リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「へパラン硫酸エンドスルファターゼSulf1/Sulf2二重欠損マウスにおける皮質脊髄路の錐体交叉異常と両側神経支配の解明および運動機能異常の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

へパラン硫酸エンドスルファターゼSulf1/Sulf2二重欠損マウスにおける皮質脊髄路の錐体交叉異常と両側神経支配の解明および運動機能異常の解析

相澤, 哲史 筑波大学 DOI:10.15068/00162570

2021.02.04

概要

皮質脊髄路は随意運動の制御に重要な役割を果たしている。皮質脊髄路は大脳皮質から脊髄に至る長距離の神経路であり、発達段階で正しく軸索を誘導するために多数の軸索ガイダンス分子が必要とされる。先行研究において、ヘパラン硫酸エンドスルファターゼ、Sulf1 および Sulf2 遺伝子を欠損させたダブルノックアウト (double knockout, DKO)マウス胎児脳で、皮質脊髄路が中脳側面を背側に向かって異常に伸長することが示された。しかし、先行研究で用いた C57BL/6 系統の DKO マウスは生後すぐに死亡するた め、皮質脊髄路の生後の発達、特に錐体交叉と脊髄への投射は解析できなかった。

最近 C57BL/6 と CD-1/ICR の混合遺伝的背景にすると Sulf1/2 DKO マウスが成獣まで生存することが分かったため、本研究では成獣 DKO マウスにおける皮質脊髄路の構造と機能を解析することを目的とした。皮質脊髄路の染色および順行性トレーシングの結果、Sulf1/2 DKO マウスでは皮質脊髄路の成熟後も中脳表面で皮質脊髄路線維が背側に偏位する異常が持続していることが分かった。また、錐体交叉では正中近くに位置する線維が正常に正中を交叉する一方で、より外側に位置する線維が同側を伸長していることが明らかとなった。脊髄では交叉線維が対側の後索を下行し対側の灰白質に正常に入るのに対し、非交叉線維は同側の側索を下行し同側の灰白質に入ることから、DKO マウスでは脳の一側から起始した皮質脊髄路線維が脊髄に両側性に投射していることが示された。さらに、野生型マウスでは一側運動野の微小刺激が対側でのみ前肢筋の筋電図反応を誘発するのに対し、DKO マウスでは同刺激が両側性の筋電図反応を誘発したことから、皮質脊髄路が両側の運動ニューロンと機能的な連絡があることが示唆された。

Sulf1/2 DKO マウスの皮質脊髄路の異常による機能的影響についてマウスの運動機能評価に用いられるグリッドウォーキング試験、ステアケース試験、シングルペレットリーチング試験を利用して解析した。野生型マウスと比較して、Sulf1/2 DKO マウスではこれらの試験で成績が低下しており、運動機能に障害があることが示唆された。以上の研究結果から Sulf1/2 遺伝子の破壊により皮質脊髄路の解剖学的異常に加えて機能的異常も生じていることが明らかとなった。

この論文で使われている画像

参考文献

Ai, X, Do, AT, Lozynska, O, Kusche-Gullberg, M, Lindahl, U, and Emerson, CP,Jr. QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J.Cell Biol. (2003) 162:341-51.

Ayling, OG, Harrison, TC, Boyd, JD, Goroshkov, A, and Murphy, TH. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat.Methods (2009) 6:219-24.

Baird, AL, Meldrum, A, and Dunnett, SB. The staircase test of skilled reaching in mice. Brain Res.Bull. (2001) 54:243-50.

Bagri, A, Marin, O, Plump, AS, Mak, J, Pleasure, SJ, Rubenstein, JL, et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron (2002) 33:233-48.

Bishop, JR, Schuksz, M, and Esko, JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature (2007) 446:1030-7.

Borgius, L, Nishimaru, H, Caldeira, V, Kunugise, Y, Low, P, Reig, R, et al. Spinal glutamatergic neurons defined by EphA4 signaling are essential components of normal locomotor circuits. J.Neurosci. (2014) 34:3841-53.

Bourane, S, Grossmann, KS, Britz, O, Dalet, A, Del Barrio, MG, Stam, FJ, et al. Identification of a spinal circuit for light touch and fine motor control. Cell (2015) 160:503-15.

Brooks, SP and Dunnett, SB. Tests to assess motor phenotype in mice: a user's guide. Nat.Rev.Neurosci. (2009) 10:519-29.

Brösamle, C and Schwab, ME. Cells of origin, course, and termination patterns of the ventral, uncrossed component of the mature rat corticospinal tract. J.Comp.Neurol. (1997) 386:293- 303.

Bui, TV, Akay, T, Loubani, O, Hnasko, TS, Jessell, TM, and Brownstone, RM. Circuits for grasping: spinal dI3 interneurons mediate cutaneous control of motor behavior. Neuron (2013) 78:191-204.

Canty, AJ and Murphy, M. Molecular mechanisms of axon guidance in the developing corticospinal tract. Prog.Neurobiol. (2008) 85:214-35.

Castro, AJ. Motor performance in rats. The effects of pyramidal tract section. Brain Res. (1972) 44:313-23.

Catsman-Berrevoets, CE and Kuypers, HGJM. A search for corticospinal collaterals to thalamus and mesencephalon by means of multiple retrograde fluorescent tracers in cat and rat. Brain Res. (1981) 218:15-33.

Chen, CC, Gilmore, A, and Zuo, Y. Study motor skill learning by single-pellet reaching tasks in mice. J.Vis.Exp. (2014) (85). doi:10.3791/51238.

Cohen, NR, Taylor, JS, Scott, LB, Guillery, RW, Soriano, P, and Furley, AJ. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr.Biol. (1998) 8:26-33.

Cox, BC, Cincotta, M, and Espay, AJ. Mirror movements in movement disorders: a review. Tremor Other Hyperkinet Mov.(N.Y) (2012) 2:10.7916/D8VQ31DZ. Epub 2012 Apr 16.

Dahme, M, Bartsch, U, Martini, R, Anliker, B, Schachner, M, and Mantei, N. Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat.Genet. (1997) 17:346-9.

Depienne, C, Bouteiller, D, Meneret, A, Billot, S, Groppa, S, Klebe, S, et al. RAD51 haploinsufficiency causes congenital mirror movements in humans. Am.J.Hum.Genet. (2012) 90:301-7.

Ding, YQ, Xiang, CX, and Chen, ZF. Generation and characterization of the PKC gamma-Cre mouse line. Genesis (2005) 43:28-33.

Dottori, M, Hartley, L, Galea, M, Paxinos, G, Polizzotto, M, Kilpatrick, T, et al. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc.Natl.Acad.Sci.U.S.A. (1998) 95:13248-53.

El Masri, R, Seffouh, A, Lortat-Jacob, H, and Vives, RR. The "in and out" of glucosamine 6-O- sulfation: the 6th sense of heparan sulfate. Glycoconj.J. (2017) 34:285-98.

Farmer, WT, Altick, AL, Nural, HF, Dugan, JP, Kidd, T, Charron, F, et al. Pioneer longitudinal axons navigate using floor plate and Slit/Robo signals. Development (2008) 135:3643-53.

Farr, TD and Whishaw, IQ. Quantitative and qualitative impairments in skilled reaching in the mouse (Mus musculus) after a focal motor cortex stroke. Stroke (2002) 33:1869-75.

Faulkner, RL, Low, LK, Liu, XB, Coble, J, Jones, EG, and Cheng, HJ. Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling. Neural Dev. (2008) 3:21,8104-3-21.

Finci, LI, Kruger, N, Sun, X, Zhang, J, Chegkazi, M, Wu, Y, et al. The crystal structure of netrin-1 in complex with DCC reveals the bifunctionality of netrin-1 as a guidance cue. Neuron (2014) 83:839-49.

Finger, JH, Bronson, RT, Harris, B, Johnson, K, Przyborski, SA, and Ackerman, SL. The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J.Neurosci. (2002) 22:10346-56.

Fransen, E, D'Hooge, R, Van Camp, G, Verhoye, M, Sijbers, J, Reyniers, E, et al. L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Hum.Mol.Genet. (1998) 7:999-1009.

Galléa, C, Popa, T, Billot, S, Meneret, A, Depienne, C, and Roze, E. Congenital mirror movements: a clue to understanding bimanual motor control. J.Neurol. (2011) 258:1911-9.

Gu, Z, Kalambogias, J, Yoshioka, S, Han, W, Li, Z, Kawasawa, YI, et al. Control of species- dependent cortico-motoneuronal connections underlying manual dexterity. Science (2017) 357:400-4.

Iwasato, T, Katoh, H, Nishimaru, H, Ishikawa, Y, Inoue, H, Saito, YM, et al. Rac-GAP alpha- chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling. Cell (2007) 130:742-53.

Jakeman, LB, Chen, Y, Lucin, KM, and McTigue, DM. Mice lacking L1 cell adhesion molecule have deficits in locomotion and exhibit enhanced corticospinal tract sprouting following mild contusion injury to the spinal cord. Eur.J.Neurosci. (2006) 23:1997-2011.

Jaworski, A, Long, H, and Tessier-Lavigne, M. Collaborative and specialized functions of Robo1 and Robo2 in spinal commissural axon guidance. J.Neurosci. (2010) 30:9445-53.

Joshi, PS, Molyneaux, BJ, Feng, L, Xie, X, Macklis, JD, and Gan, L. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron (2008) 60:258-72.

Katori, S, Noguchi-Katori, Y, Itohara, S, and Iwasato, T. Spinal RacGAP alpha-Chimaerin Is Required to Establish the Midline Barrier for Proper Corticospinal Axon Guidance. J.Neurosci. (2017) 37:7682-99.

Kullander, K, Butt, SJ, Lebret, JM, Lundfald, L, Restrepo, CE, Rydstrom, A, et al. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science (2003) 299:1889-92.

Kullander, K, Croll, SD, Zimmer, M, Pan, L, McClain, J, Hughes, V, et al. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev. (2001a) 15:877-88.

Kullander, K, Mather, NK, Diella, F, Dottori, M, Boyd, AW, and Klein, R. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron (2001b) 29:73-84.

Lamanna, WC, Kalus, I, Padva, M, Baldwin, RJ, Merry, CL, and Dierks, T. The heparanome--the enigma of encoding and decoding heparan sulfate sulfation. J.Biotechnol. (2007) 129:290- 307.

Lee, JS and Chien, CB. When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat.Rev.Genet. (2004) 5:923-35.

Lemon, RN. Descending pathways in motor control. Annu.Rev.Neurosci. (2008) 31:195-218.

Lévesque, M, Charara, A, Gagnon, S, Parent, A, and Deschênes, M. Corticostriatal projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. (1996) 709:311-5.

Leyva-Díaz, E and López-Bendito, G. In and out from the cortex: development of major forebrain connections. Neuroscience (2013) 254:26-44.

Li, CX and Waters, RS. Organization of the mouse motor cortex studied by retrograde tracing and intracortical microstimulation (ICMS) mapping. Can.J.Neurol.Sci. (1991) 18:28-38.

Liu, Y, Shi, J, Lu, CC, Wang, ZB, Lyuksyutova, AI, Song, XJ, et al. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat.Neurosci. (2005) 8:1151-9.

Masu, M. Heparan sulfate regulates axon guidance. Tanpakushitsu Kakusan Koso (2008) 53:489- 94.

Masu, M. Proteoglycans and axon guidance: a new relationship between old partners. J.Neurochem. (2016) 139 Suppl 2:58-75.

Meijering, E, Dzyubachyk, O, and Smal, I. Methods for cell and particle tracking. Methods Enzymol. (2012) 504:183-200.

Méneret, A, Franz, EA, Trouillard, O, Oliver, TC, Zagar, Y, Robertson, SP, et al. Mutations in the netrin-1 gene cause congenital mirror movements. J.Clin.Invest. (2017) 127:3923-36.

Montoya, CP, Campbell-Hope, LJ, Pemberton, KD, and Dunnett, SB. The "staircase test": a measure of independent forelimb reaching and grasping abilities in rats. J.Neurosci.Methods (1991) 36:219-28.

Mori, M, Kose, A, Tsujino, T, and Tanaka, C. Immunocytochemical localization of protein kinase C subspecies in the rat spinal cord: light and electron microscopic study. J.Comp.Neurol. (1990) 299:167-77.

Nagamine, S, Tamba, M, Ishimine, H, Araki, K, Shiomi, K, Okada, T, et al. Organ-specific sulfation patterns of heparan sulfate generated by extracellular sulfatases Sulf1 and Sulf2 in mice. J.Biol.Chem. (2012) 287:9579-90.

O'Callaghan, JP and Holtzman, SG. Quantification of the analgesic activity of narcotic antagonists by a modified hot-plate procedure. J.Pharmacol.Exp.Ther. (1975) 192:497-505.

Okada, T, Keino-Masu, K, Nagamine, S, Kametani, F, Ohto, T, Hasegawa, M, et al. Desulfation of Heparan Sulfate by Sulf1 and Sulf2 Is Required for Corticospinal Tract Formation. Sci.Rep. (2017) 7:13847,017-14185-3.

Okada, T, Keino-Masu, K, Suto, F, Mitchell, KJ, and Masu, M. Remarkable complexity and variability of corticospinal tract defects in adult Semaphorin 6A knockout mice. Brain Res. (2019) 1710:209-19.

O'Leary, DD, Bicknese, AR, De Carlos, JA, Heffner, CD, Koester, SE, Kutka, LJ, et al. Target selection by cortical axons: alternative mechanisms to establish axonal connections in the developing brain. Cold Spring Harb.Symp.Quant.Biol. (1990) 55:453-68.

Perrimon, N and Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature (2000) 404:725-8.

Pratt, T, Conway, CD, Tian, NM, Price, DJ, and Mason, JO. Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. J.Neurosci. (2006) 26:6911-23.

Rajagopalan, S, Vivancos, V, Nicolas, E, and Dickson, BJ. Selecting a longitudinal pathway: Robo receptors specify the lateral position of axons in the Drosophila CNS. Cell (2000) 103:1033-45.

Rolf, B, Bastmeyer, M, Schachner, M, and Bartsch, U. Pathfinding errors of corticospinal axons in neural cell adhesion molecule-deficient mice. J.Neurosci. (2002) 22:8357-62.

Rünker, AE, Little, GE, Suto, F, Fujisawa, H, and Mitchell, KJ. Semaphorin-6A controls guidance of corticospinal tract axons at multiple choice points. Neural Dev. (2008) 3:34,8104-3-34.

Schönfeld, LM, Dooley, D, Jahanshahi, A, Temel, Y, and Hendrix, S. Evaluating rodent motor functions: Which tests to choose?. Neurosci.Biobehav.Rev. (2017) 83:298-312.

Seffouh, A, Milz, F, Przybylski, C, Laguri, C, Oosterhof, A, Bourcier, S, et al. HSulf sulfatases catalyze processive and oriented 6-O-desulfation of heparan sulfate that differentially regulates fibroblast growth factor activity. FASEB J. (2013) 27:2431-9.

Seki, K, Perlmutter, SI, and Fetz, EE. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat.Neurosci. (2003) 6:1309-16.

Serradj, N, Paixao, S, Sobocki, T, Feinberg, M, Klein, R, Kullander, K, et al. EphA4-mediated ipsilateral corticospinal tract misprojections are necessary for bilateral voluntary movements but not bilateral stereotypic locomotion. J.Neurosci. (2014) 34:5211-21.

Simpson, JH, Bland, KS, Fetter, RD, and Goodman, CS. Short-range and long-range guidance by Slit and its Robo receptors: a combinatorial code of Robo receptors controls lateral position. Cell (2000) 103:1019-32.

Srour, M, Riviere, JB, Pham, JM, Dube, MP, Girard, S, Morin, S, et al. Mutations in DCC cause congenital mirror movements. Science (2010) 328:592.

Starkey, ML, Barritt, AW, Yip, PK, Davies, M, Hamers, FP, McMahon, SB, et al. Assessing behavioural function following a pyramidotomy lesion of the corticospinal tract in adult mice. Exp.Neurol. (2005) 195:524-39.

Steward, O, Zheng, B, Ho, C, Anderson, K, and Tessier-Lavigne, M. The dorsolateral corticospinal tract in mice: an alternative route for corticospinal input to caudal segments following dorsal column lesions. J.Comp.Neurol. (2004) 472:463-77.

Tennant, KA, Adkins, DL, Donlan, NA, Asay, AL, Thomas, N, Kleim, JA, et al. The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. Cereb.Cortex (2011) 21:865-76.

Tessier-Lavigne, M and Goodman, CS. The molecular biology of axon guidance. Science (1996) 274:1123-33.

Ueno, M, Nakamura, Y, Li, J, Gu, Z, Niehaus, J, Maezawa, M, et al. Corticospinal Circuits from the Sensory and Motor Cortices Differentially Regulate Skilled Movements through Distinct Spinal Interneurons. Cell.Rep. (2018) 23:1286,1300.e7.

Wang, S, Ai, X, Freeman, SD, Pownall, ME, Lu, Q, Kessler, DS, et al. QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis. Proc.Natl.Acad.Sci.U.S.A. (2004) 101:4833-8.

Wang, X, Liu, Y, Li, X, Zhang, Z, Yang, H, Zhang, Y, et al. Deconstruction of Corticospinal Circuits for Goal-Directed Motor Skills. Cell (2017) 171:440,455.e14.

Wang, Z, Maunze, B, Wang, Y, Tsoulfas, P, and Blackmore, MG. Global Connectivity and Function of Descending Spinal Input Revealed by 3D Microscopy and Retrograde Transduction. J.Neurosci. (2018) 38:10566-81.

Welniarz, Q, Dusart, I, and Roze, E. The corticospinal tract: Evolution, development, and human disorders. Dev.Neurobiol. (2017a) 77:810-29.

Welniarz, Q, Morel, MP, Pourchet, O, Gallea, C, Lamy, JC, Cincotta, M, et al. Non cell- autonomous role of DCC in the guidance of the corticospinal tract at the midline. Sci.Rep. (2017b) 7:410,017-00514-z.

Whishaw, IQ, Pellis, SM, Gorny, B, Kolb, B, and Tetzlaff, W. Proximal and distal impairments in rat forelimb use in reaching follow unilateral pyramidal tract lesions. Behav.Brain Res. (1993) 56:59-76.

Whishaw, IQ. An endpoint, descriptive, and kinematic comparison of skilled reaching in mice (Mus musculus) with rats (Rattus norvegicus). Behav.Brain Res. (1996) 78:101-11.

Yokoyama, N, Romero, MI, Cowan, CA, Galvan, P, Helmbacher, F, Charnay, P, et al. Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron (2001) 29:85-97.

Yu, TW and Bargmann, CI. Dynamic regulation of axon guidance. Nat.Neurosci. (2001) 4 Suppl:1169-76.

Zack, GW, Rogers, WE, and Latt, SA. Automatic measurement of sister chromatid exchange frequency. J.Histochem.Cytochem. (1977) 25:741-53.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る