リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「植物ホルモンオーキシンの減少が引き起こすゼニゴケ葉状体再生の分子機構」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

植物ホルモンオーキシンの減少が引き起こすゼニゴケ葉状体再生の分子機構

石田, 咲子 京都大学 DOI:10.14989/doctor.k24044

2022.03.23

概要

陸上植物は高い再生能をもち、組織欠損後に新たに組織や器官を再形成することができる。維管束植物の根やシュートの再生には主要な植物ホルモンの一つオーキシンが重要な機能をもつことが古くから知られている。コケ植物もまた高い再生能をもち、再生は頂端メリステムを含む頂端部を切除することによって基部側断片に誘導され、頂端側断片の切断面では誘導されない。また、基部側断片にオーキシンを添加すると再生芽の形成が抑制されることから、コケ植物の再生はオーキシンによる頂芽優勢機構の一形態であると考えられてきた。しかしながら、その詳細な分子機構は未だ不明である。そこで本研究では、苔類ゼニゴケを用いて葉状体再生過程の詳細な分子機構の解明を目指した。

 まず、オーキシンの添加によって再生過程の細胞周期再開が阻害されることを明らかにした。また、ゼニゴケに1分子種存在する転写活性化型のAUXINRESPONSEFACTOR(ARF)転写因子MpARF1の機能欠損株の再生はオーキシン存在下においても抑制されないことから、オーキシン添加による再生抑制はオーキシン信号伝達経路を介することがわかった。ゼニゴケ葉状体切断後の内生ホルモンの経時的な定量から、頂端部を切除した基部側断片の切断面領域では内生オーキシン量が一過的に大きく減少することを明らかにした。一方で、頂端側断片の切断面領域では内生オーキシン量は緩やかに減少するものの、その程度は基部側と比較して小さかった。これらの結果から、内生オーキシン量の一過的な減少が再生を引き起こすことが示唆された。次に、葉状体切断後の経時的なトランスクリプトーム解析により再生関連遺伝子の探索を行い、基部側断片特異的に発現が上昇し、かつオーキシン添加によって発現誘導が抑制される29遺伝子を見出した。その中には転写因子が1遺伝子含まれており、それはAPETALA2/ETHYLENERESPONSEFACTOR(AP2/ERF)ファミリーのクラスVIIIbに属するMpERF20であった。MpERF20は基部側断片特異的に発現が誘導され、オーキシンの添加によって誘導が抑制された。反対に、無傷の葉状体にオーキシン生合成阻害剤を処理しオーキシンレベルを低下させるとMpERF20の発現が上昇した。以上のことから、MpERF20をLOW-AUXINRESPONSIVE(MpLAXR)と再命名した。MpLAXRの機能欠損株では、オーキシン添加時と同様の細胞周期進行遅延が生じた。また、β-エストラジオール依存的にMpLAXRを誘導過剰発現するproMpE2F:XVE>>MpLAXR株を用いて、一過的に発現誘導した上で、オーキシン含有培地で再生実験を行ったところ、オーキシン存在下においても再生芽が形成された。つまり、MpLAXRの一過的な過剰発現はオーキシン添加による再生芽形成抑制効果を無効化できることが明らかになった。さらに、proMpE2F:XVE>>MpLAXR株の無性芽を切断することなくβ-エストラジオール含有培地で培養すると、メリステム領域だけでなく、通常は細胞分裂をしない領域においても細胞分裂が起こり、未分化な細胞塊が生じた。MpLAXR過剰発現誘導を止めると新たな葉状体が発生したことから、この細胞塊は幹細胞形成能をもつ細胞からなることが明らかとなった。これらの結果から、MpLAXRは再生過程において細胞リプログラミング因子として機能することが示唆された。本研究において、ゼニゴケ葉状体切断後に内生オーキシン量が一時的に減少し細胞リプログラミング因子MpLAXRの発現を誘導することを明らかにした。MpLAXRと同じAP2/ERFファミリーのクラスVIIIbに属するシロイヌナズナENHANCEROFSHOOTREGENERATION1/DORNRÖSCHEN(ESR1/DRN)はシュート再生因子として機能するとともに、オーキシン内生量の極小領域における腋芽メリステムの確立に関与する。本研究は、陸上植物におけるオーキシンによる幹細胞新生制御と頂芽優勢機構確立の関わりを示唆している。

この論文で使われている画像

参考文献

Aarssen, L.W. (1995) Hypotheses for the Evolution of Apical Dominance in Plants : Implications for

the Interpretation of Overcompensation. OIKOS. 74: 149–156.

Abu-Jamous, B., and Kelly, S. (2018) Clust: automatic extraction of optimal co-expressed gene clusters from gene expression data. Genome Biol. 19: 172.

Aki, S.S., Mikami, T., Naramoto, S., Nishihama, R., Ishizaki, K., Kojima, M., et al. (2019a) Cytokinin signaling is essential for organ formation in Marchantia polymorpha. Plant Cell Physiol. 60: 1842–1854.

Aki, S.S., Nishihama, R., Kohchi, T., and Umeda, M. (2019b) Cytokinin signaling coordinates development of diverse organs in Marchantia polymorpha. Plant Signal Behav. 14.

Asahina, M., Azuma, K., Pitaksaringkarn, W., Yamazaki, T., Mitsuda, N., Ohme-Takagi, M., et al. (2011) Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc Natl Acad Sci USA. 108: 16128–32.

Banno, H., Ikeda, Y., Niu, Q.W., and Chua, N.H. (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell. 13: 2609–18.

Bennett, T.A., Liu, M.M., Aoyama, T., Bierfreund, N.M., Braun, M., Coudert, Y., et al. (2014) Plasma membrane-targeted PIN proteins drive shoot development in a moss. Curr Biol. 24: 2776–2785.

Binns, A.N., and Maravolo, N.C. (1972) Apical dominance, polarity, and adventitious growth in Marchantia polymorpha. Am J Bot. 59: 691–696.

Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., et al. (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell. 171: 287- 304.e15.

Cao, X., and Jiao, Y. (2020) Control of cell fate during axillary meristem initiation. Cell Mol Life Sci. 77: 2343–2354.

Chen, L., Tong, J., Xiao, L., Ruan, Y., Liu, J., Zeng, M., et al. (2016) YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. J Exp Bot. 67: 4273–4284.

Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34: i884–i890.

Cheng, Z.J., Wang, L., Sun, W., Zhang, Y., Zhou, C., Su, Y.H., et al. (2013) Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol. 161: 240–251.

Christiaens, F., Canher, B., Lanssens, F., Bisht, A., Stael, S., and Zimmermann, S.D. (2021) Pars Pro Toto : Every Single Cell Matters. 12: 1–14.

Coudert, Y., Palubicki, W., Ljung, K., Novak, O., Leyser, O., and Harrison, C.J. (2015) Three ancient hormonal cues co-ordinate shoot branching in a moss. eLife. 4: 1–26.

Crawford, S., Shinohara, N., Sieberer, T., Williamson, L., George, G., Hepworth, J., et al. (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development. 137: 2905–2913.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29: 15–21.

Domagalska, M.A., and Leyser, O. (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol. 12: 211–221.

Efroni, I., Mello, A., Nawy, T., Ip, P.L., Rahni, R., Delrose, N., et al. (2016) Root Regeneration Triggers an Embryo-like Sequence Guided by Hormonal Interactions. Cell. 165: 1721–1733.

Eklund, D.M., Ishizaki, K., Flores-Sandoval, E., Kikuchi, S., Takebayashi, Y., Tsukamoto, S., et al. (2015) Auxin produced by the indole-3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. Plant Cell. 27: 1650–1669.

Falda, M., Toppo, S., Pescarolo, A., Lavezzo, E., Di Camillo, B., Facchinetti, A., et al. (2012) Argot2: a large scale function prediction tool relying on semantic similarity of weighted gene ontology terms. BMC Bioinformatics. 13 Suppl 4: S14.

Flores-Sandoval, E., Eklund, D.M., and Bowman, J.L. (2015) A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha. PLoS Genet. 11: 1–26.

Flores-Sandoval, E., Eklund, D.M., Hong, S.F., Alvarez, J.P., Fisher, T.J., Lampugnani, E.R., et al. (2018) Class C ARFs evolved before the origin of land plants and antagonize differentiation

and developmental transitions in Marchantia polymorpha. New Phytol. 218: 1612–1630. Friml, J. (2003) Auxin transport - Shaping the plant. Curr Opin Plant Biol. 6: 7–12. Fujita, T., Sakaguchi, H., Hiwatashi, Y., Wagstaff, S.J., Ito, M., Deguchi, H., et al. (2008)

Convergent evolution of shoots in land plants: Lack of auxin polar transport in moss shoots. Evol Dev. 10: 176–186.

Gaal, D.J., Dufresne, S.J., and Maravolo, N.C. (1982) Transport of 14C-indoleacetic acid in the hepatic Marchantia polymorpha. Bryologist. 85: 410–418.

Gamborg, O.L., Miller, R.A., and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 50: 151–158.

Harrison, C.J. (2017) Development and genetics in the evolution of land plant body plans. Philos Trans R Soc B Biol Sci. 372: 20–25.

He, W., Brumos, J., Li, H., Ji, Y., Ke, M., Gong, X., et al. (2011) A small-molecule screen identifies L-Kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell. 23: 3944–3960.

Hernández-García, J., Sun, R., Serrano-Mislata, A., Inoue, K., Vargas-Chávez, C., Esteve-Bruna, D., et al. (2021) Coordination between growth and stress responses by DELLA in the liverwort Marchantia polymorpha. Curr Biol. 31: 3678-3686.e11.

Higuchi, M., Pischke, M.S., Mähönen, A.P., Miyawaki, K., Hashimoto, Y., Seki, M., et al. (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A. 101: 8821–8826.

Hu, X., and Xu, L. (2016) Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiol. 172: 2363–2373.

Ikeuchi, M., Favero, D.S., Sakamoto, Y., Iwase, A., Coleman, D., Rymen, B., et al. (2019) Molecular Mechanisms of Plant Regeneration. Annu Rev Plant Biol. 70: annurev-arplant- 050718-100434.

Ishikawa, M., Morishita, M., Higuchi, Y., Ichikawa, S., Ishikawa, T., Nishiyama, T., et al. (2019) Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming. Nat Plants. 5: 681–690.

Ishikawa, M., Murata, T., Sato, Y., Nishiyama, T., Hiwatashi, Y., Imai, A., et al. (2011) Physcomitrella cyclin-dependent kinase a links cell cycle reactivation to other cellular changes during reprogramming of leaf cells. Plant Cell. 23: 2924–2938.

Ishizaki, K., Chiyoda, S., Yamato, K.T., and Kohchi, T. (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49: 1084–1091.

Ishizaki, K., Nishihama, R., Ueda, M., Inoue, K., Ishida, S., Nishimura, Y., et al. (2015) Development of gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS One. 10: e0138876.

Iwase, A., Harashima, H., Ikeuchi, M., Rymen, B., Ohnuma, M., Komaki, S., et al. (2017) WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell. 29: 54–69.

Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., et al. (2011) The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol. 21: 508– 514.

Kakei, Y., Yamazaki, C., Suzuki, M., Nakamura, A., Sato, A., Ishida, Y., et al. (2015) Small- molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. Plant J. 84: 827–837.

Kareem, A., Durgaprasad, K., Sugimoto, K., Du, Y., Pulianmackal, A.J., Trivedi, Z.B., et al. (2015) PLETHORA genes control regeneration by a two-step mechanism. Curr Biol. 25: 1017–1030.

Kato, H., Ishizaki, K., Kouno, M., Shirakawa, M., Bowman, J.L., Nishihama, R., et al. (2015) Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLoS Genet. 11: e1005365.

Kato, H., Kouno, M., Takeda, M., Suzuki, H., Ishizaki, K., Nishihama, R., et al. (2017) The roles of the sole activator-type auxin response factor in pattern formation of Marchantia polymorpha. Plant Cell Physiol. 58: 1642–1651.

Kato, H., Mutte, S.K., Suzuki, H., Crespo, I., Das, S., Radoeva, T., et al. (2020) Design principles of a minimal auxin response system. Nat Plants. 6: 473–482.

Kohchi, T., Yamato, K.T., Ishizaki, K., Yamaoka, S., and Nishihama, R. (2021) Development and molecular genetics of Marchantia polymorpha. Annu Rev Plant Biol. 72: 677–702.

Kojima, M., and Sakakibara, H. (2012) Highly sensitive high-throughput profiling of six phytohormones using MS-probe modification and liquid chromatography–tandem mass spectrometry. In Methods in Molecular Biology. pp. 151–64 Humana Press.

Kubota, A., Ishizaki, K., Hosaka, M., and Kohchi, T. (2013) Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem. 77: 167–172.

Kulmanov, M., and Hoehndorf, R. (2020) DeepGOPlus: improved protein function prediction from sequence. Bioinformatics. 36: 422–429.

LaRue, C., and Narayanaswami, S. (1957) Auxin inhibition in the liverwort Lunularia. New Phytol. 56: 61–70.

Leyser, O. (2005) Auxin distribution and plant pattern formation: How many angels can dance on the point of PIN? Cell. 121: 819–822.

Liao, Y., Smyth, G.K., and Shi, W. (2019) The R package Rsubreadis easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47: e47.

Liu, J., Hu, X., Qin, P., Prasad, K., Hu, Y., and Xu, L. (2018) The WOX11 - LBD16 Pathway Promotes Pluripotency Acquisition in Callus Cells during de Novo Shoot Regeneration in Tissue Culture. Plant Cell Physiol. 59: 734–743.

Liu, J., Sheng, L., Xu, Y., Li, J., and Yang, Z. (2014) WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell. 7: 1–14.

Love, M.I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550.

Luo, L., Zeng, J., Wu, H., Tian, Z., and Zhao, Z. (2018) A molecular framework for auxin-controlled homeostasis of shoot stem cells in Arabidopsis. Mol Plant. 11: 899–913.

Von Maltzahn, K.E. (1959) Interaction between kinetin and indoleacetic acid in the control of bud reactivation in splachnum ampullaceum (L.) hedw. Nature. 183: 60–61.

Masubelele, N.H., Dewitte, W., Menges, M., Maughan, S., Collins, C., Huntley, R., et al. (2005) D- type cyclins activate division in the root apex to promote seed germination in Arabidopsis. Proc Natl Acad Sci U S A. 102: 15694–15699.

Matosevich, R., Cohen, I., Gil-Yarom, N., Modrego, A., Friedlander-Shani, L., Verna, C., et al. (2020) Local auxin biosynthesis is required for root regeneration after wounding. Nat Plants. 6: 1020–1030.

Meng, W.J., Cheng, Z.J., Sang, Y.L., Zhang, M.M., Rong, X.F., Wang, Z.W., et al. (2017) Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell. 29: 1357–1372.

Monte, I., Ishida, S., Zamarreño, A.M., Hamberg, M., Franco-Zorrilla, J.M., García-Casado, G., et al. (2018) Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat Chem Biol. 14: 480–488.

Montgomery, S.A., Tanizawa, Y., Galik, B., Wang, N., Ito, T., Mochizuki, T., et al. (2020) Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin. Curr Biol. 30: 573-588.e7.

Mutte, S.K., Kato, H., Rothfels, C., Melkonian, M., Wong, G.K.S., and Weijers, D. (2018) Origin and evolution of the nuclear auxin response system. eLife. 7: e33399.

Nagata, T., and Takebe, I. (1971) Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta. 99: 12–20.

Nishihama, R., Ishizaki, K., Hosaka, M., Matsuda, Y., Kubota, A., and Kohchi, T. (2015) Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha. J Plant Res. 128: 407–421.

Nishimura, T., Hayashi, K.I., Suzuki, H., Gyohda, A., Takaoka, C., Sakaguchi, Y., et al. (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J. 77: 352–366.

Powers, S.K., and Strader, L.C. (2020) Regulation of auxin transcriptional responses. Dev Dyn. 249: 483–495.

Prusinkiewicz, P., Crawford, S., Smith, R.S., Ljung, K., Bennett, T., Ongaro, V., et al. (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci U S A. 106: 17431– 17436.

Rota, J., and Maravolo, N.C. (1975) Transport and mobilization of 14C-sucrose during regeneration in the hepatic, Marchantia polymorpha. Bot Gaz. 136: 184–188.

Sakai, H., Honma, T., Takashi, A., Sato, S., Kato, T., Tabata, S., et al. (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science (80- ). 294: 1519–1521.

Schindelin, J., Arganda-Carrera, I., Frise, E., Verena, K., Mark, L., Tobias, P., et al. (2012) Fiji - an open source platform for biological image analysis. Nat Methods. 9: 676–82.

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9: 671–5.

Shi, B., Zhang, C., Tian, C., Wang, J., Wang, Q., Xu, T., et al. (2016) Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis. PLoS Genet. 12: e1006168.

Shinohara, N., Taylor, C., and Leyser, O. (2013) Strigolactone Can Promote or Inhibit Shoot Branching by Triggering Rapid Depletion of the Auxin Efflux Protein PIN1 from the Plasma Membrane. PLoS Biol. 11.

Shinozaki, Y., Hao, S., Kojima, M., Sakakibara, H., Ozeki-Iida, Y., Zheng, Y., et al. (2015) Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism. Plant J. 83: 237–251.

Steward, F.C., Mapes, M.O., and Mears, K. (1958) Growth and Organized Development of Cultured Cells. II. Organization in Cultures Grown from Freely Suspended Cells. Am J Bot. 45: 705.

Sugano, S.S., and Nishihama, R. (2018) CRISPR/Cas9-based genome editing of transcription factor genes in Marchantia polymorpha. In Methods in Molecular Biology. pp. 109–126 Humana Press.

Sugano, S.S., Nishihama, R., Shirakawa, M., Takagi, J., Matsuda, Y., Ishida, S., et al. (2018) Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS One. 13: e0205117.

Sussex, I.M., and Kerk, N.M. (2001) The evolution of plant architecture. Curr Opin Plant Biol. 4: 33–37.

Suzuki, H., Kohchi, T., and Nishihama, R. (2021) Auxin biology in bryophyta: a simple platform with versatile functions. Cold Spring Harb Perspect Biol. 13: a040055.

Thimann, K.V., and Skoog, F. (1934) On the inhibition of bud development and other functions of growth substance in Vicia faba. Proc R Soc Lond B. 114: 317–339.

Tomescu, A.M.F., Wyatt, S.E., Hasebe, M., and Rothwell, G.W. (2014) Early evolution of the vascular plant body plan - the missing mechanisms. Curr Opin Plant Biol. 17: 126–136.

Törönen, P., Medlar, A., and Holm, L. (2018) PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. 46: W84–W88.

Umeda, M., Ikeuchi, M., Ishikawa, M., Ito, T., Nishihama, R., Kyozuka, J., et al. (2021) Plant stem cell research is uncovering the secrets of longevity and persistent growth. Plant J. 106: 326– 335.

Vöchting, H. (1885) Ueber die regeneration der Marchantieen. Jahrbücher für wissenschaftliche Bot. 16: 367–414.

Wang, Q., Kohlen, W., Rossmann, S., Vernoux, T., and Theres, K. (2014a) Auxin depletion from the leaf axil conditions competence for axillary meristem formation in Arabidopsis and tomato. Plant Cell. 26: 2068–2079.

Wang, Y., Wang, J., Shi, B., Yu, T., Qi, J., Meyerowitz, E.M., et al. (2014b) The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. Plant Cell. 26: 2055–2067.

Weijers, D., and Wagner, D. (2016) Transcriptional Responses to the Auxin Hormone. Annu Rev Plant Biol. 67: 539–574.

You, R., Yao, S., Xiong, Y., Huang, X., Sun, F., Mamitsuka, H., et al. (2019) NetGO: improving large-scale protein function prediction with massive network information. Nucleic Acids Res. 47: W379–W387.

Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012) ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 16: 284–287.

Zhang, C., Wang, J., Wenkel, S., Chandler, J.W., Werr, W., and Jiao, Y. (2018) Spatiotemporal control of axillary meristem formation by interacting transcriptional regulators. Development. 145: dev158352.

Zhang, G., Zhao, F., Chen, L., Pan, Y., Sun, L., Bao, N., et al. (2019) Jasmonate-mediated wound signalling promotes plant regeneration. Nat Plants. 5: 491–497.

Zhou, W., Lozano-Torres, J.L., Blilou, I., Zhang, X., Zhai, Q., Smant, G., et al. (2019) A Jasmonate Signaling Network Activates Root Stem Cells and Promotes Regeneration. Cell. 177: 942- 956.e14.

岩木彩(2019)ゼニゴケ幹細胞領域におけるオーキシン応答因子の関わる遺伝子制御ネットワーク解明に向けた解析

黄瀬 啓太 (2018) サイクリン D を介したフィトクロムと糖のシグナルによるゼニゴケ細胞周期制御機構 修士論文

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る