リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A mechanism with severing near barbed ends and annealing explains structure and dynamics of dendritic actin networks」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A mechanism with severing near barbed ends and annealing explains structure and dynamics of dendritic actin networks

Holz, Danielle Hall, Aaron R Usukura, Eiji Yamashiro, Sawako Watanabe, Naoki Vavylonis, Dimitrios 京都大学 DOI:10.7554/eLife.69031

2022.06.07

概要

Single molecule imaging has shown that part of actin disassembles within a few seconds after incorporation into the dendritic filament network in lamellipodia, suggestive of frequent destabilization near barbed ends. To investigate the mechanisms behind network remodeling, we created a stochastic model with polymerization, depolymerization, branching, capping, uncapping, severing, oligomer diffusion, annealing, and debranching. We find that filament severing, enhanced near barbed ends, can explain the single molecule actin lifetime distribution, if oligomer fragments reanneal to free ends with rate constants comparable to in vitro measurements. The same mechanism leads to actin networks consistent with measured filament, end, and branch concentrations. These networks undergo structural remodeling, leading to longer filaments away from the leading edge, at the +/- 35𝑜 orientation pattern. Imaging of actin speckle lifetimes at sub-second resolution verifies frequent disassembly of newly-assembled actin. We thus propose a unified mechanism that fits a diverse set of basic lamellipodia phenomenology.

この論文で使われている画像

参考文献

Andrianantoandro E, Blanchoin L, Sept D, McCammon JA, Pollard TD. 2001. Kinetic mechanism of end-to-end annealing of actin filaments. Journal of Molecular Biology 312:721–730. DOI: https://doi.org/10.1006/jmbi. 2001.5005, PMID: 11575927

Andrianantoandro E, Pollard TD. 2006. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Molecular Cell 24:13–23. DOI: https://doi.org/10.1016/j.molcel.2006. 08.006, PMID: 17018289

Atilgan E, Wirtz D, Sun SX. 2005. Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophysical Journal 89:3589–3602. DOI: https://doi.org/10.1529/biophysj.105. 065383, PMID: 16085776

Bailly M, Macaluso F, Cammer M, Chan A, Segall JE, Condeelis JS. 1999. Relationship between Arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation. The Journal of Cell Biology 145:331–345. DOI: https://doi.org/10.1083/jcb.145.2.331, PMID: 10209028

Berro J, Sirotkin V, Pollard TD. 2010. Mathematical modeling of endocytic actin patch kinetics in fission yeast: disassembly requires release of actin filament fragments. Molecular Biology of the Cell 21:2905–2915. DOI: https://doi.org/10.1091/mbc.E10-06-0494, PMID: 20587776

Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. 2014. Actin dynamics, architecture, and mechanics in cell motility. Physiological Reviews 94:235–263. DOI: https://doi.org/10.1152/physrev.00018.2013, PMID: 24382887

Carlier MF, Shekhar S. 2017. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nature Reviews. Molecular Cell Biology 18:389–401. DOI: https://doi.org/10.1038/nrm.2016.172, PMID: 28248322

Carlsson AE. 2007. Disassembly of actin networks by filament severing. New Journal of Physics 9:418. DOI: https://doi.org/10.1088/1367-2630/9/11/418

Carlsson AE. 2010. Actin dynamics: from nanoscale to microscale. Annual Review of Biophysics 39:91–110. DOI: https://doi.org/10.1146/annurev.biophys.093008.131207, PMID: 20462375

Danuser G, Waterman-Storer CM. 2006. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annual Review of Biophysics and Biomolecular Structure 35:361–387. DOI: https://doi.org/10.1146/annurev. biophys.35.040405.102114, PMID: 16689641

Ditlev JA, Vacanti NM, Novak IL, Loew LM. 2009. An open model of actin dendritic nucleation. Biophysical Journal 96:3529–3542. DOI: https://doi.org/10.1016/j.bpj.2009.01.037, PMID: 19413959

Edelstein-Keshet L, Ermentrout GB. 2001. A model for actin-filament length distribution in A lamellipod. Journal of Mathematical Biology 43:325–355. DOI: https://doi.org/10.1007/s002850100102, PMID: 12120872

Gong B, Lin J, Qian J. 2017. Growing actin networks regulated by obstacle size and shape. Acta Mechanica Sinica 33:222–233. DOI: https://doi.org/10.1007/s10409-016-0628-5

Gowrishankar K, Ghosh S, Saha S, C. R, Mayor S, Rao M. 2012. Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface Molecules. Cell 149:1353–1367. DOI: https://doi.org/10.1016/j. cell.2012.05.008, PMID: 22682254

Hakala M, Wioland H, Tolonen M, Kotila T, Jegou A, Romet-Lemonne G, Lappalainen P. 2021. Twinfilin uncaps filament barbed ends to promote turnover of lamellipodial actin networks. Nature Cell Biology 23:147–159. DOI: https://doi.org/10.1038/s41556-020-00629-y, PMID: 33558729

Higashida C, Suetsugu S, Tsuji T, Monypenny J, Narumiya S, Watanabe N. 2008. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers. Journal of Cell Science 121:3403– 3412. DOI: https://doi.org/10.1242/jcs.030940, PMID: 18827014

Holz D, Vavylonis D. 2018. Building a dendritic actin filament network branch by branch: models of filament orientation pattern and force generation in lamellipodia. Biophysical Reviews 10:1577–1585. DOI: https://doi. org/10.1007/s12551-018-0475-7, PMID: 30421277

Hu L, Papoian GA. 2010. Mechano-chemical feedbacks regulate actin mesh growth in lamellipodial protrusions.

Biophysical Journal 98:1375–1384. DOI: https://doi.org/10.1016/j.bpj.2009.11.054, PMID: 20409456

Huber F, Käs J, Stuhrmann B. 2008. Growing actin networks form lamellipodium and lamellum by self- assembly. Biophysical Journal 95:5508–5523. DOI: https://doi.org/10.1529/biophysj.108.134817, PMID: 18708450

Iwasa JH, Mullins RD. 2007. Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Current Biology 17:395–406. DOI: https://doi.org/10.1016/j.cub.2007.02.012, PMID: 17331727

Jansen S, Collins A, Chin SM, Ydenberg CA, Gelles J, Goode BL. 2015. Single-molecule imaging of a three- component ordered actin disassembly mechanism. Nature Communications 6:7202. DOI: https://doi.org/10. 1038/ncomms8202, PMID: 25995115

Johnston AB, Collins A, Goode BL. 2015. High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP. Nature Cell Biology 17:1504–1511. DOI: https://doi.org/10.1038/ncb3252, PMID: 26458246

Keren K, Pincus Z, Allen GM, Barnhart EL, Marriott G, Mogilner A, Theriot JA. 2008. Mechanism of shape determination in motile cells. Nature 453:475–480. DOI: https://doi.org/10.1038/nature06952, PMID: 18497816

Kiuchi T, Nagai T, Ohashi K, Mizuno K. 2011. Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension. The Journal of Cell Biology 193:365–380. DOI: https://doi.org/10.1083/jcb.201101035, PMID: 21502360

Koseki K, Taniguchi D, Yamashiro S, Mizuno H, Vavylonis D, Watanabe N. 2019. Lamellipodium tip actin barbed ends serve as a force sensor. Genes to Cells 24:705–718. DOI: https://doi.org/10.1111/gtc.12720, PMID: 31514256

Kueh HY, Charras GT, Mitchison TJ, Brieher WM. 2008. Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers. The Journal of Cell Biology 182:341–353. DOI: https://doi.org/ 10.1083/jcb.200801027, PMID: 18663144

Lacy MM, Baddeley D, Berro J. 2019. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 8:e52355. DOI: https://doi.org/10.7554/eLife.52355, PMID: 31855180

Lai FPL, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG, Stradal TEB, Dunn GA, Small JV, Rottner K. 2008. Arp2/3 complex interactions and actin network turnover in lamellipodia. The EMBO Journal 27:982–992. DOI: https://doi.org/10.1038/emboj.2008.34, PMID: 18309290

Lewalle A, Fritzsche M, Wilson K, Thorogate R, Duke T, Charras G. 2014. A phenomenological density-scaling approach to lamellipodial actin dynamics(†). Interface Focus 4:20140006. DOI: https://doi.org/10.1098/rsfs. 2014.0006, PMID: 25485077

Maly IV, Borisy GG. 2002. Self-organization of treadmilling microtubules into a polar array. Trends in Cell Biology

12:462–465. DOI: https://doi.org/10.1016/s0962-8924(02)02369-3, PMID: 12441249

Manhart A, Icheva TA, Guerin C, Klar T, Boujemaa-Paterski R, Thery M, Blanchoin L, Mogilner A. 2019. Quantitative regulation of the dynamic steady state of actin networks. eLife 8:e42413. DOI: https://doi.org/10. 7554/eLife.42413, PMID: 30869077

McCullough BR, Blanchoin L, Martiel J-L, De la Cruz EM. 2008. Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics. Journal of Molecular Biology 381:550–558. DOI: https://doi.org/10.1016/j.jmb.2008.05.055, PMID: 18617188

McMillen LM, Vavylonis D. 2016. Model of turnover kinetics in the lamellipodium: implications of slow- and

fast- diffusing capping protein and Arp2/3 complex. Physical Biology 13:066009. DOI: https://doi.org/10.1088/ 1478-3975/13/6/066009, PMID: 27922825

Michalski PJ, Carlsson AE. 2010. The effects of filament aging and annealing on a model lamellipodium undergoing disassembly by severing. Physical Biology 7:026004. DOI: https://doi.org/10.1088/1478-3975/7/2/ 026004, PMID: 20505229

Michalski PJ, Carlsson AE. 2011. A model actin comet tail disassembling by severing. Physical Biology 8:046003. DOI: https://doi.org/10.1088/1478-3975/8/4/046003, PMID: 21566272

Millius A, Watanabe N, Weiner OD. 2012. Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging. Journal of Cell Science 125:1165–1176. DOI: https:// doi.org/10.1242/jcs.091157, PMID: 22349699

Miyoshi T, Tsuji T, Higashida C, Hertzog M, Fujita A, Narumiya S, Scita G, Watanabe N. 2006. Actin turnover- dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing. The Journal of Cell Biology 175:947–955. DOI: https://doi.org/10.1083/jcb.200604176, PMID: 17178911

Miyoshi T, Watanabe N. 2013. Can filament treadmilling alone account for the F-actin turnover in lamellipodia?

Cytoskeleton (Hoboken, N.J.) 70:179–190. DOI: https://doi.org/10.1002/cm.21098, PMID: 23341338

Mogilner A, Edelstein-Keshet L. 2002. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophysical Journal 83:1237–1258. DOI: https://doi.org/10.1016/S0006-3495(02)73897-6, PMID: 12202352

Mueller J, Szep G, Nemethova M, de Vries I, Lieber AD, Winkler C, Kruse K, Small JV, Schmeiser C, Keren K, Hauschild R, Sixt M. 2017. Load Adaptation of Lamellipodial Actin Networks. Cell 171:188–200. DOI: https:// doi.org/10.1016/j.cell.2017.07.051, PMID: 28867286

Okada K, Blanchoin L, Abe H, Chen H, Pollard TD, Bamburg JR. 2002. Xenopus actin-interacting protein 1 (XAip1) enhances cofilin fragmentation of filaments by capping filament ends. The Journal of Biological Chemistry 277:43011–43016. DOI: https://doi.org/10.1074/jbc.M203111200, PMID: 12055192

Okreglak V, Drubin DG. 2010. Loss of Aip1 reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway. The Journal of Cell Biology 188:769–777. DOI: https://doi.org/10.1083/jcb.

200909176, PMID: 20231387

Pollard TD, Borisy GG. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell

112:453–465. DOI: https://doi.org/10.1016/s0092-8674(03)00120-x, PMID: 12600310

Ponti A, Machacek M, Gupton SL, Waterman-Storer CM, Danuser G. 2004. Two distinct actin networks drive the protrusion of migrating cells. Science (New York, N.Y.) 305:1782–1786. DOI: https://doi.org/10.1126/science. 1100533, PMID: 15375270

Popp D, Yamamoto A, Maéda Y. 2007. Crowded surfaces change annealing dynamics of actin filaments. Journal of Molecular Biology 368:365–374. DOI: https://doi.org/10.1016/j.jmb.2007.01.087, PMID: 17346746

Raz-Ben Aroush D, Ofer N, Abu-Shah E, Allard J, Krichevsky O, Mogilner A, Keren K. 2017. Actin Turnover in Lamellipodial Fragments. Current Biology 27:2963–2973. DOI: https://doi.org/10.1016/j.cub.2017.08.066, PMID: 28966086

Ryan GL, Petroccia HM, Watanabe N, Vavylonis D. 2012. Excitable Actin Dynamics in Lamellipodial Protrusion and Retraction. Biophysical Journal 102:1493–1502. DOI: https://doi.org/10.1016/j.bpj.2012.03.005, PMID: 22500749

Schaub S, Meister JJ, Verkhovsky AB. 2007. Analysis of actin filament network organization in lamellipodia by comparing experimental and simulated images. Journal of Cell Science 120:1491–1500. DOI: https://doi.org/ 10.1242/jcs.03379, PMID: 17401113

Schaus TE, Taylor EW, Borisy GG. 2007. Self-organization of actin filament orientation in the dendritic-nucleation/ array-treadmilling model. PNAS 104:7086–7091. DOI: https://doi.org/10.1073/pnas.0701943104

Schmidt WM, Lehman W, Moore JR. 2015. Direct observation of tropomyosin binding to actin filaments.

Cytoskeleton (Hoboken, N.J.) 72:292–303. DOI: https://doi.org/10.1002/cm.21225, PMID: 26033920

Schreiber CH, Stewart M, Duke T. 2010. Simulation of cell motility that reproduces the force-velocity relationship. PNAS 107:9141–9146. DOI: https://doi.org/10.1073/pnas.1002538107, PMID: 20439759

Sept D, Xu J, Pollard TD, McCammon JA. 1999. Annealing accounts for the length of actin filaments formed by spontaneous polymerization. Biophysical Journal 77:2911–2919. DOI: https://doi.org/10.1016/s0006-3495(99) 77124-9, PMID: 10585915

Shekhar S, Carlier MF. 2017. Enhanced Depolymerization of Actin Filaments by ADF/Cofilin and Monomer Funneling by Capping Protein Cooperate to Accelerate Barbed-End Growth. Current Biology 27:1990-1998.. DOI: https://doi.org/10.1016/j.cub.2017.05.036, PMID: 28625780

Shekhar S, Hoeprich GJ, Gelles J, Goode BL. 2021. Twinfilin bypasses assembly conditions and actin filament aging to drive barbed end depolymerization. The Journal of Cell Biology 220:e202006022. DOI: https://doi. org/10.1083/jcb.202006022, PMID: 33226418

Shoji K, Ohashi K, Sampei K, Oikawa M, Mizuno K. 2012. Cytochalasin D acts as an inhibitor of the actin-cofilin interaction. Biochemical and Biophysical Research Communications 424:52–57. DOI: https://doi.org/10.1016/j. bbrc.2012.06.063, PMID: 22728040

Smith MB, Karatekin E, Gohlke A, Mizuno H, Watanabe N, Vavylonis D. 2011. Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion. Biophysical Journal 101:1794–1804. DOI: https://doi.org/10.1016/j.bpj.2011.09.007, PMID: 21961607

Smith MB, Kiuchi T, Watanabe N, Vavylonis D. 2013. Distributed actin turnover in the lamellipodium and FRAP kinetics. Biophysical Journal 104:247–257. DOI: https://doi.org/10.1016/j.bpj.2012.11.3819, PMID: 23332077

Smith DB, Liu J. 2013. Branching and capping determine the force-velocity relationships of branching actin networks. Physical Biology 10:016004. DOI: https://doi.org/10.1088/1478-3975/10/1/016004, PMID: 23358606

Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG. 1997. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. The Journal of Cell Biology 139:397–415. DOI: https://doi.org/10.1083/jcb.139.2.397, PMID: 9334344

Svitkina TM, Borisy GG. 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. The Journal of Cell Biology 145:1009–1026. DOI: https://doi.org/10.1083/jcb.145.5.1009, PMID: 10352018

Tang VW, Nadkarni AV, Brieher WM. 2020. Catastrophic actin filament bursting by cofilin, Aip1, and coronin. Journal of Biological Chemistry 295:13299–13313. DOI: https://doi.org/10.1074/jbc.RA120.015018, PMID: 32723865

Theriot JA, Mitchison TJ. 1991. Actin microfilament dynamics in locomoting cells. Nature 352:126–131. DOI: https://doi.org/10.1038/352126a0, PMID: 2067574

Tsuji T, Miyoshi T, Higashida C, Narumiya S, Watanabe N, Hotchin N. 2009. An Order of Magnitude Faster AIP1-Associated Actin Disruption than Nucleation by the Arp2/3 Complex in Lamellipodia. PLOS ONE 4:e4921. DOI: https://doi.org/10.1371/journal.pone.0004921, PMID: 19290054

Vinzenz M, Nemethova M, Schur F, Mueller J, Narita A, Urban E, Winkler C, Schmeiser C, Koestler SA, Rottner K, Resch GP, Maeda Y, Small JV. 2012. Actin branching in the initiation and maintenance of lamellipodia. Journal of Cell Science 125:2775–2785. DOI: https://doi.org/10.1242/jcs.107623, PMID: 22431015

Vitriol EA, McMillen LM, Kapustina M, Gomez SM, Vavylonis D, Zheng JQ. 2015. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia. Cell Reports 11:433–445. DOI: https:// doi.org/10.1016/j.celrep.2015.03.033, PMID: 25865895

Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC, Hazelwood L, Heuser JE, Li R, Pollard TD, Hanein D. 2001. Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science (New York, N.Y.) 293:2456–2459. DOI: https://doi.org/10.1126/science.1063025, PMID: 11533442

Watanabe N, Mitchison TJ. 2002. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science (New York, N.Y.) 295:1083–1086. DOI: https://doi.org/10.1126/science.1067470, PMID: 11834838 Watanabe N. 2010. Inside view of cell locomotion through single-molecule: fast F-/G-actin cycle and G-actin

regulation of polymer restoration. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 86:62–83. DOI: https://doi.org/10.2183/pjab.86.62, PMID: 20075609

Weichsel J, Schwarz US. 2010. Two competing orientation patterns explain experimentally observed anomalies in growing actin networks. PNAS 107:6304–6309. DOI: https://doi.org/10.1073/pnas.0913730107, PMID: 20308581

Wioland H, Guichard B, Senju Y, Myram S, Lappalainen P, Jégou A, Romet-Lemonne G. 2017. ADF/Cofilin Accelerates Actin Dynamics by Severing Filaments and Promoting Their Depolymerization at Both Ends. Current Biology 27:1956–1967. DOI: https://doi.org/10.1016/j.cub.2017.05.048, PMID: 28625781

Yamashiro S, Mizuno H, Smith MB, Ryan GL, Kiuchi T, Vavylonis D, Watanabe N. 2014. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales. Molecular Biology of the Cell 25:1010–1024. DOI: https://doi.org/10.1091/mbc.E13-03-0162, PMID: 24501425

Yamashiro S, Tanaka S, McMillen LM, Taniguchi D, Vavylonis D, Watanabe N. 2018. Myosin-dependent actin stabilization as revealed by single-molecule imaging of actin turnover. Molecular Biology of the Cell 29:1941– 1947. DOI: https://doi.org/10.1091/mbc.E18-01-0061, PMID: 29847209

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る