jas1984.5951185x

Hayes, B. J., Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of dairy science, 92(2), 433-443.

Henderson, C. R. (1984). Applications of linear models in animal breeding (Vol. 462). Guelph: University of Guelph.

Herd, R. M., & S. C. Bishop. (2000). Genetic variation in residual feed intake and its association with other production traits in British Hereford cattle. Livestock Production Science. 63:111–119.

Hoque, M. A., M. Hosono, T. Oikawa, & K. Suzuki. (2009). Genetic parameters for measures of energetic efficiency of bulls and their relationships with carcass traits of field progeny in Japanese Black cattle. Journal of animal science. 87:99–106. doi:10.2527/jas.2007-0766

Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44.

Inoue, K. (2004). A Challenge to a national genetic genetic evaluation for Japanese Black Cattle in Japan (An inter-prefecture progeny testing scheme for beef cattle). The Journal of Animal Genetics, 32(1), 17-28.

Inoue, K., M. Kobayashi, N. Shoji, & K. Kato. (2011). Genetic parameters for fatty acid composition and feed efficiency traits in Japanese Black cattle. Animal 5:987–994. doi:10.1017/S1751731111000012

Japan Meat Grading Association. (1988). New beef carcass grading standards. JMGA, Tokyo, Japan.

Kaps, M., W. O. Herring, & W. R. Lamberson. (1999). Genetic and environmental parameters for mature weight in Angus cattle. Journal of animal science. 77:569–574

Karim, L., Takeda, H., Lin, L., Druet, T., Arias, J. A., Baurain, D., Cambisano, N., Davis, S. R., Farnir, F., Grisart, B., Harris, B. L., Keehan, M. D., Littlejohn, M. D., Spelman, R. J., Georges, M., & Coppieters, W. (2011). Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nature genetics, 43(5), 405.

Koch, R. M., L. A. Swiger, D. Chambers, & K. E. Gregory. (1963). Efficiency of feed use in beef cattle. Journal of animal science. 22:486–494. doi:10.2527/jas1963.222486x

Lancaster, P. A., Carstens, G. E., Crews Jr, D. H., Welsh Jr, T. H., Forbes, T. D. A., Forrest, D. W., Tedeschi, L. O., Randel, R. D., & Rouquette, F. M. (2009). Phenotypic and genetic relationships of residual feed intake with performance and ultrasound carcass traits in Brangus heifers. Journal of animal science, 87(12), 3887-3896.

Lanning, N. J., Looyenga, B. D., Kauffman, A. L., Niemi, N. M., Sudderth, J., DeBerardinis, R. J., & MacKeigan, J. P. (2014). A mitochondrial RNAi screen defines cellular bioenergetic determinants and identifies an adenylate kinase as a key regulator of ATP levels. Cell reports, 7(3), 907-917.

Lu, D., Sargolzaei, M., Kelly, M., Li, C., Vander Voort, G., Wang, Z., Plastow, G., Moore, S., & Miller, S. (2012). Linkage disequilibrium in Angus, Charolais, and Crossbred beef cattle. Frontiers in genetics, 3, 152.

Lourenco, D. A. L., Fragomeni, B. O., Bradford, H. L., Menezes, I. R., Ferraz, J. B. S., Aguilar, I., Tsuruta, S., & Misztal, I. (2017). Implications of SNP weighting on single‐step genomic predictions for different reference population sizes. Journal of animal breeding and genetics, 134(6), 463-471.

Lu, D., Miller, S., Sargolzaei, M., Kelly, M., Vander Voort, G., Caldwell, T., Wang, Z., Plastow, G., & Moore, S. (2013). Genome-wide association analyses for growth and feed efficiency traits in beef cattle. Journal of animal science, 91(8), 3612-3633.

Lu, D., Akanno, E. C., Crowley, J. J., Schenkel, F., Li, H., De Pauw, M., Moore, S. S., Wang, Z., Li, C., Stothard, P., Plastow, G., Miller, S. P., & Basarab, J. A. (2016). Accuracy of genomic predictions for feed efficiency traits of beef cattle using 50K and imputed HD genotypes. Journal of animal science, 94(4), 1342-1353.

Lund, M. S., de Roos, A. P., de Vries, A. G., Druet, T., Ducrocq, V., Fritz, S., Guillaume, F., Guldbrandtsen, B., Liu, Z., Reents, R., Schrooten, C., Seefried, F., & Su, G. (2011). A common reference population from four European Holstein populations increases reliability of genomic predictions. Genetics Selection Evolution, 43(1), 43.

Mäntysaari, E. A., Liu, Z., & VanRaden, P. (2010). Interbull validation test for genomic evaluations. Interbull bulletin, (41), 17-17.

Melo, T. P., Takada, L., Baldi, F., Oliveira, H. N., Dias, M. M., Neves, H. H., Schenkel, F. S., Albuquerque, L. G., & Carvalheiro, R. (2016). Assessing the value of phenotypic information from non-genotyped animals for QTL mapping of complex traits in real and simulated populations. BMC genetics, 17(1), 89.

Melville, S., & Melville, M. S. (2015). Package ‘NCBI2R’. https://cran.r-project.org/src/contrib/Archive/NCBI2R/. Accessed 18 Mar 2019.

Meuwissen, T. H. (2009). Accuracy of breeding values of'unrelated'individuals predicted by dense SNP genotyping. Genetics Selection Evolution, 41(1), 35.

Meuwissen, T., Hayes, B., & Goddard, M. (2016). Genomic selection: A paradigm shift in animal breeding. Animal frontiers, 6(1), 6-14.

Meyer, K. (1995). Estimates of genetic parameters for mature weight of Australian beef cows and its relationship to early growth and skeletal measures. Livestock Production Science. 44:125-137

Misztal, I., Aguilar, I., Legarra, A., & Lawlor, T. J. (2010). Choice of parameters for single-step genomic evaluation for type. Journal of dairy science, 93(Suppl 1), 533.

Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., & Lee, D. H. (2002). BLUPF90 and related programs (BGF90). In Proceedings of the 7th world congress on genetics applied to livestock production (Vol. 33, pp. 743-744).

Morton, N. M., Nelson, Y. B., Michailidou, Z., Di Rollo, E. M., Ramage, L., Hadoke, P. W., Seckl, J. R., Bunger, L., Horvat, S., Kenyon, C. J., & Dunbar, D. R. (2011). A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes. PLoS One, 6(9), e23944.

Mujibi, F. D. N., Nkrumah, J. D., Durunna, O. N., Stothard, P., Mah, J., Wang, Z., Basarab, J., Plastow, G., Crews, Jr. D. H., & Moore, S. S. (2011). Accuracy of genomic breeding values for residual feed intake in crossbred beef cattle. Journal of animal science, 89(11), 3353-3361.

Nascimento, M. L., A. R. D. L. Souza, A. S. Chaves, A. S. M. Cesar, R. R. Tullio, S. R. Medeiros, G. B. Mourão, A. N. Rosa, G. L. D. Feijó, M. M. Alencar, & D. P. D. Lanna. (2016). Feed efficiency indexes and their relationships with carcass, non-carcass and meat quality traits in Nellore steers. Meat Sci. 116:78-85. doi: 10.1016/j.meatsci.2016.01.012.

Nicolazzi, E. L., Caprera, A., Nazzicari, N., Cozzi, P., Strozzi, F., Lawley, C., Pirani, A., Soans, C., Brew, F., Jorjani, H., Evans, G., Simpson, B., Tosser-Kloop, G., Brauning, R., Williams, J. L., & Stella, A. (2015). SNPchiMp v. 3: integrating and standardizing single nucleotide polymorphism data for livestock species. BMC genomics, 16(1), 283.

Nielsen, M. K., MacNeil, M. D., Dekkers, J. C. M., Crews Jr, D. H., Rathje, T. A., Enns, R. M., & Weaber, R. L. (2013). Life-cycle, total-industry genetic improvement of feed efficiency in beef cattle: Blueprint for the Beef Improvement Federation. The Professional Animal Scientist, 29(6), 559-565.

Niimura, Y., & Nei, M. (2007). Extensive gains and losses of olfactory receptor genes in mammalian evolution. PloS one, 2(8), e708.

Nishimura, S., Watanabe, T., Mizoshita, K., Tatsuda, K., Fujita, T., Watanabe, N., Sugimoto, Y., & Takasuga, A. (2012). Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC genetics, 13(1), 40.

Nomura, T., Honda, T., & Mukai, F. (2001). Inbreeding and effective population size of Japanese Black cattle. Journal of animal science, 79(2), 366-370.

Ogawa, S., Matsuda, H., Taniguchi, Y., Watanabe, T., Nishimura, S., Sugimoto, Y., & Iwaisaki, H. (2014). Effects of single nucleotide polymorphism marker density on degree of genetic variance explained and genomic evaluation for carcass traits in Japanese Black beef cattle. BMC genetics, 15(1), 15.

Okada, D., Endo, S., Matsuda, H., Ogawa, S., Taniguchi, Y., Katsuta, T., Watanabe, T., & Iwaisaki, H. (2018). An intersection network based on combining SNP coassociation and RNA coexpression networks for feed utilization traits in Japanese Black cattle. Journal of animal science, 96(7), 2553-2566.

Olivieri, B. F., Mercadante, M. E. Z., Cyrillo, J. N. D. S. G., Branco, R. H., Bonilha, S. F. M., de Albuquerque, L. G., Silva, R. M. D. O., & Baldi, F. (2016). Genomic regions associated with feed efficiency indicator traits in an experimental Nellore cattle population. PloS one, 11(10), e0164390.

Onogi, A., Ogino, A., Komatsu, T., Shoji, N., Simizu, K., Kurogi, K., Yasumori, T., Togashi, K., & Iwata, H. (2014). Genomic prediction in Japanese Black cattle: application of a single-step approach to beef cattle. Journal of animal science, 92(5), 1931-1938.

Piccoli, M. L., Brito, L. F., Braccini, J., Cardoso, F. F., Sargolzaei, M., & Schenkel, F. S. (2017). Genomic predictions for economically important traits in Brazilian Braford and Hereford beef cattle using true and imputed genotypes. BMC genetics, 18(1), 2.

Piccoli, M. L., Braccini Neto, J., Brito, F. V., Campos, L. T., Bértoli, C. D., Campos, G. S., Cobuci, J., A., McManus, C. M., Barcellos, J. O. J., & Gama, L. T. (2014). Origins and genetic diversity of British cattle breeds in Brazil assessed by pedigree analyses. Journal of animal science, 92(5), 1920-1930.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., Bakker, P. I. W. D., Daly, M. L., & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American journal of human genetics, 81(3), 559-575.

Purfield, D. C., Bradley, D. G., Kearney, J. F., & Berry, D. P. (2014). Genome-wide association study for calving traits in Holstein–Friesian dairy cattle. Animal, 8(2), 224-235.

Retallick, K. (2013). Evaluation of feedlot feed efficiency relationships as well as genetic and phenotypic performance, carcass, and economic outcomes. 102 p. Dissertation (PhD in Animal Sciences) University of Illinois, Urbana-Champaign (https://www.ideals. illinois.edu/handle/2142/42433).

Rolf, M. M., Taylor, J. F., Schnabel, R. D., McKay, S. D., McClure, M. C., Northcutt, S. L., Kerley, M. S., & Weaber, R. L. (2012). Genome‐wide association analysis for feed efficiency in Angus cattle. Animal genetics, 43(4), 367-374.

De Roos, A. P. W. (2011). Genomic selection in dairy cattle. Ph. D. Thesis, Wageningen University, Wageningen, the Netherlands.

Saatchi, M., McClure, M. C., McKay, S. D., Rolf, M. M., Kim, J., Decker, J. E., Taxis, T. M., Chapple, R. H., Ramey, H. R., Northcutt, S. L., Bauck, S., Woodward, B., Dekkers, J. CM., Fernando, R. L., Schnabel, R. D., Garrick, D. J., & Taylor, J. F. (2011). Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genetics Selection Evolution, 43(1), 40.

Santana, M. H. A., Rossi Jr, P., Almeida, R., & Cucco, D. C. (2012). Feed efficiency and its correlations with carcass traits measured by ultrasound in Nellore bulls. Livestock Science, 145(1-3), 252-257.

Santana, M. H. D. A., Junior, G. O., Gomes, R. D. C., Silva, S. D. L., Leme, P. R., Stella, T. R., Mattos, E. C., Junior, P. R., Baldi, F. S., Eler, J. P. & Ferraz, J. B. S. (2014). Genetic parameter estimates for feed efficiency and dry matter intake and their association with growth and carcass traits in Nellore cattle. Livestock Science, 167, 80-85.

Santana, M. H., Utsunomiya, Y. T., Neves, H. H., Gomes, R. C., Garcia, J. F., Fukumasu, H., Silva, S. L., Junior, G. A. O., Alexandre, P. A., Leme, P. R., Brassaloti, R. A., Coutinho, L. L., Lopes, T. G., Meirelles, F. V., Eler, J. P., & Ferraz, J. BS. (2014b). Genome-wide association analysis of feed intake and residual feed intake in Nellore cattle. BMC genetics, 15(1), 21.

Sargolzaei, M., & Schenkel, F. S. (2009). QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25(5), 680-681.

Seabury, C. M., Oldeschulte, D. L., Saatchi, M., Beever, J. E., Decker, J. E., Halley, Y. A., Bhattarai, E. K., Molaei, M., Freetly, H. C., Hansen, S. L., Yampara-Iquise, H., Johnson, K. A., Kerley, M. S., Kim, J., Loy, D. D., Marques, E., Neibergs, H. L., Schnabel, R. D., Shike, D. W., Spangler, M. L., Weaber, R. L., Garrick, D. J., & Taylor, J. F. (2017). Genome-wide association study for feed efficiency and growth traits in US beef cattle. BMC genomics, 18(1), 386.

Serão, N. V., González-Peña, D., Beever, J. E., Faulkner, D. B., Southey, B. R., & Rodriguez-Zas, S. L. (2013). Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle. BMC genetics, 14(1), 94.

Setoguchi, K., Furuta, M., Hirano, T., Nagao, T., Watanabe, T., Sugimoto, Y., & Takasuga, A. (2009). Cross-breed comparisons identified a critical 591-kb region for bovine carcass weight QTL (CW-2) on chromosome 6 and the Ile-442-Met substitution in NCAPG as a positional candidate. BMC genetics, 10(1), 43.

Smith, S. N., M. E. Davis, & S. C. Loerch. (2010). Residual feed intake of Angus beef cattle divergently selected for feed conversion ratio. Livestock Science. 132:41–47. doi:10.1016/j.livsci.2010.04.019.

Solberg, T. R., Sonesson, A. K., Woolliams, J. A., & Meuwissen, T. H. E. (2008). Genomic selection using different marker types and densities. Journal of animal science, 86(10), 2447-2454.

Su, G., Brøndum, R. F., Ma, P., Guldbrandtsen, B., Aamand, G. P., & Lund, M. S. (2012). Comparison of genomic predictions using medium-density ( ∼ 54,000) and high-density (∼ 777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. Journal of Dairy Science, 95(8), 4657-4665.

Takasuga, A., Sato, K., Nakamura, R., Saito, Y., Sasaki, S., Tsuji, T., Suzuki, A., Kobayashi, H., Matsuhashi, T., Setoguchi, K., Okabe, H., Ootsubo, T., Tabuchi, I., Fujita, T., Watanabe, N., Hirano, T., Nishimura, S., Watanabe, T., Hayakawa, M., Sugimoto, Y., & Kojima, T. (2015). Non-synonymous FGD3 variant as positional candidate for disproportional tall stature accounting for a carcass weight QTL (CW-3) and skelet al dysplasia in Japanese black cattle. PLoS genetics, 11(8), e1005433.

Takeda, M., Uemoto, Y., Inoue, K., Ogino, A., Nozaki, T., Kurogi, K., Yasumori, T., & Satoh, M. (2018). Evaluation of feed efficiency traits for genetic improvement in Japanese Black cattle. Journal of animal science, 96(3), 797-805.

Takeda, M., Uemoto, Y., Inoue, K., Ogino, A., Nozaki, T., Kurogi, K., Yasumori, T., & Satoh, M. (2019). Genome‐wide association study and genomic evaluation of feed efficiency traits in Japanese Black cattle using single‐step genomic best linear unbiased prediction method. Animal Science Journal. doi.10.1111/asj.13316.

Uemoto, Y., Sasaki, S., Sugimoto, Y., & Watanabe, T. (2015). Accuracy of high‐density genotype imputation in Japanese Black cattle. Animal genetics, 46(4), 388-394.

Uemoto, Y., Osawa, T., & Saburi, J. (2017). Effect of genotyped cows in the reference population on the genomic evaluation of Holstein cattle. Animal, 11(3), 382-393.

Van den Berg, I., Fritz, S., & Boichard, D. (2013). QTL fine mapping with Bayes C (π): a simulation study. Genetics Selection Evolution, 45(1), 19.

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of dairy science, 91(11), 4414-4423.

VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F., & Schenkel, F. S. (2009). Invited review: Reliability of genomic predictions for North American Holstein bulls. Journal of dairy science, 92(1), 16-24.

Wakchaure, R., Ganguly, S., Praveen, P. K., Kumar, A., Sharma, S., & Mahajan, T. (2015). Marker assisted selection (MAS) in animal breeding: a review. J Drug Metab Toxicol, 6, e127.

Wang, H., Misztal, I., Aguilar, I., Legarra, A., & Muir, W. M. (2012). Genome-wide association mapping including phenotypes from relatives without genotypes. Genetics Research, 94(2), 73-83.

Webster, E., Cho, M. T., Alexander, N., Desai, S., Naidu, S., Bekheirnia, M. R., Lewis, A., Retterer, K., Juusola, J., & Chung, W. K. (2016). De novo PHIP-predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features. Molecular Case Studies, 2(6), a001172.

Weigel, K. A., De Los Campos, G., González-Recio, O., Naya, H., Wu, X. L., Long, N., Rosa, G. J. M., & Gianola, D. (2009). Predictive ability of direct genomic values for lifetime net merit of Holstein sires using selected subsets of single nucleotide polymorphism markers. Journal of dairy science, 92(10), 5248-5257.

Wiggans, G. R., VanRaden, P. M., & Cooper, T. A. (2011). The genomic evaluation system in the United States: Past, present, future. Journal of dairy science, 94(6), 3202-3211.

Winsor, C. P. (1932). The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. USA 18:1–8. doi:10.1073/pnas.18.1.1

Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 88(1), 76-82.

Zhou, Y., Connor, E. E., Wiggans, G. R., Lu, Y., Tempelman, R. J., Schroeder, S. G., Chen, H., & Liu, G. E. (2018). Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle. BMC genomics, 19(1), 314.

祝前博明、国枝哲夫、野村哲郎、万年英之. 2017. 動物遺伝育種学. 初版. p155. 東京.

家畜改良事業団. 2007. LIAJ NEWS. 家畜改良事業団. 東京. Cited 02 December 2019. Available from URL: http://liaj.lin.gr.jp/uploads/liaj106_03.pdf.

家畜改良事業団. 2019. ゲノミック育種価プレスリリース. 家畜改良事業団. 東京. Cited 09 December 2019. Available from URL: http://liaj.lin.gr.jp/index.php/detail/data/p/5273600737.

家畜改良センター. 2018. 肉用牛の成長・食味の向上. 家畜改良センター. 福島. Cited 24 December 2019. Available from URL: https://www.nlbc.go.jp/research/iden/nikuyogyu.html.

家畜改良センター. 2019. 遺伝的能力評価. 家畜改良センター. 福島. Cited 09 December 2019. Available from URL: http://www.nlbc.go.jp/kachikukairyo/iden/index.html.

農林水産省. 2017. 図で見る最新統計データ(農林水産統計 平成 29 年度肉用牛生産費).

農 林 水 産 省 . 東 京 . Cited 02 December 2019. Available from URL: http://www.maff.go.jp/j/tokei/zudemiru/attach/pdf/index-192.pdf.

農林水産省. 2019. 平成 30 年度 食料・農業・農村の動向. 農林水産省. 東京. Cited 02 December 2019. Availbale from URL: http://www.maff.go.jp/j/wpaper/w_maff/h20_h/trend/part1/chap1/t1_03.html.

平山耕三, 糸原義人, 山本晴彦. 2013. TPP 参加と黒毛和種肥育経営の技術対応について. 農業経営研究, 51(2), 55-60.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る