リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「沖縄フードブランドの確立を目指したドライエイジングビーフ製造のための暖地型牧草導入に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

沖縄フードブランドの確立を目指したドライエイジングビーフ製造のための暖地型牧草導入に関する研究

花ケ崎, 敬資 HANAGASAKI, Takashi ハナガサキ, タカシ 九州大学

2023.03.20

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Studies on utilization of tropical grasses in
dry-aged beef production toward establishing an
Okinawan food brand
花ケ崎, 敬資

https://hdl.handle.net/2324/6787704
出版情報:Kyushu University, 2022, 博士(農学), 論文博士
バージョン:
権利関係:





論文題名

:花ケ崎敬資
:Studies on utilization of tropical grasses in dry-aged beef production toward
establishing an Okinawan food brand
(沖縄フードブランドの確立を目指したドライエイジングビーフ製造のための暖
地型牧草導入に関する研究)





:乙















沖縄ブランド牛肉の生産技術確立を目的に、先ず、導入 暖地型 牧草の収量と栄養価の調査、栄養繁殖による
苗を用いた草地造成法の開発および沖縄産牧草などのサイレージ発酵特性に関して研究を実施した。 暖地型
牧草であるバシリスク( Urochloa decumbens cv. Basilisk)(試験Ⅰ:研究期間 2002-2005 年)およびバシリスクと
MG5( Urochloa brizantha cv. MG5)(試験Ⅱ:2006-2008 年)の生産性と栄養価を沖縄県奨励品種と比較調査し
た。試験Ⅰでは、バシリスクの乾物収量(119.5 t/ha)は沖縄県奨励品種の代表であるトランスバーラ( Digitaria

eriantha cv. Transvala)を有意に上回った(P < 0.05)。乾物消化率(56.7 ± 0.1%)も他の奨励品種(51.4 ± 0.3〜
54.5 ± 0.2%)を上回っていた( P < 0.05)。加えて、可消化乾物収量(64.8 t/ha)と粗タンパク質含量(13.7 t/ha)も
トランスバーラを上回った(P < 0.01)。続く試験Ⅱでは、バシリスクと MG5 の乾物収量はそれぞれ 93.0 t/ha と 97.2
t/ha であり、いずれも沖縄県奨励品種であるパラグラス(Urochloa mutica)の 78.6 t/ha を上回った(順に P < 0.01
と P < 0.001)。バシリスクと MG5 の可消化乾物収量はそれぞれ 48.8 t/ha と 50.3 t/ha であり、これらの値はパラ
グラスを有意に上回ると共に、粗タンパク質含量(それぞれ 10.4 t/ha と 10.9 t/ha)は他の Urochloa 属品種と同等
であった。従って、バシリスクと MG5 は一般的な沖縄県奨励品種と比べて優れた生産性と栄養価を有することが
明らかになった(第2章)。本結果を受けて両品種は平成 28 年に沖縄県飼料作物の奨励品種として認定された。
バシリスクと MG5 は上述したように優良種であるが沖縄県内では採種率が極めて低いことから、栄養繁殖によ
る苗を用いた草地造成法の開発を試みた。苗形成法の一つは、牧草の幹(茎)を地面から約 10 cm の位置で切
断し、これを培養土と土の混合土(混合比 1 : 1)に深さ 3 cm で挿して発根させる方法であり、77%(n=648)の発根
苗の獲得に成功した。もう一つは、生育した牧草の 3 節を残して高刈りし、2 週間後に、下側の節から発根した状
態で先と同様に混合土に挿すものであり、この方法により 67%(n=1155)の発根苗の獲得に成功した。また、これら
の苗を国頭マージ土壌に定植したところ、良好に成育、定着することを確認した(第3章)。この草地造成法の整
備と並行して、栄養価が高く経済的な良質サイレージの発酵プロセスを解析する目的で、沖縄県内で調製された
様々なサイレージ中の乳酸菌の生化学的性状および 16S rDNA 塩基配列の解析による菌種同定を行った。トラン
スバーラ、ギニアグラス( Megathyrsus maximus)、カタンボラ( Chloris gayana cv. Katambora)、パラグラス、ソルゴ
ー( Sorghum vulgare, BMR Sweet) 、コーン ( Zea mays ) のサイ レージから Lactobacillus 属 、 Weissella 属 、

Lactococcus 属、Pediocuccus 属などの計 16 グループ 37 菌種の多種多様な乳酸菌を検出した。品質の良いサイ
レージでは Lactobacillus 属菌種が優占種であることを見出し、これが高品質サイレージの重要な要素であること
を示唆した(第4章)。本研究で明らかとなった導入牧草バシリスクと MG5 の優れた生産性と栄養価、草地造成法
の開発および沖縄産牧草などのサイレージ発酵菌叢解析は、沖縄ブランド牛のコマーシャル化に必要な優れた
生産性と肥育特性などの栄養飼養学的基盤の構築に大きく寄与すると期待された。
次に、沖縄ブランド牛肉の差別化を目的に、県産経産牛肉、輸入牛肉を用いたドライエイジング、カビ熟成など
の牛肉熟成に関する研究を実施した。まず、沖縄県産経産牛肉などを供試材料としてドライエイジング(湿度 80%、
2℃、28 日間熟成)とウェットエイジング(真空パック包装、2℃、28 日間熟成)の肉質特性を比較した。タンパク質

構成アミノ酸である旨味系、甘味系、および風味系アミノ酸は両エイジング区で有意に増加した( P < 0.05)。破断
応力、剪断力価および歪率の測定結果から、熟成(エイジング)に伴い食肉が軟化することを確認した他、ドリップ
ロスとクッキングロス(加熱損失)はウェットエイジングに比べドライエイジングで低値を示した(P < 0.01)。また、ドリッ
プロスとクッキングロスはドライエイジングが進むにつれ減少する傾向が認められたことからも、牛肉に対するドライ
エイジングの有効性が確認された(第5章)。また、ドライエイジングのうち、欧米でメジャーなカビ熟成に適した菌
の単離に成功し、菌の形態観察および ITS 領域 DNA 塩基配列の分子系統解析から Mucor flavus と同定した。
カビ熟成 28 日後では、収縮ロス、トリミングロスがカビ無し熟成に比べ有意に低く、肉は有意に軟らかくなった。ま
た、カビ熟成肉の内部(トリミング後深さ 3 cm)では遊離アミノ酸含量の有意な増加はなかったが、カビが生育して
いるトリミング部では、牛肉では検出されないギャバ、プロリン、アスパラギン酸などを含め旨味系、甘味系、風味
系アミノ酸全ての増加を認めた(第6章)。さらには、トリミング後の肉表面(通常食する部位)では、総遊離アミノ酸、
甘味系アミノ酸、および風味系アミノ酸含量が有意に増加することを明らかにした。アミノ酸はグルコースとの加熱
反応により様々な風味を呈する香気(フレーバー)を生じることから、肉表面の焼きはこれら香気成分の放出に寄
与していることが示唆された。さらには、ガスクロマトグラフ質量分析計により、カビ無熟成(ドライエイジング)肉に
比べカビ熟成肉から高極性化合物が多く検出された他、2-オクテナール、2,4-ノナンジエナールおよび 2-ウンデ
セナールなどのナッツ香や焼肉香成分はカビ熟成肉のみで検出されたことは特筆に値する。よって、これら高極
性化合物がカビ熟成肉特有の風味に関与している事が示唆された(第7章)。
以上、本研究により得られた沖縄ブランド牛生産の栄養飼養学的基盤となる成果と共に、ドライエイジングやカ
ビ熟成による食肉の軟化、旨味系アミノ酸などの増加、および風味フレーバーの付与などの知見は、食肉の熟成
メカニズムの解明の重要な情報になるとともに、食味や食感の向上およびオリジナル風味の付与による沖縄ブラ
ンド牛肉の差別化、ひいては、沖縄フードブランドの確立に大きく貢献すると期待された。

この論文で使われている画像

参考文献

Abdou AM; Higashiguchi S; Horie K; Kim K; Hatta H; Yokogoshi H. 2006. Relaxation

immunity enhancement effects of gamma-aminobutyric acid (GABA) administration in

humans. BioFactors 26(3):201–8.

Baird B. 2008. Dry aging enhances palatability of beef, Beef safety and quality.

https://www.beefresearch.org/CMDocs/BeefResearch/PE_Issues_Update/Dry_aging_en

hances_palatability_of_beef.pdf. Accessed March April 2008.

Barbosa EG; Pivello VR; Meirelles ST. 2008. Allelopathic evidence in Brachiaria

decumbens and its potential to invade the Brazilian Cerrados. Brazilian Archives of

Biology and Technology 51(4):825‒831. doi: 10.1590/ S1516-89132008000400021

Bi S; Xu X; Luo D; Lao F; Pang X; Shen Q; Hu X; Wu J. 2020. Characterization of Key

Aroma Compounds in Raw and Roasted Peas (Pisum sativum L.) by Application of

Instrumental and Sensory Techniques. Journal of the Science of Food and Agriculture

68(9):2718–2727. https://doi.org/10.1021/acs.jafc.9b07711.

Campbell RE; Hunt MC; Levis P; Chambers Iv E. 2001. Dry-aging effects on palatability

of beef longissimus muscle. Journal of Food Science and Nutrition 66:196–9.

Cai Y. 2001. The role of lactic acid bacteria in the preparation of high fermentation quality.

Japanese

Journal

of

Grassland

Science

47:527−533.

(In

Japanese)

doi:

10.14941/grass.47.527

Cai Y; Benno Y; Ogawa M; Ohmomo S; Kumai S; Nakase K. 1998. Influence of

135

Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage

crops on silage fermentation. Applied and Environmental Microbiology 64:2982–2987.

doi: 10.1128/AEM.64.8. 2982-2987.1998

Cai Y; Benno Y; Ogawa M; Kumai S. 1999a. Effect of applying lactic acid bacteria

isolated from forage crops on fermentation characteristics and aerobic deterioration of

silage. Journal of Dairy Science 82:520–526. doi: 10.3168/ jds.s0022-0302(99)75263-x

Cai Y; Kumai S; Ogawa M; Benno Y; Nakase T. 1999b. Characterization and

identification of Pediococcus species isolated from forage crops and their application for

silage

preparation.

Applied

and

Environmental

Microbiology

65:2901–2906.

10.1128/AEM.65.7.2901-2906.1999

Cook BG; Pengelly BC; Schultze-Kraft R; Taylor M; Burkart S; Cardoso Arango JA;

González Guzmán JJ; Cox K; Jones C; Peters M. 2020. Tropical Forages: An interactive

selection tool. 2nd and Revised Edn. International Center for Tropical Agriculture (CIAT),

Cali, Colombia and International Livestock Research Institute (ILRI), Nairobi, Kenya.

www.tropicalforages.info

Dashmaa D; Tripathi VK; Cho S; Kim Y; Hwang I. 2016. Dry aging of beef; review.

Journal of Animal Science and Technology 58:20.

Dewar WA; McDonald P. 1961. Determination of dry matter in silage by distillation with

toluene. Journal of the Science of Food and Agriculture 12:790–795. doi: 10.1002/jsfa.27

40121112

136

Dunière L; Sindou J; Chaucheyras-Durand F; Chevallier I; Thévenot-Sergentet D. 2013.

Silage processing and strategies to prevent persistence of undesirable microorganisms.

Animal Feed Science and Technology 182:1–15. doi: 10.1016/j.anifeedsci.2013.04.006

EFSA (Food Safety Authority, Parma, Italy). 2014. Scientific opinion on the efficacy of

Lactobacillus plantarum (NCIMB 30238) and Pediococcus pentosaceus (NCIMB 30237)

as silage additives. EFSA Journal 12(9):3829. doi: 10.2903/j.efsa.2014.3829

FAO (Food and Agriculture Organization of the United Nations). 2016. Grassland Index.

A searchable catalogue of grass and forage legumes. FAO, Rome, Italy.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap.

Evolution 39:783–91.

Frauendorfer F; Schieberle P. 2008. Changes in key aroma compounds of Criollo cocoa

beans during roasting. Journal of Agriculture and Food Chemistry 56(21):10244–10251.

https://doi.org/10.1021/jf802098f.

Feng T; Shui M; Song S; Zhuang H; Sun M; Yao L. 2019. Characterization of the key

aroma compounds in three truffle varieties from China by flavoromics approach.

Molecules 24(18). doi:10.3390/molecules24183305, pii: E3305.

Gayalin I. 1994. Stockpiling of tropical forage for the dry season in Martinique. In:

Proceedings of the XVII International Grassland Congress, 8-21 Febrary 1993, Vol. 1.

NZGA, TGSA, NZSAP, ASAP-Qld., and NZIAS, Palmerston North, New Zealand. p.

518–519.

137

Goto I; Minson DJ. 1977. Prediction of the dry matter digestibility of tropical grasses

using a pepsin-cellulase assay. Animal Feed Science and Technology 2(3):247‒253. doi:

10.1016/0377-8401(77)90028-1

Guenni O; Marín D; Baruch Z. 2002. Responses to drought of five Brachiaria species. I.

Biomass production, leaf growth, root distribution, water use and forage quality. Plant

and Soil 243:229–241.

Hanagasaki T; Mochizuki T; Morikawa N; Nagatoshi M; Majikina M. 2006. The test of

choosing tropical forage grasses. Bulletin of The Okinawa Prefectural Livestock and

Grassland

Research

Center

44:79-84.

(in

Japanese)

agriknowledge.affrc.go.jp/RN/2010813245.pdf

Hanagasaki T; Cai Y. 2009. Identification and characterization of lactic acid bacteria

isolated from Transvala silage in Okinawa. Nihon Chikusan Gakkaiho 81:143‒152. (In

Japanese). doi: 10.2508/chikusan.81.143

Hanagasaki T. 2022. Characteristics of Digitaria eriantha cv. Transvala grown in

Okinawa, Japan. Taiwanese Journal of Agricultural Chemistry and Food Science

60(4):125-132.

Hare MD; Tatsapong P; Lunpha A; Wongpichet K. 2005. Brachiaria species in north-east

Thailand: Dry matter yields and seed production. Tropical Grasslands 39:99‒106.

bit.ly/3NuXQnX

Honda H; Yamanobe M. 1958. Influence of treading pressure exerted on growth of

138

Japanese lawn grass. Japanese Journal of Landscape and Architecture 22(4):16–20. (in

Japanese). bit.ly/3qwMJ2a

Hosono K; Tamura T; Ogino S. 1965. Effect of farm machine tread on pasture grasses.

Japanese Journal of Grassland Science 11(3):123–131. (in Japanese). bit.ly/3v8IxZS

Jahromi MF; Liang JB; Ebrahimi R; Soleimani AF; Rezaeizadeh A; Abdullah N;

Shokryazdan P. 2017. Protective potential of Lactobacillus species in lead toxicity model

in broiler chickens. Animal 11:755‒761. doi: 10.1017/S175173111600224X

Jank L; Barrios SC; Valle CB do; Simeão RM; Alves GF. 2014. The value of improved

pastures to Brazilian beef production. Crop and Pasture Science 65(11):1132–1137.

Julie D Thompson; Desmond G. Higgins; Toby J. Gibson. 1994. CLUSTAL W:

improving the sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids

Research 22(22):4673–4680.

Kazou M; Alexandraki V; Pot B; Tsakalidou E; Papadimitriou K. 2017. Complete

genome sequence of the dairy isolate Lactobacillus acidipiscis ACA-DC 1533. Genome

Announcements 5(4):e01533-16. doi: 10.1128/genomea. 01533-16

Kimura M; Ohta T. 1972. On the stochastic model for estimation of mutation distance

between homologous proteins. Journal of Molecular Evolution 2:87‒90. doi:

10.1007/BF01653945

139

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions

through comparative studies of nucleotide sequences. Journal of Molecular Evolution

16:111–20.

King MF; Matthews MA; Rule DC; Field RA. 1995. Effect of beef packing method on

volatile compounds developed by oven roasting or microwave cooking. Journal of

Agricultural and Food Chemistry 43:773–8.

Kissmann KG. 1997. Plantas infestantes e nocivas. BASF, São Bernardo do Campo, SP,

Brazil.

Kozaki M; Uchimura T; Okada S. 1992. Experimental manual of lactic acid bacteria.

Asakurasyoten, Tokyo, Japan.

Kouki K; Ebina M. 2009. Breeding and forage utilization of Brachiaria grass (Brachiaria

spp.). Japanese Journal of Grassland Science 55(2):179‒187. (In Japanese). doi:

10.14941/grass.55.179

Kouki K; Ebina M; Nakanishi Y; Morikawa N; Hanagasaki T. 2007. Development of

grassland of the genus Brachiaria: Investigation of possibility of breeding seeds. Bulletin

of The Okinawa Prefectural Livestock and Grassland Research Center 44:119-121. (in

Japanese).

Kouki K; Ebina M; Suenaga K; Nakanishi Y; Yokota M; Inafuku M; Hanagasaki T. 2009.

Seed production properties of the genus Brachiaria. Bulletin of the Okinawa Prefectural

Livestock and Grassland Research Center 46:75‒79. (In Japanese).

140

Kudaka M; Shioyama A; Nagatoshi M; Hanagasaki T; Nitta M. 2010a. The test of

choosing tropical forage grasses. Bulletin of The Okinawa Prefectural Livestock and

Grassland

Research

Center

48:63-70.

(in

Japanese).

agriknowledge.affrc.go.jp/RN/2010814813.pdf

Kudaka M; Shioyama A; Nitta M. 2010b. Productivity and drought tolerance of new

introduced Brachiaria grasses. Bulletin of The Okinawa Prefectural Livestock and

Grassland Research Center 48:71-78. (in Japanese). bit.ly/3slSgJO

Lascano CE; Euclides VPB. 1996. Nutritional quality and animal production of

Brachiaria pastures. In: Miles JW; Maass BL; Valle CB do, eds. Brachiaria: Biology,

Agronomy, and Improvement. CIAT publication 259. CIAT, Cali, Colombia and

CNPGC/EMBRAPA,

Campo

Grande,

MS,

Brazil.

p.

106‒123.

hdl.handle.net/10568/82028

Laster MA. 2007. Tenderness, Flavor, and yield assessments of dry aged beef. M.S.

Thesis. College Station: Texas AM University.

Lee D; Lee HJ; Yoon JW; Kim M; Jo C. 2021. Effect of Different Aging Methods on the

Formation of Aroma Volatiles in Beef Strip Loins. Foods 10(1):146. https://doi:

10.3390/foods10010146. PMID: 33445674; PMCID: PMC7828147.

Li Y; Nishino N. 2011. Monitoring the bacterial community of maize silage stored in a

bunker silo inoculated with Enterococcus faecium, Lactobacillus plantarum and

Lactobacillus buchneri. Journal of Applied Microbiology 110:1561–1570. doi:

10.1111/j.1365-2672.2011.05010.x

141

Liu H; Wang Z; Zhang D; Shen Q; Pan T; Hui T; Ma J. 2019. Characterization of key

aroma compounds in Beijing roasted duck by gas chromatography-olfactometry-mass

spectrometry, odor-activity values, and aroma-recombination experiments. Journal of

Agricultural

and

Food

Chemistry

67(20):5847–5856.

https://doi.org/10.1021/acs.jafc.9b01564.

Majcher MA; Olszak-Ossowska D; Szudera-Konczal K; Jelen HH. 2019. Formation of

key aroma compounds during preparation of pumpernickel bread. Journal of Agriculture

and Food Chemistry 68(38):10352–10360. https://doi.org/ 10.1021/acs.jafc.9b06220.

Migita K; Iiduka T; Tsukamoto K; Sugiura S; Tanaka G; Sakamaki G; Matsuishi M. 2017.

Retort beef aroma that gives preferable properties to canned beef products and its aroma

components. Animal Science Journal = Nihon Chikusan Gakkaiho 88(12):2050–2056.

https://doi.org/10.1111/asj.12876.

Mikami, N; Toyotome T; Yamashiro Y; Sugo K; Yoshitomi K; Takaya M; Han K;

Fukushima M; Shimada K. 2021. Dry-aged beef manufactured in Japan: Microbiota

identification and their effects on product characteristics. Food Research International

140. https://doi.org/10.1016/j.foodres.2020.110020.

Miles, JW; Maass BL; Valle CB do (eds.). 1996. Brachiaria: Biology, agronomy, and

improvement. CIAT, Cali, Colombia and CNPGC/EMBRAPA, Campo Grande, MS,

Brazil. hdl.handle.net/10568/54362

Mitsuoka T. 1990. Intestinal Microbiology. Asakura-shoten, Tokyo, Japan. p. 139‒144.

142

Miyagi N; Kondo T. 1990. On the physical properties of Kunigami Maaji soil – Physical

and engineering properties of local soils in Okinawa area (I). Transactions of the Japanese

Society of Irrigation, Drainage and Reclamation Engineering 149:39–44. (In Japanese).

doi: 10.11408/ jsidre1965.1990.149_39

Mochizuki T; Morikawa N; Nagatoshi M; Majikina M. 2005. The test of choosing

tropical forage grasses. Bulletin of The Okinawa Prefectural Livestock and Grassland

Research

Center

43:

30-36.

(in

Japanese).

agriknowledge.

affrc.go.jp/RN/2010813222.pdf

Mochizuki T; Morikawa N; Nagatoshi M; Toma S. 2005. Grassland establishment using

tropical grass through vegetative reproduction. Bulletin of The Okinawa Prefectural

Livestock and Grassland Research Center 43: 42-45. (in Japanese).

Muramoto T; Maeno K; Okada Y; Tezuka S; Kamata T. 2014. Relationship between shear

force and tenderness of Japanese shorthorn beef. Tohoku J Animal Science Technology

64(1):7–12.

Nagatoshi M; Morikawa N; Hanagasaki T; Kinjo Y; Nikadori H; Miyagi M. 2007. The

trial growing Japanese Black calves using Transvala. Bulletin of The Okinawa Prefectural

Livestock and Grassland Research Center 45: 79-85. (in Japanese).

Nakanishi Y; Hanagasaki T; Kouki K; Yokota M; Hirano K; Kouji A. 2008. Dry matter

yield and nutritive yield of tropical grass Brachiaria brizantha cv. MG5. NARO Research

result information No. 7. (in Japanese). bit.ly/2OwNmLS

143

Nakanishi Y; Hirano K; Kouji A. 2006. Nutritive quality and feeding amount of tropical

grass Brachiaria brizantha cv. MG5 for breeding cow. NARO Research result

information No. 5. (in Japanese). bit.ly/3sVyLs8

Neil P. 2012. Dry aging beef. International Journal of Gastronomy and Food Science

1:78–80.

Ohmomo S; Tanaka O; Kitamoto HK; Cai Y. 2002. Silage and microbial performance,

old story but new program. Japan Agricultural Research Quarterly 40(2):59‒71. doi:

10.6090/ jarq.36.59

Okumura J; Ebine H; Saito T; Mizoguchi H; Hatto M. (1993). The Maillard Reaction and

Flavor Formation. Journal of the brewing society of Japan 88(3):178-187.

Oram RN. 1990. Brachiaria. In: Register of Australian herbage plant cultivars. 3rd Edn.

CSIRO Division of Plant Industry, Melbourne, Victoria, Australia.

Oshiro K. 2007. Okinawan agriculture and soil – the aim of sustainable and

developmental agriculture. Mitsuwa Social Welfare Corporation, Okinawa, Japan.

Panditharatne S; Allen VG; Fontenot JP; Jayasuriya MN. 1986. Ensiling characteristics

of tropical grasses as influenced by stage of growth, additives and chopping length.

Journal of Animal Science 63:197–207. doi: 10.2527/jas1986.631197x

Parrish FC Jr; Boles JA; Rust RE; Olson DG. 1991. Dry and wet aging effects on

palatability attributes of beef loin and rib steaks from three quality grades. Journal of

144

Food Science and Nutrition 56:601–3.

Perdigon G; Alvarez S; Rachid M; Agüero G; Gobbato N. 1995. Immune system

stimulation

by

probiotics.

Journal

of

Dairy

Science

78:1597–1606.

doi:

10.3168/jds.s0022-0302(95) 76784-4

Rao IM; Kerridge PC; Macedo MCM. 1996. Nutritional requirements of Brachiaria and

adaptation to acid soils. In: Miles JW; Maass BL, Valle CB do, eds. Brachiaria: Biology,

agronomy and improvement. CIAT Publication no. 259. CIAT, Cali, Colombia and

EMBRAPA-CNPGC, Campo Grande, MS, Brazil. p. 53‒71.

Rodrigues RC; Sousa TVR; Melo MAA; Araújo JS; Lana RP; Costa CS; Oliveira ME;

Parente MOM; Sampaio IBM. 2014. Agronomic, morphogenic and structural

characteristics of tropical forage grasses in Northeast Brazil. Tropical GrasslandsForrajes Tropicales 2:214‒222. doi: 10.17138/ TGFT(2)214-222

Romero JJ; Castillo M; Burns JC. 2015. Forage conservation techniques: Silage and

haylage production. NC Cooperative Extension Resources AG-812. North Carolina State

University, Raleigh, NC, USA. bit.ly/34ARPmV

Saitou H; Miura KI. 1963. Preparation of transforming deoxyribonucleic acid by phenol

treatment. Biochimica et Biophysica Acta 72:619–629. doi: 10.1016/0926-6550(63)

90386-4

Saitou N; Nei M. 1987. The neighbor-joining method: A new method for reconstructing

phylogenetic trees. Molecular Biology and Evolution 4:406–425. doi: 10.1093/oxford

145

journals.molbev.a040454

Sanger F; Nicklen S; Coulson AR. 1977. DNA sequencing with chain-terminating

inhibitors. Proceedings of the National Academy of Science of the United States of

America 74:5463–5467. doi: 10.1073/pnas.74.12.5463

Savell JW. 2008. Dry-aging of beef, exective summery: National Cattlemen’s Beef

Association.

https://www.beefresearch.org/CMDocs/BeefResearch/Dry%20Aging%20of%20Beef.pd

Schipper MAA. 1975. On Mucor mucedo, Mucor flavus and related species. Studies in

Mycology 10:1–33.

Shokryazdan P; Jahromi MF; Bashokouh F; Idrus Z; Liang JB. 2018. Antiproliferation

effects and antioxidant activity of two new Lactobacillus strains. Brazilian Journal of

Food Technology 21:e2016064. doi: 10.1590/1981-6723.6416

Sitz BM; Calkins CR; Feuz DM; Umberger WJ; Eskridge KM. 2006. Consumer sensory

acceptance and value of wet-aged and dry-aged beef steaks. Journal of Animal Science

84:1221–6.

Song S; Zhang X; Hayat K; Huang M; Liu P; Karangwa E; Gu F; Jia C; Xia S; Xiao Z;

Niu Y. 2010. Contribution of beef base to aroma characteristics of beeflike process flavour

assessed by descriptive sensory analysis and gas chromatography olfactometry and partial

least squares regression. Journal of Chromatography 1217(49):7788-7799.

146

Soundharrajan I; Kim D; Kuppusamy P; Muthusamy K; Lee HJ; Choi KC. 2019.

Probiotic and Triticale silage fermentation potential of Pediococcus pentosaceus and

Lactobacillus brevis and their impacts on pathogenic bacteria. Microorganisms 7(9):318.

doi: 10.3390/ microorganisms7090318

Stephanie M-S; Patrice N; Emmanuel C; Jean-Luc J. 2017. Mucor: a Janus-faced fungal

genus with human health impact and industrial applications. Fungal Biology Reviews

31:12–32.

Sugioka K; Tasaki T; Sakai H; Ieiri S; Araki T. 2015. Study of free amino acid in aging

of beef. Proceedings of the annual meeting 2015 Okayama of Japan Society for

Bioscience, biotechnology, and Agrochemistry 2F26P18.

Suzuki K; Sasaki J; Uramoto M; Nakase T; Komagata K. 1969. Agromyces mediolanus

sp. nov., nom. rev., comb. nov., a species for “Corynebacterium mediolanum” Mamoli

1939 and for some aniline-assimilating bacteria which contain 2,4-diaminobutyric acid in

the cell wall peptidoglycan. International Journal of Systematic Bacteriology 46:88–93.

doi: 10.1099/00207713-46-1-88

Tamaki M; Iwasaki Y; Shimabukuro H; Obi T. 2007. Effects of a total mixed ration with

tropical grass Transvala on lactation in dairy cattle. The West Japan Journal of Animal

Science 50:51– 55. (In Japanese). doi: 10.11461/jwaras1968.50.51

Tanaka O; Ohmomo S. 1994. A repeatable model system for silage fermentation in culture

tubes.

Bioscience,

Biotechnology

and

10.1271/bbb.58.1407

147

Biochemistry

58:1407–1411.

doi:

Tanasupawat S; Shida O; Okada S; Komagata K. 2000. Lactobacillus acidipiscis sp. nov.

and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand.

International Journal of Systematic and Evolutionary Microbiology 50:1479–1485. doi:

10.1099/00207713-50-4-1479

Thompson JD; Higgins DG; Gibson TJ. 1994. CLUSTAL W: Improving the sensitivity

of progressive multiple sequence alignment through sequence weighting position-specific

gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680. doi:

10.1093/nar/ 22.22.4673

Tsuchiya T; Ukai Y; Saitou Y. 2013. Change in quality and productive loss of beef meat

during dry-aging process. Bulletin of Shizuoka prefecture livestock research institute

6:12–4.

Tjandraatmadja M; Norton BW; MacRae IC. 1991. Fermentation patterns of forage

sorghum ensiled under different environmental conditions. World Journal of

Microbiology and Biotechnology 7:206–218. doi: 10.1007/ BF00328992

Vera P; Canellas E; Nerín C. 2020. Compounds responsible for off-odors in several

samples composed by polypropylene, polyethylene, paper and cardboard used as food

packaging

materials.

Food

Chemistry

309:125792.

https://doi.org/10.1016/j.

foodchem.2019.125792

Walther G; Pawłowska J; Alastruey-Izquierdo A; Wrzosek M; Rodriguez-Tudela JL;

Dolatabadi S; Chakrabarti A; de Hoog GS. 2013. DNA barcoding in Mucorales: an

inventory of biodiversity. Persoonia 30:11–47.

148

Warren KE; Kastner CL. 1992. A comparison of dry aged and vacuum-aged beef

striploins. Journal of Muscle Foods 3:151–7.

White TJ; Bruns T; Lee S; Taylor J. 1990. Amplification and direct sequencing of fungal

ribosomal RNA genes for phylogenetics. In: PCR protocols, a guide to methods and

applications. p. 315–22.

Yamazato K; Utagawa S; Kodama T; Morichi T. 1986. Isolation method of

microorganisms. R and D Planning, Tokyo, Japan. p. 435–444.

Yang DS; Shewfelt RL; Lee K-S; Kays SJ. 2008. Comparison of odor-active compounds

from six distinctly different rice flavor types. Journal of Agriculture and Food Chemistry

56(8): 2780–2787. https://doi.org/10.1021/jf072685t.

Yu A-N; Sun B-G; Tian D-T; Qu W-Y. 2008. Analysis of volatile compounds in

traditional smoke-cured bacon (CSCB) with different fiber coatings using SPME. Food

Chemistry 110(1):233–238. https://doi.org/10.1016/j.foodchem.2008.01.040.

Zviely M. 2008. Material study: Heterocyclic Nitrogen- and Sulfur-Containing Aroma

Chemicals.

O'Laughlin

Industries

Ltd.,

https://www.perfumerflavorist.com/flavor/ingredients/article/21858139/material-studyheterocyclic-nitrogen-and-sulfur-containing-aroma-chemicals

149

Public papers

Hanagasaki T. 2022. Forage production and quality of Urochloa decumbens cultivar

‘Basilisk’ in Okinawa, Japan. Tropical Grasslands-Forrajes Tropicales 10(3), 288-296.

http://dx.doi.org/10.17138/tgft(10)288-296

Hanagasaki T. 2021. Studies with Urochloa brizantha cv. MG5 Vitória in Okinawa,

Japan: Vegetative propagation and a tractor tyre stress test. Tropical Grasslands-Forrajes

Tropicales 9(2), 243-248. http://dx.doi.org/10.17138/tgft(9)243-248

Hanagasaki T. 2020. Identification and characterization of lactic acid bacteria associated

with tropical grass silage produced in Okinawa. Tropical Grasslands-Forrajes Tropicales

8(3), 234-249. http://dx.doi.org/10.17138/tgft(8)234-249

Hanagasaki T; Asato N. 2018. Changes in free amino acid content and hardness of beef

while dry-aging with Mucor flavus. Journal of Animal Science and Technology 60(1), 176.

http://dx.doi.org/10.1186/s40781-018-0176-6

Hanagasaki T; Asato N. 2018. Changes in free amino acids and hardness in round of

Okinawan delivered cow beef during dry- and wet-aging processes. Journal of Animal

Science and Technology 60(1), 180. http://dx.doi.org/10.1186/s40781-018-0180-x

Hanagasaki T; Asato N. 2023. Effect of dry-ageing with Mucor flavus on beef taste and

aroma. Food Research 7(1), 224-229. https://doi.org/10.26656/fr.2017.7(1).955

150

Acknowledgements

The author would like to express his grateful thanks to Dr. Ryuichi Tatsumi, Professor of

Kyusyu University, for kind guidance and various suggestions throughout this study.

The author is deeply grateful to Lyle Winks, the editor of Tropical Grasslands and Rainer

Schultze-Kraft of CIAT-Emeritus for essential advices about my papers about tropical

grasses.

The author also wishes to express his sincere gratitude to Mr Naokazu Asato for his

cooperation to analyze the several items and statistical analysis.

It is my pleasure to acknowledge the support and encouragement of Dr Yimin Cai, Dr

Masumi Ebina, Mr Minoru Yokota, Mr Nobuo Morikawa, Mr Masayuki Nagatoshi, Mrs

Tomoyo Mochizuki, Mr Tetsuya Toyokawa and Mr Atsushi Nagayama.

Finally, to my loving and supportive wife, Chihiro: my deepest gratitude.

151

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る