リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin

Yamashiro, Sawako Rutkowski, David M. Lynch, Kelli Ann Liu, Ying Vavylonis, Dimitrios Watanabe, Naoki 京都大学 DOI:10.1038/s41467-023-44018-z

2023.12.20

概要

Force transmission at integrin-based adhesions is important for cell migration and mechanosensing. Talin is an essential focal adhesion (FA) protein that links F-actin to integrins. F-actin constantly moves on FAs, yet how Talin simultaneously maintains the connection to F-actin and transmits forces to integrins remains unclear. Here we show a critical role of dynamic Talin unfolding in force transmission. Using single-molecule speckle microscopy, we found that the majority of Talin are bound only to either F-actin or the substrate, whereas 4.1% of Talin is linked to both structures via elastic transient clutch. By reconstituting Talin knockdown cells with Talin chimeric mutants, in which the Talin rod subdomains are replaced with the stretchable β-spectrin repeats, we show that the stretchable property is critical for force transmission. Simulations suggest that unfolding of the Talin rod subdomains increases in the linkage duration and work at FAs. This study elucidates a force transmission mechanism, in which stochastic molecular stretching bridges two cellular structures moving at different speeds.

この論文で使われている画像

参考文献

1.

Bachir, A. I., Horwitz, A. R., Nelson, W. J. & Bianchini, J. M. Actinbased adhesion modules mediate cell interactions with the extracellular matrix and neighboring cells. Cold Spring Harbour Perspect. Biol. 9, a023234 (2017).

2. Sun, Z. Q., Guo, S. S. & Fassler, R. Integrin-mediated mechanotransduction. J. Cell Biol. 215, 445–456 (2016).

3. Yan, J., Yao, M. X., Goult, B. T. & Sheetz, M. P. Talin dependent

mechanosensitivity of cell focal adhesions. Cell Mol. Bioeng. 8,

151–159, https://doi.org/10.1007/s12195-014-0364-5 (2015).

4. Klapholz, B. & Brown, N. H. Talin—the master of integrin adhesions.

J. Cell Sci. 130, 2435–2446 (2017).

5. Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive

signaling hub. J. Cell Biol. 217, 3776–3784 (2018).

6. del Rio, A. et al. Stretching single talin rod molecules activates

vinculin binding. Science 323, 638–641 (2009).

7. Calderwood, D. A., Campbell, I. D. & Critchley, D. R. Talins and

kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell

Biol. 14, 503–517 (2013).

8. Yao, M. X. et al. Mechanical activation of vinculin binding to talin

locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).

9. Yao, M. X. et al. The mechanical response of talin. Nat. Commun. 7,

11966 (2016).

10. Zhang, X. et al. Talin depletion reveals independence of initial cell

spreading from integrin activation and traction. Nat. Cell Biol. 10,

1062–1068 (2008).

12

Article

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Case, L. B. & Waterman, C. M. Integration of actin dynamics and cell

adhesion by a three-dimensional, mechanosensitive molecular

clutch. Nat. Cell Biol. 17, 955–963 (2015).

Atherton, P. et al. Vinculin controls talin engagement with the

actomyosin machinery. Nat. Commun. 6, https://doi.org/10.1038/

ncomms10038 (2015).

Kanchanawong, P. et al. Nanoscale architecture of integrin-based

cell adhesions. Nature 468, 580–584 (2010).

Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M.

Differential transmission of actin motion within focal adhesions.

Science 315, 111–115 (2007).

Danuser, G. & Waterman-Storer, C. M. Quantitative fluorescent

speckle microscopy of cytoskeleton dynamics. Annu Rev. Biophys.

Biom. 35, 361–387 (2006).

Yamashiro, S. et al. New single-molecule speckle microscopy

reveals modification of the retrograde actin flow by focal adhesions

at nanometer scales. Mol. Biol. Cell 25, 1010–1024 (2014).

Driscoll, T. P., Ahn, S. J., Huang, B., Kumar, A. & Schwartz, M. A. Actin

flow-dependent and -independent force transmission through

integrins. Proc. Natl Acad. Sci. USA 117, 32413–32422 (2020).

Schwarz, U. S. & Gardel, M. L. United we stand—integrating the

actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J. Cell Sci. 125, 3051–3060 (2012).

Goult, B. T., Brown, N. H. & Schwartz, M. A. Talin in mechanotransduction and mechanomemory at a glance. J. Cell Sci. 134,

jcs258749 (2021).

Thievessen, I. et al. Vinculin-actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion

growth. J. Cell Biol. 202, 163–177 (2013).

Mierke, C. T. et al. Vinculin facilitates cell invasion into threedimensional collagen matrices. J. Biol. Chem. 285,

13121–13130 (2010).

Yamashiro, S. & Watanabe, N. A new link between the retrograde

actin flow and focal adhesions. J. Biochem. 156, 239–248 (2014).

Yamashiro, S. & Watanabe, N. An infrared actin probe for deep-cell

electroporation-based single-molecule speckle (eSiMS) microscopy. Sensors 17, 1545 (2017).

Smith, M. B. et al. Interactive, computer-assisted tracking of speckle

trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion. Biophys. J. 101, 1794–1804 (2011).

Dedden, D. et al. The architecture of Talin1 reveals an autoinhibition

mechanism. Cell 179, 120–131.e113 (2019).

Haining, A. W., von Essen, M., Attwood, S. J., Hytönen, V. P. & Del Río

Hernández, A. All subdomains of the talin rod are mechanically

vulnerable and may contribute to cellular mechanosensing. ACS

Nano 10, 6648–6658 (2016).

Liu, J. R. et al. Talin determines the nanoscale architecture of focal

adhesions. Proc. Natl Acad. Sci. USA 112, E4864–E4873 (2015).

Renn, J. P. et al. Mechanical unfolding of spectrin reveals a superexponential dependence of unfolding rate on force. Sci. Rep. 9,

11101 (2019).

Zhu, L. et al. Structure of Rap1b bound to talin reveals a pathway for

triggering integrin activation. Nat. Commun. 8, 1744 (2017).

Tsuji, T., Miyoshi, T., Higashida, C., Narumiya, S. & Watanabe, N. An

order of magnitude faster AIP1-associated actin disruption than

nucleation by the Arp2/3 complex in lamellipodia. PLoS One 4,

e4921 (2009).

Watanabe, N. Brownian ratchet force sensor at the contacting point

between F-actin barbed end and lamellipodium tip plasma membrane. Plasma Membrane Shaping (1st Edition), Elsevier (2022).

Koseki, K. et al. Lamellipodium tip actin barbed ends serve as a

force sensor. Genes Cells 24, 705–718 (2019).

Tan, S. J. et al. Regulation and dynamics of force transmission

at individual cell-matrix adhesion bonds. Sci. Adv. 6,

eaax0317 (2020).

Nature Communications | (2023)14:8468

https://doi.org/10.1038/s41467-023-44018-z

34. Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate

energy as mineralized fibrils separate during bone fracture. Nat.

Mater. 4, 612–616 (2005).

35. Smith, B. L. et al. Molecular mechanistic origin of the toughness of

natural adhesives, fibres and composites. Nature 399,

761–763 (1999).

36. Thompson, J. B. et al. Bone indentation recovery time correlates

with bond reforming time. Nature 414, 773–776 (2001).

37. Fantner, G. E. et al. Sacrificial bonds and hidden length: unraveling

molecular mesostructures in tough materials. Biophys. J. 90,

1411–1418 (2006).

38. Lieou, C. K. C., Elbanna, A. E. & Carlson, J. M. Sacrificial bonds

and hidden length in biomaterials: a kinetic constitutive

description of strength and toughness in bone. Phys. Rev. E 88,

012703 (2013).

39. Brown, C. M. et al. Probing the integrin-actin linkage using highresolution protein velocity mapping. J. Cell Sci. 119,

5204–5214 (2006).

40. Margadant, F. et al. Mechanotransduction in vivo by repeated talin

stretch-relaxation events depends upon vinculin. Plos Biol. 9,

e1001223 (2011).

41. Chenouard, N. et al. Objective comparison of particle tracking

methods. Nat. Methods 11, 281–U247 (2014).

42. Watanabe, N. & Mitchison, T. J. Single-molecule speckle analysis of

actin filament turnover in lamellipodia. Science 295, 1083–1086

(2002).

43. Yamashiro, S., Mizuno, H. & Watanabe, N. An easy-to-use singlemolecule speckle microscopy enabling nanometer-scale flow and

wide-range lifetime measurement of cellular actin filaments.

Method Cell Biol. 125, 43–59 (2015).

44. Watanabe, N. Fluorescence single-molecule imaging of actin

turnover and regulatory mechanisms. Method Enzymol. 505,

219–232 (2012).

45. Mimori-Kiyosue, Y., Matsui, C., Sasaki, H. & Tsukita, S. Adenomatous

polyposis coli (APC) protein regulates epithelial cell migration and

morphogenesis via PDZ domain-based interactions with plasma

membranes. Genes Cells 12, 219–233 (2007).

46. Yamashiro, S. et al. Convection-induced biased distribution of actin

probes in live cells. Biophys. J. 116, 142–150 (2019).

47. Su, T. X. & Purohit, P. K. Mechanics of forced unfolding of proteins.

Acta Biomater. 5, 1855–1863 (2009).

48. Jedynak, R. New facts concerning the approximation of the inverse

Langevin function. J. Non-Newton Fluid 249, 8–25 (2017).

49. Rubinstein, M. & Colby, R. H. Polymer Physics. (Oxford University

Press, 2007).

50. Tapia-Rojo, R., Alonso-Caballero, A. & Fernandez, J. M. Talin folding

as the tuning fork of cellular mechanotransduction. Proc. Natl Acad.

Sci. USA 117, 21346–21353 (2020).

51. Huang, D. L., Bax, N. A., Buckley, C. D., Weis, W. I. & Dunn, A. R.

Vinculin forms a directionally asymmetric catch bond with F-actin.

Science 357, 703–706 (2017).

52. Owen, L. M., Bax, N. A., Weis, W. I. & Dunn, A. R. The C-terminal

actin-binding domain of talin forms an asymmetric catch bond with

F-actin. Proc. Natl Acad. Sci. USA 119, e2109329119 (2022).

Acknowledgements

We thank Ayako Kodera and Shu Yamamura for help with data analysis, and Aaron Hall, Danielle Holz and Shu Yamamura for discussions on mathematical simulations. This work was supported by Japan

Society for the Promotion of Science KAKENHI Grant Number

JP21K06150, JP22H04843, and JP21H05780 (S.Y.), JP22H00456

(N.W.), National Institutes of Health Grant R35GM136372, and by the

National Science Foundation Lehigh Physics REU grant PHY-1852010

that supported K.L.

13

Article

Author contributions

S.Y. and Y.L. performed experiments and analyzed data. S.Y. and N.W.

designed experiments. D.R., K.L. and D.V. performed simulations. S.Y.,

D.R., D.V. and N.W. wrote the manuscript. All other authors edited the

manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-44018-z.

Correspondence and requests for materials should be addressed to

Sawako Yamashiro.

Peer review information Nature Communications thanks Reinhard

Fässler and the other, anonymous, reviewer(s) for their contribution to

the peer review of this work. A peer review file is available.

Nature Communications | (2023)14:8468

https://doi.org/10.1038/s41467-023-44018-z

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

14

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る