リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「低酸素下におけるCD133陽性大腸癌細胞の上皮間葉転換と転移能についての検討」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

低酸素下におけるCD133陽性大腸癌細胞の上皮間葉転換と転移能についての検討

岡田, 真誠 東京大学 DOI:10.15083/0002007063

2023.03.24

概要

[課程-2]
審査の結果の要旨
氏名 岡田 真誠
本研究では、低酸素環境下における上皮間葉転換 (EMT) と CD133 の発現との関連と、
遠隔転移形成における CD133 の関与の検証を目的として、基礎研究と後方視的観察研究を
行い、以下の結果を得ている。
1.

低酸素下では CD133 (-) 細胞と比較して、CD133 (+) 細胞で EMT 関連タンパク
質の発現が多く、遊走能も高かった。一方で CD133 (-) 細胞は CD133 (+) 細胞と
比較して、細胞接着タンパク質である β1 インテグリンの発現が多かった。

2.

遠隔転移を有する大腸癌において、
肝転移巣は原発巣よりも CD133 発現率が高く、
腹膜播種巣は原発巣よりも発現率が低かった。
以上、本論文は CD133 (+) 細胞は低酸素下において CD133 (-) 細胞よりも上皮間葉転換

がより誘導され遊走能も増加するため、肝転移などの血行性転移を起こしやすいこと、一方
で CD133 (-) 細胞は CD133 (+) 細胞と比較して接着能が増加するために腹膜播種を起こし
やすい可能性を示した。本研究は、これまで明らかとなっていない CD133 の各転移形式に
おける役割の解明に重要な貢献をなすと考えられる。
よって本論文は博士(医学 )の学位請求論文として合格と認められる。

この論文で使われている画像

参考文献

1.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for

36 cancers in 185 countries. CA Cancer J Clin; 68: 394-424. 2018.

2.

Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, Jemal A.

Colorectal cancer statistics, 2017. CA Cancer J Clin; 67: 177-93. 2017.

Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science; 331:

1559-64. 2011.

Paduch R. The role of lymphangiogenesis and angiogenesis in tumor metastasis.

Cell Oncol (Dordr); 39: 397-410. 2016.

Japanese Classification of Colorectal, Appendiceal, and Anal Carcinoma: the 3d

English Edition [Secondary Publication]. J Anus Rectum Colon; 3: 175-95. 2019.

Hashiguchi Y, Muro K, Saito Y, Ito Y, Ajioka Y, Hamaguchi T, Hasegawa K, Hotta

K, Ishida H, Ishiguro M, Ishihara S, Kanemitsu Y, Kinugasa Y, Murofushi K,

Nakajima TE, Oka S, Tanaka T, Taniguchi H, Tsuji A, Uehara K, Ueno H,

Yamanaka T, Yamazaki K, Yoshida M, Yoshino T, Itabashi M, Sakamaki K, Sano

K, Shimada Y, Tanaka S, Uetake H, Yamaguchi S, Yamaguchi N, Kobayashi H,

Matsuda K, Kotake K, Sugihara K. Japanese Society for Cancer of the Colon and

Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin

Oncol; 25: 1-42. 2020.

Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers

of tumour metastasis. Nat Rev Cancer; 14: 430-9. 2014.

Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer; 11:

393-410. 2011.

Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science; 352: 175-80.

2016.

Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM.

Hypoxia promotes invasive growth by transcriptional activation of the met

protooncogene. Cancer Cell; 3: 347-61. 2003.

Schito L. Hypoxia-Dependent Angiogenesis and Lymphangiogenesis in Cancer.

Adv Exp Med Biol; 1136: 71-85. 2019.

Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein

synthesis binds to the human erythropoietin gene enhancer at a site required for

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

62

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

transcriptional activation. Mol Cell Biol; 12: 5447-54. 1992.

Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE; 2007: cm8.

2007.

Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer; 3: 721-32.

2003.

Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell; 166: 21-45. 2016.

Mittal V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu Rev

Pathol; 13: 395-412. 2018.

Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelialmesenchymal plasticity in cancer metastasis. Nat Rev Cancer; 19: 716-32. 2019.

Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions

in development and disease. Cell; 139: 871-90. 2009.

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal

transition. Nat Rev Mol Cell Biol; 15: 178-96. 2014.

Pérez-Pomares JM, Muñoz-Chápuli R. Epithelial-mesenchymal transitions: a

mesodermal cell strategy for evolutive innovation in Metazoans. Anat Rec; 268:

343-51. 2002.

Huber MA, Kraut N, Beug H. Molecular requirements for epithelialmesenchymal transition during tumor progression. Curr Opin Cell Biol; 17: 54858. 2005.

Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev

Cancer; 2: 442-54. 2002.

Jiang J, Tang YL, Liang XH. EMT: a new vision of hypoxia promoting cancer

progression. Cancer Biol Ther; 11: 714-23. 2011.

Tam SY, Wu VWC, Law HKW. Hypoxia-Induced Epithelial-Mesenchymal

Transition in Cancers: HIF-1α and Beyond. Front Oncol; 10: 486. 2020.

Hongo K, Tsuno NH, Kawai K, Sasaki K, Kaneko M, Hiyoshi M, Murono K, Tada

N, Nirei T, Sunami E, Takahashi K, Nagawa H, Kitayama J, Watanabe T. Hypoxia

enhances colon cancer migration and invasion through promotion of epithelialmesenchymal transition. J Surg Res; 182: 75-84. 2013.

Shmelkov SV, St Clair R, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J

Biochem Cell Biol; 37: 715-9. 2005.

Takenobu H, Shimozato O, Nakamura T, Ochiai H, Yamaguchi Y, Ohira M,

Nakagawara A, Kamijo T. CD133 suppresses neuroblastoma cell differentiation

via signal pathway modification. Oncogene; 30: 97-105. 2011.

Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ,

63

Heeschen C. Distinct populations of cancer stem cells determine tumor growth

and metastatic activity in human pancreatic cancer. Cell Stem Cell; 1: 313-23.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

2007.

Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco

L, Peschle C, De Maria R. Identification and expansion of the tumorigenic lung

cancer stem cell population. Cell Death Differ; 15: 504-14. 2008.

Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De

Maria R. Identification and expansion of human colon-cancer-initiating cells.

Nature; 445: 111-5. 2007.

O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable

of initiating tumour growth in immunodeficient mice. Nature; 445: 106-10. 2007.

Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ. Opinion: the origin of

the cancer stem cell: current controversies and new insights. Nat Rev Cancer; 5:

899-904. 2005.

Hongo K, Tanaka J, Tsuno NH, Kawai K, Nishikawa T, Shuno Y, Sasaki K,

Kaneko M, Hiyoshi M, Sunami E, Kitayama J, Takahashi K, Nagawa H. CD133(-)

cells, derived from a single human colon cancer cell line, are more resistant to 5fluorouracil (FU) than CD133(+) cells, dependent on the β1-integrin signaling. J

Surg Res; 175: 278-88. 2012.

Kishikawa J, Kazama S, Oba K, Hasegawa K, Anzai H, Harada Y, Abe H,

Matsusaka K, Hongo K, Oba M, Yasuda K, Otani K, Nishikawa T, Tanaka T,

Tanaka J, Kiyomatsu T, Hata K, Kawai K, Nozawa H, Yamaguchi H, Ishihara S,

Sunami E, Ushiku T, Kitayama J, Fukayama M, Kokudo N, Watanabe T. CD133

Expression at the Metastatic Site Predicts Patients' Outcome in Colorectal Cancer

with Synchronous Liver Metastasis. Ann Surg Oncol; 23: 1916-23. 2016.

Rasheed S, Harris AL, Tekkis PP, Turley H, Silver A, McDonald PJ, Talbot IC,

Glynne-Jones R, Northover JM, Guenther T. Hypoxia-inducible factor-1alpha and

-2alpha are expressed in most rectal cancers but only hypoxia-inducible factor1alpha is associated with prognosis. Br J Cancer; 100: 1666-73. 2009.

Zhang Q, Han Z, Zhu Y, Chen J, Li W. Role of hypoxia inducible factor-1 in cancer

stem cells (Review). Mol Med Rep; 232021.

Matsumoto K, Arao T, Tanaka K, Kaneda H, Kudo K, Fujita Y, Tamura D,

Aomatsu K, Tamura T, Yamada Y, Saijo N, Nishio K. mTOR signal and hypoxiainducible factor-1 alpha regulate CD133 expression in cancer cells. Cancer Res;

69: 7160-4. 2009.

Hashimoto O, Shimizu K, Semba S, Chiba S, Ku Y, Yokozaki H, Hori Y. Hypoxia

64

induces tumor aggressiveness and the expansion of CD133-positive cells in a

hypoxia-inducible factor-1α-dependent manner in pancreatic cancer cells.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Pathobiology; 78: 181-92. 2011.

Maeda K, Ding Q, Yoshimitsu M, Kuwahata T, Miyazaki Y, Tsukasa K, Hayashi

T, Shinchi H, Natsugoe S, Takao S. CD133 Modulate HIF-1α Expression under

Hypoxia in EMT Phenotype Pancreatic Cancer Stem-Like Cells. Int J Mol Sci;

172016.

Chen YS, Wu MJ, Huang CY, Lin SC, Chuang TH, Yu CC, Lo JF. CD133/Src axis

mediates tumor initiating property and epithelial-mesenchymal transition of head

and neck cancer. PLoS One; 6: e28053. 2011.

Li W, Cho MY, Lee S, Jang M, Park J, Park R. CRISPR-Cas9 mediated CD133

knockout inhibits colon cancer invasion through reduced epithelial-mesenchymal

transition. PLoS One; 14: e0220860. 2019.

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin

Invest; 119: 1420-8. 2009.

Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J

Clin Invest; 119: 1429-37. 2009.

Banyard J, Bielenberg DR. The role of EMT and MET in cancer dissemination.

Connect Tissue Res; 56: 403-13. 2015.

Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi

CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal

Transition: Signaling, Therapeutic Implications, and Challenges. Cells; 82019.

Vu T, Datta PK. Regulation of EMT in Colorectal Cancer: A Culprit in Metastasis.

Cancers (Basel); 92017.

Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknæs M, Hektoen M, Lind GE,

Lothe RA. Epigenetic and genetic features of 24 colon cancer cell lines.

Oncogenesis; 2: e71. 2013.

You S, Zhou J, Chen S, Zhou P, Lv J, Han X, Sun Y. PTCH1, a receptor of

Hedgehog signaling pathway, is correlated with metastatic potential of colorectal

cancer. Ups J Med Sci; 115: 169-75. 2010.

Okuno T, Kawai K, Hata K, Murono K, Emoto S, Kaneko M, Sasaki K, Nishikawa

T, Tanaka T, Nozawa H. SN-38 Acts as a Radiosensitizer for Colorectal Cancer

by Inhibiting the Radiation-induced Up-regulation of HIF-1α. Anticancer Res; 38:

3323-31. 2018.

Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin.

Embo j; 31: 2714-36. 2012.

65

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Iida Y, N HT, Kishikawa J, Kaneko K, Murono K, Kawai K, Ikeda T, Ishihara S,

Yamaguchi H, Sunami E, Kitayama J, Yatomi Y, Watanabe T.

Lysophosphatidylserine stimulates chemotactic migration of colorectal cancer

cells through GPR34 and PI3K/Akt pathway. Anticancer Res; 34: 5465-72. 2014.

Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell; 129:

465-72. 2007.

Vadde R, Vemula S, Jinka R, Merchant N, Bramhachari PV, Nagaraju GP. Role of

hypoxia-inducible factors (HIF) in the maintenance of stemness and malignancy

of colorectal cancer. Crit Rev Oncol Hematol; 113: 22-27. 2017.

Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh

J, Iwama T, Kunisada T, Kassam AB, Pollack IF, Park DM. Hypoxia promotes

expansion of the CD133-positive glioma stem cells through activation of HIF1alpha. Oncogene; 28: 3949-59. 2009.

Santoyo-Ramos P, Likhatcheva M, García-Zepeda EA, Castañeda-Patlán MC,

Robles-Flores M. Hypoxia-inducible factors modulate the stemness and

malignancy of colon cancer cells by playing opposite roles in canonical Wnt

signaling. PLoS One; 9: e112580. 2014.

Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?:

regulation of transcription by the Wnt/β-catenin pathway. Acta Physiol (Oxf); 204:

74-109. 2012.

Ding Q, Miyazaki Y, Tsukasa K, Matsubara S, Yoshimitsu M, Takao S. CD133

facilitates epithelial-mesenchymal transition through interaction with the ERK

pathway in pancreatic cancer metastasis. Mol Cancer; 13: 15. 2014.

Orsulic S, Huber O, Aberle H, Arnold S, Kemler R. E-cadherin binding prevents

beta-catenin

nuclear

localization

and

beta-catenin/LEF-1-mediated

transactivation. J Cell Sci; 112 ( Pt 8): 1237-45. 1999.

Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in

malignant progression of cancer. Cancer Metastasis Rev; 28: 151-66. 2009.

Bukholm IK, Nesland JM, Børresen-Dale AL. Re-expression of E-cadherin,

alpha-catenin and beta-catenin, but not of gamma-catenin, in metastatic tissue

from breast cancer patients [seecomments]. J Pathol; 190: 15-9. 2000.

Manzo G. Similarities Between Embryo Development and Cancer Process

Suggest New Strategies for Research and Therapy of Tumors: A New Point of

View. Front Cell Dev Biol; 7: 20. 2019.

Giancotti FG, Ruoslahti E. Integrin signaling. Science; 285: 1028-32. 1999.

Cooper J, Giancotti FG. Integrin Signaling in Cancer: Mechanotransduction,

66

Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell; 35: 34767. 2019.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Cheah M, Andrews MR. Integrin Activation: Implications for Axon Regeneration.

Cells; 72018.

Ata R, Antonescu CN. Integrins and Cell Metabolism: An Intimate Relationship

Impacting Cancer. Int J Mol Sci; 182017.

Lokmic Z, Musyoka J, Hewitson TD, Darby IA. Hypoxia and hypoxia signaling

in tissue repair and fibrosis. Int Rev Cell Mol Biol; 296: 139-85. 2012.

Koike T, Kimura N, Miyazaki K, Yabuta T, Kumamoto K, Takenoshita S, Chen J,

Kobayashi M, Hosokawa M, Taniguchi A, Kojima T, Ishida N, Kawakita M,

Yamamoto H, Takematsu H, Suzuki A, Kozutsumi Y, Kannagi R. Hypoxia induces

adhesion molecules on cancer cells: A missing link between Warburg effect and

induction of selectin-ligand carbohydrates. Proc Natl Acad Sci U S A; 101: 81327. 2004.

Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H, Lee SJ, Xiang L, Samanta D, Lee

MH, Wu PH, Wirtz D, Semenza GL, Gilkes DM. Hypoxia Selectively Enhances

Integrin α(5)β(1) Receptor Expression in Breast Cancer to Promote Metastasis.

Mol Cancer Res; 15: 723-34. 2017.

Ryu MH, Park HM, Chung J, Lee CH, Park HR. Hypoxia-inducible factor-1alpha

mediates oral squamous cell carcinoma invasion via upregulation of alpha5

integrin and fibronectin. Biochem Biophys Res Commun; 393: 11-5. 2010.

Wu X, Cai J, Zuo Z, Li J. Collagen facilitates the colorectal cancer stemness and

metastasis through an integrin/PI3K/AKT/Snail signaling pathway. Biomed

Pharmacother; 114: 108708. 2019.

Chen WC, Chang YS, Hsu HP, Yen MC, Huang HL, Cho CY, Wang CY, Weng

TY, Lai PT, Chen CS, Lin YJ, Lai MD. Therapeutics targeting CD90-integrinAMPK-CD133 signal axis in liver cancer. Oncotarget; 6: 42923-37. 2015.

Lemoine L, Sugarbaker P, Van der Speeten K. Pathophysiology of colorectal

peritoneal carcinomatosis: Role of the peritoneum. World J Gastroenterol; 22:

7692-707. 2016.

de Cuba EM, Kwakman R, van Egmond M, Bosch LJ, Bonjer HJ, Meijer GA, te

Velde EA. Understanding molecular mechanisms in peritoneal dissemination of

colorectal cancer : future possibilities for personalised treatment by use of

biomarkers. Virchows Arch; 461: 231-43. 2012.

Pretzsch E, Bösch F, Neumann J, Ganschow P, Bazhin A, Guba M, Werner J,

Angele M. Mechanisms of Metastasis in Colorectal Cancer and Metastatic

67

Organotropism: Hematogenous versus Peritoneal Spread. J Oncol; 2019:

7407190. 2019.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Nakashio T, Narita T, Akiyama S, Kasai Y, Kondo K, Ito K, Takagi H, Kannagi R.

Adhesion molecules and TGF-beta1 are involved in the peritoneal dissemination

of NUGC-4 human gastric cancer cells. Int J Cancer; 70: 612-8. 1997.

Strobel T, Cannistra SA. Beta1-integrins partly mediate binding of ovarian cancer

cells to peritoneal mesothelium in vitro. Gynecol Oncol; 73: 362-7. 1999.

Hosono J, Narita T, Kimura N, Sato M, Nakashio T, Kasai Y, Nonami T, Nakao A,

Takagi H, Kannagi R. Involvement of adhesion molecules in metastasis of

SW1990, human pancreatic cancer cells. J Surg Oncol; 67: 77-84. 1998.

Oosterling SJ, van der Bij GJ, Bögels M, ten Raa S, Post JA, Meijer GA, Beelen

RH, van Egmond M. Anti-beta1 integrin antibody reduces surgery-induced

adhesion of colon carcinoma cells to traumatized peritoneal surfaces. Ann Surg;

247: 85-94. 2008.

Nagata H, Ishihara S, Kishikawa J, Sonoda H, Murono K, Emoto S, Kaneko M,

Sasaki K, Otani K, Nishikawa T, Tanaka T, Kiyomatsu T, Hata K, Kawai K,

Nozawa H. CD133 expression predicts post-operative recurrence in patients with

colon cancer with peritoneal metastasis. Int J Oncol; 52: 721-32. 2018.

Hongo K, Kazama S, Sunami E, Tsuno NH, Takahashi K, Nagawa H, Kitayama

J. Immunohistochemical detection of CD133 is associated with tumor regression

grade after chemoradiotherapy in rectal cancer. Med Oncol; 29: 2849-57. 2012.

Harada Y, Kazama S, Morikawa T, Murono K, Yasuda K, Otani K, Nishikawa T,

Tanaka T, Kiyomatsu T, Kawai K, Hata K, Nozawa H, Yamaguchi H, Ishihara S,

Watanabe T. Leucine-rich repeat-containing G protein-coupled receptor 5 and

CD133 expression is associated with tumor progression and resistance to

preoperative chemoradiotherapy in low rectal cancer. Oncol Lett; 14: 7791-98.

2017.

Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier AM.

Epidemiology and management of liver metastases from colorectal cancer. Ann

Surg; 244: 254-9. 2006.

Engstrand J, Nilsson H, Strömberg C, Jonas E, Freedman J. Colorectal cancer

liver metastases - a population-based study on incidence, management and

survival. BMC Cancer; 18: 78. 2018.

Ravn S, Heide-Jørgensen U, Christiansen CF, Verwaal VJ, Hagemann-Madsen

RH, Iversen LH. Overall risk and risk factors for metachronous peritoneal

metastasis after colorectal cancer surgery: a nationwide cohort study. BJS Open;

68

85.

86.

87.

88.

89.

4: 284-92. 2020.

Zhang H, Yang N, Sun B, Jiang Y, Hou C, Ji C, Zhang Y, Liu Y, Zuo P. CD133

positive cells isolated from A549 cell line exhibited high liver metastatic potential.

Neoplasma; 61: 153-60. 2014.

Jing F, Kim HJ, Kim CH, Kim YJ, Lee JH, Kim HR. Colon cancer stem cell

markers CD44 and CD133 in patients with colorectal cancer and synchronous

hepatic metastases. Int J Oncol; 46: 1582-8. 2015.

Huang X, Sheng Y, Guan M. Co-expression of stem cell genes CD133 and CD44

in colorectal cancers with early liver metastasis. Surg Oncol; 21: 103-7. 2012.

Mitsui H, Shibata K, Suzuki S, Umezu T, Mizuno M, Kajiyama H, Kikkawa F.

Functional interaction between peritoneal mesothelial cells and stem cells of

ovarian yolk sac tumor (SC-OYST) in peritoneal dissemination. Gynecol Oncol;

124: 303-10. 2012.

Neumann J, Löhrs L, Albertsmeier M, Reu S, Guba M, Werner J, Kirchner T,

Angele M. Cancer Stem Cell Markers Are Associated With Distant

Hematogenous Liver Metastases But Not With Peritoneal Carcinomatosis in

Colorectal Cancer. Cancer Invest; 33: 354-60. 2015.

69

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る