リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis and Characterisation of NASICON-Type Structured Lithium-Ion Conductors with Dielectric Particle Dispersion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis and Characterisation of NASICON-Type Structured Lithium-Ion Conductors with Dielectric Particle Dispersion

SONG, Fangzhou 京都大学 DOI:10.14989/doctor.k24002

2022.03.23

概要

本論文は、「誘電体粒子を分散したNASICON型リチウムイオン伝導体の合成とキャラクタリゼーション」に関する研究をまとめたもので、5章からなっている。

第1章は序論で、全固体電池の固体電解質の基礎および本研究で用いたNASICON型リチムイオン伝導体の特徴、従来研究で明らかになった点や問題点、また本研究の目的について以下のように論じている。全固体電池は従来の有機電解液を用いたリチウムイオン電池に比べ、電解液の漏出や凍結・引火の心配がなく広い電位窓(ESW)が期待できるため、現在精力的に研究がなされている。LATP(Li1.3Al0.3Ti1.7(PO4)3)やLAGP(Li1.5Al0.5Ti1.5(PO4)3)などのNASICON型リチウムイオン伝導体は、酸化物系の中では高いイオン伝導率を示すものの、実用化には更なるイオン伝導性の向上が望まれる。イオン伝導率向上の手法の一つに誘電体分散効果が知られており、これは分散した誘電体粒子近傍に欠陥を多く含む空間電荷層を形成して高速イオン拡散を引き起こす。この手法はこれまでハロゲン化物で報告されていたが、酸化物系ではほとんどなされていなかった。本研究ではこの手法をNASICON型リチウムイオン伝導体に適用してイオン伝導率の向上を図るとともに、空間電荷層の形成による拡散挙動について明らかにすることを目的とした。

第2章ではLAGP前駆体にLLTO(Li0.348La0.55TiO3)粒子を添加して共焼成してLaPO4分散LAGPを合成し、結晶相や微細構造、電気化学的性質を調べた。このコンポジットは母体のLAGPに比べてイオン伝導率が向上し、4wt%のLLTOを添加したときに最大値を示した。また、ブロッキング電極を用いた非対称セルを構成して通電ことにより、電荷キャリアが確かにリチウムイオンであることを明らかにした。

第3章では分散するLaPO4粒子のLa源として、LLTOではなくLa2O3ナノ粒子をLATP前駆体に添加して共焼成することによりLATP-LaPO4コンポジットを合成し、結晶相や微細構造のキャラクタリゼーションや電気化学的測定を行い、LLTOを用いた場合の結果と比較した。La2O3を用いるとLiTiPO5などの微量な副生成物が生じるものの、LATPマトリックス中にLaPO4粒子は有効に分散し、6wt%のLa2O3の添加で導電率は最大値を示し、母体のLATPの約2倍となることを明らかにした。

第4章ではLATP-LaPO4コンポジットに対して、J-PARCの中性子ラジオグラフィー施設を利用した6Li/7Liトレーサー拡散係数測定を行い、母体のLATPの結果と比較した。7Li同位体からなるLATPおよびLATP-LaPO4コンポジットの一端に6Li同位体を塗布・アニールにより同位体拡散実験を行った。6Liと7Liの中性子減衰係数が数桁異なることを利用して、同位体濃度プロファイルを求め、リチウムイオンの拡散係数を決定した。その結果、300℃から500℃におけるLATP-LaPO4コンポジットのトレーサー拡散係数は純粋なLATPに比べて高い値を示すものの、室温で予想されたイオン伝導率から期待されたほどの差異は得られなかった。これは高温では空間電荷層のデバイ長が相対的に減少する一方、バルク拡散が増加するためLATPとコンポジットで拡散係数の差が減少したものと考えられた。それでも拡散係数の増加は確認でき、LaPO4粒子の分散により長距離の高速拡散が実現することを示した。最後に透過型電子顕微鏡(TEM)を用いて、LATPマトリックスとLaPO4粒子界面を観測した。EDX、格子縞および回折スポットからLaPO4の分散と粒子形状を調べ、界面のTEM像からLATPマトリックスとLaPO4粒子が密接に接触し、空間電荷層をつくるモデルを支持する結果を得た。

第5章は結論である。本研究で得られた結果の意義や今後の発展について論じている。第2章および第3章ではNASICON型リチウムイオン伝導体LAGPおよびLATPにそれぞれLLTOおよびLa2O3を導入して共焼成してLaPO4分散コンポジットを合成し、誘電体粒子分散がイオン伝導率の向上を引き起こすことを示した。第4章では中性子ラジオグラフィーを用いたトレーサー拡散係数を測定し、LaPO4分散コンポジットではリチウムイオンの長距離の拡散係数が確かに増加することを明らかにした。さらに分散粒子/マトリックス界面が密接な接触面を構成することを示し、酸化物系のリチウムイオン伝導体ではほとんど報告されていなかった誘電体分散効果によるリチウムイオン伝導率の向上をNASICON型リチウムイオン伝導体で明らかに示したと結論づけた。

参考文献

第1章

[1] S. Rahmstorf, G. Foster, N. Cahill, Global temperature evolution: recent trends and some pitfalls, Environ. Res. Lett. 12 (2017) 54001. https://doi.org/10.1088/1748-9326/aa6825

[2] NOAA National Centers for Environmental Information, Climate at a Glance: Global Time Series, (2021). https://www.ncdc.noaa.gov/cag/ (accessed November 8, 2021).

[3] N.W. Arnell, J.A. Lowe, A.J. Challinor, T.J. Osborn, Global and regional impacts of climate change at different levels of global temperature increase, Clim. Change. 155 (2019) 377–391. https://doi.org/10.1007/s10584-019-02464-z

[4] T. Iizumi, J. Furuya, Z. Shen, W. Kim, M. Okada, S. Fujimori, T. Hasegawa, M. Nishimori, Responses of crop yield growth to global temperature and socioeconomic changes, Sci. Rep. 7 (2017) 1–10. https://doi.org/10.1038/s41598-017-08214-4

[5] J. Rugolo, M.J. Aziz, Electricity storage for intermittent renewable sources, Energy Environ. Sci. 5 (2012) 7151–7160. https://doi.org/10.1039/C2EE02542F

[6] J.P. Barton, D.G. Infield, Energy storage and its use with intermittent renewable energy, IEEE Trans. Energy Convers. 19 (2004) 441–448. https://doi.org/10.1109/TEC.2003.822305

[7] D.O. Akinyele, R.K. Rayudu, Review of energy storage technologies for sustainable power networks, Sustain. Energy Technol. Assessments. 8 (2014) 74–91. https://doi.org/10.1016/j.seta.2014.07.004

[8] G.L. Soloveichik, Battery technologies for large-scale stationary energy storage, Annu. Rev. Chem. Biomol. Eng. 2 (2011) 503–527.https://doi.org/10.1146/annurev-chembioeng-061010-114116

[9] S. Manzetti, F. Mariasiu, Electric vehicle battery technologies: From present state to future systems, Renew. Sustain. Energy Rev. 51 (2015) 1004–1012. https://doi.org/10.1016/j.rser.2015.07.010

[10] J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective, J. Am.Chem. Soc. 135 (2013) 1167–1176. https://doi.org/10.1021/ja3091438

[11] H. Carrão, G. Naumann, P. Barbosa, Global projections of drought hazard in a warming climate: a prime for disaster risk management, Clim. Dyn. 50 (2018) 2137–2155. https://doi.org/10.1007/s00382-017-3740-8

[12] X. Chen, X. Zhang, J.A. Church, C.S. Watson, M.A. King, D. Monselesan, B. Legresy,C. Harig, The increasing rate of global mean sea-level rise during 1993–2014, Nat. Clim.Chang. 7 (2017) 492–495. https://doi.org/10.1038/nclimate3325

[13] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587–603. https://doi.org/10.1021/cm901452z

[14] T. Binninger, A. Marcolongo, M. Mottet, V. Weber, T. Laino, Comparison of computational methods for the electrochemical stability window of solid-state electrolyte materials, J. Mater. Chem. A. 8 (2020) 1347–1359. https://doi.org/10.1039/C9TA09401F

[15] R. V Chebiam, F. Prado, A. Manthiram, Comparison of the chemical stability of Li1- 23xCoO2 and Li1-xNi0. 85Co0. 15O2 cathodes, J. Solid State Chem. 163 (2002) 5–9. https://doi.org/10.1006/jssc.2001.9404

[16] X.Q. Yang, X. Sun, J. McBreen, New phases and phase transitions observed in Li1-xCoO2 during charge: in situ synchrotron X-ray diffraction studies, Electrochem. Commun. 2 (2000) 100–103. https://doi.org/10.1016/S1388-2481(99)00155-1

[17] Y. Lu, J.A. Alonso, Q. Yi, L. Lu, Z.L. Wang, C. Sun, A High-Performance Monolithic Solid-State Sodium Battery with Ca2+ Doped Na3Zr2Si2PO12 Electrolyte, Adv. Energy Mater. 9 (2019) 1901205. https://doi.org/10.1002/aenm.201901205

[18] K. Hayashi, Y. Nemoto, S. Tobishima, J. Yamaki, Mixed solvent electrolyte for high voltage lithium metal secondary cells, Electrochim. Acta. 44 (1999) 2337–2344. https://doi.org/10.1016/S0013-4686(98)00374-0

[19] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem.Rev. 104 (2004) 4303–4418. https://doi.org/10.1021/cr030203g

[20] L. Vogdanis, B. Martens, H. Uchtmann, F. Hensel, W. Heitz, Synthetic and thermodynamic investigations in the polymerization of ethylene carbonate, Die Makromol. Chemie Macromol. Chem. Phys. 191 (1990) 465–472. https://doi.org/10.1002/macp.1990.021910301

[21] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (2015) 19–29. https://doi.org/10.1038/nchem.2085

[22] J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park, A review of lithium and non-lithium based solid state batteries, J. Power Sources. 282 (2015) 299–322. https://doi.org/10.1016/j.jpowsour.2015.02.054

[23] T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries, Nat. Mater. (2019) 1–14. https://doi.org/10.1038/s41563-019-0431-3

[24] Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui, B. Guo, Y. Li, X. Liang, J. Feng, H. Li, C-W. Nan,M. Armand, L. Chen, K. Xu, S. Shi, Mobile Ions in Composite Solids, Chem. Rev. 120 (2020) 4169–4221. https://doi.org/10.1021/acs.chemrev.9b00760

[25] Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li, J. Janek, L.F. Nazar, C.-W. Nan, J. Maier,M. Armand, L. Chen, New horizons for inorganic solid state ion conductors, Energy Environ. Sci. 11 (2018) 1945–1976. https://doi.org/10.1039/C8EE01053F

[26] Y.-Z. Sun, J.-Q. Huang, C.-Z. Zhao, Q. Zhang, A review of solid electrolytes for safe lithium-sulfur batteries, Sci. China Chem. 60 (2017) 1508–1526. https://doi.org/10.1007/s11426-017-9164-2

[27] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, in: V. Dusastre (Ed.), Materials for Sustainable Energy A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, Nature Publishing Group,UK, 2011: pp. 171–179. https://doi.org/10.1142/9789814317665_0024

[28] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics. 180 (2009) 911–916. https://doi.org/10.1016/j.ssi.2009.03.022

[29] T. Tang, P. Chen, W. Luo, D. Luo, Y. Wang, Crystalline and electronic structures oflithium silicates: A density functional theory study, J. Nucl. Mater. 420 (2012) 31–38. https://doi.org/10.1016/j.jnucmat.2011.08.040

[30] R. Xiao, H. Li, L. Chen, Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations, J. Mater. 1 (2015) 325–332. https://doi.org/10.1016/j.jmat.2015.08.001

[31] Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries,Adv. Mater. 30 (2018) 1705702. https://doi.org/10.1002/adma.201705702

[32] F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, Review on solid electrolytes for all- solid-state lithium-ion batteries, J. Power Sources. 389 (2018) 198–213. https://doi.org/10.1016/j.jpowsour.2018.04.022

[33] V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev. 43 (2014) 4714–4727. https://doi.org/10.1039/C4CS00020J

[34] T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries, Adv. Mater. 30 (2018). https://doi.org/10.1002/adma.201803075

[35] R. Kanno, Y. Takeda, O. Yamamoto, Ionic conductivity of solid lithium ion conductors with the spinel structure: Li2MCl4 (M = Mg, Mn, Fe, Cd), Mater. Res. Bull. 16 (1981) 999–1005. https://doi.org/10.1016/0025-5408(81)90142-2

[36] H.D. Lutz, P. Kuske, K. Wussow, Ionic motion of tetrahedrally and octahedrally coordinated lithium ions in ternary and quaternary halides, Solid State Ionics. 28 (1988) 1282–1286. https://doi.org/10.1016/0167-2738(88)90371-2

[37] R. Kanno, Y. Takeda, O. Yamamoto, C. Cros, W. Gang, P. Hagenmuller, Ionic Conductivity and Phase Transition of the Bromide Spinels, Li2 -2xM1+xBr4 (M=Mg, Mn),J. Electrochem. Soc. 133 (1986). https://doi.org/1052. 10.1149/1.2108704

[38] R. Kanno, Y. Takeda, O. Yamamoto, Structure, ionic conductivity and phase transformation of double chloride spinels, Solid State Ionics. 28–30 (1988) 1276–1281. https://doi.org/10.1016/0167-2738(88)90370-0

[39] A. Bohnsack, F. Stenzel, A. Zajonc, G. Balzer, M.S. Wickleder, G. Meyer, Ternäre Halogenide vom Typ A3MX6. VI. Ternäre Chloride der Selten‐Erd‐Elemente mit Lithium, Li3MCl6 (M = Tb–Lu, Y, Sc): Synthese, Kristallstrukturen und Ionenbewegung, Zeitschrift Für Anorg. Und Allg. Chemie. 623 (1997) 1067–1073. https://doi.org/10.1002/zaac.19976230710

[40] Y. Tomita, K. Yamada, H. Ohki, T. Okuda, Cation Diffusion in MGaBr4 (M = Li, Cu, and Ag) Studied by 7Li, 63Cu, and 71Ga NMR, 81Br NQR, and Conductivity, Bull. Chem.Soc. Jpn. 70 (1997) 2405–2410. https://doi.org/10.1246/bcsj.70.2405

[41] Y. Tomita, A. Fuji-i, H. Ohki, K. Yamada, T. Okuda, New Lithium Ion Conductor Li3InBr6 Studied by 7Li NMR, Chem. Lett. (1998). https://doi.org/10.1246/cl.1998.223

[42] Y. Tomita, K. Yamada, H. Ohki, T. Okuda, Structure and dynamics of Li3InBr6 and NaInBr4 by means of nuclear magnetic resonance, Zeitschrift Für Naturforsch. A. 53(1998) 466–472. https://doi.org/10.1515/zna-1998-6-730

[43] Y. Tomita, H. Ohki, K. Yamada, T. Okuda, Ionic conductivity and structure of halocomplex salts of group 13 elements, Solid State Ionics. 136–137 (2000) 351–355. https://doi.org/10.1016/S0167-2738(00)00491-4

[44] Y. Tomita, H. Matsushita, K. Kobayashi, Y. Maeda, K. Yamada, Substitution effect of ionic conductivity in lithium ion conductor, Li3InBr6 - xClx, Solid State Ionics. 179 (2008) 867–870. https://doi.org/10.1016/j.ssi.2008.02.012

[45] R. Kanno, Y. Takeda, A. Takahashi, O. Yamamoto, R. Suyama, S. Kume, New double chloride in the LiCl–CoCl2 system, J. Solid State Chem. 71 (2004) 196–204. https://doi.org/10.1016/0022-4596(87)90159-9

[46] R. Kanno, Ionic Conductivity and Phase Transition of the Spinel System Li2−2xM1+xCl4 (M = Mg, Mn, Cd), J. Electrochem. Soc. 131 (2006) 469. https://doi.org/10.1149/1.2115611

[47] S.P. Ong, Y. Mo, W.D. Richards, L. Miara, H.S. Lee, G. Ceder, Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors, Energy Environ. Sci. 6 (2013) 148–156. https://doi.org/10.1039/c2ee23355j

[48] H.Y-P. Hong, Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors, Mater. Res. Bull. 13 (1978) 117–124. https://doi.org/10.1016/0025-5408(78)90075-2

[49] P.G. Bruce, A.R. West, Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes, J. Solid State Chem. 53 (1984) 430–434. https://doi.org/10.1016/0022-4596(84)90122-1

[50] R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angew. Chemie - Int. Ed. 46 (2007) 7778–7781.https://doi.org/10.1002/anie.200701144

[51] R. Murugan, V. Thangadurai, W. Weppner, Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like solid Li-electrolytes, J.Electrochem. Soc. 155 (2007) A90. https://doi.org/10.1149/1.2800764

[52] K. Arbi, M. Hoelzel, A. Kuhn, F. Garcia-Alvarado, J. Sanz, Local structure and lithium mobility in intercalated Li3AlxTi2-x(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study, Phys. Chem. Chem. Phys. 16 (2014) 18397–18405. https://doi.org/10.1039/C4CP02938K

[53] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, The electrical properties of ceramic electrolytes for LiMxTi2-x(PO4)3 + yLi2O, M= Ge, Sn, Hf, and Zr systems, J.Electrochem. Soc. 140 (1993) 1827. https://doi.org/10.1149/1.2220723

[54] G. Adachi, N. Imanaka, H. Aono, Fast Li⊕ conducting ceramic electrolytes, Adv. Mater. 8 (1996) 127–135. https://doi.org/10.1002/adma.19960080205

[55] Y. Xiao, K. Jun, Y. Wang, L.J. Miara, Q. Tu, G. Ceder, Lithium oxide superionic conductors inspired by garnet and NASICON structures, Adv. Energy Mater. 11 (2021) 2101437. https://doi.org/10.1002/aenm.202101437

[56] M. Catti, First-Principles Modeling of Lithium Ordering in the LLTO (LixLa2/3-x/3TiO3) Superionic Conductor, Chem. Mater. 19 (2007) 3963–3972. https://doi.org/10.1021/cm0709469

[57] Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, High ionic conductivity in lithium lanthanum titanate, Solid State Commun. 86 (1993) 689– 693. https://doi.org/10.1016/0038-1098(93)90841-A

[58] P.G. Bruce, A.R. West, Phase diagram of the LISICON, solid electrolyte system, Li4GeO4-Zn2GeO4, Mater. Res. Bull. 15 (1980) 379–385.https://doi.org/10.1016/0025-5408(80)90182-8

[59] I. Abrahams, P.G. Bruce, W.I.F. David, A.R. West, A re‐examination of the lisicon structure using high‐resolution powder neutron diffraction: evidence for defect clustering, Acta Crystallogr. Sect. B. 45 (1989) 457–462. https://doi.org/10.1107/S0108768189006245.

[60] J.B. Goodenough, H.Y-P. Hong, J.A. Kafalas, Fast Na+-ion transport in skeleton structures, Mater. Res. Bull. 11 (1976) 203–220.https://doi.org/10.1016/0025-5408(76)90077-5

[61] K.M. Bui, V.A. Dinh, S. Okada, T. Ohno, Na-ion diffusion in a NASICON-type solid electrolyte: a density functional study, Phys. Chem. Chem. Phys. 18 (2016) 27226–27231. https://doi.org/10.1039/C6CP05164B

[62] E.R. Losilla, M.A.G. Aranda, S. Bruque, M.A. Paris, J. Sanz, A.R. West, Understanding Na mobility in NASICON materials: a Rietveld, 23Na and 31P MAS NMR, and impedance study, Chem. Mater. 10 (1998) 665–673. https://doi.org/10.1021/cm970648j

[63] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate, J. Electrochem. Soc. 137 (1990) 1023. https://doi.org/10.1149/1.2086597

[64] Y. Feng, J. Wu, Q. Chi, W. Li, Y. Yu, W. Fei, Defects and aliovalent doping engineering in electroceramics, Chem. Rev. 120 (2020) 1710–1787. https://doi.org/10.1021/acs.chemrev.9b00507

[65] S. Wang, L. Ben, H. Li, L. Chen, Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range, Solid State Ionics. 268 (2014) 110–116. https://doi.org/10.1016/j.ssi.2014.10.004

[66] A.D. Robertson, A.R. West, A.G. Ritchie, Review of crystalline lithium-ion conductors suitable for high temperature battery applications, Solid State Ionics. 104 (1997) 1–11. https://doi.org/10.1016/S0167-2738(97)00429-3

[67] J.L. Allen, J. Wolfenstine, E. Rangasamy, J. Sakamoto, Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12, J. Power Sources. 206 (2012) 315–319. https://doi.org/10.1016/j.jpowsour.2012.01.131

[68] A. Martinez-Juarez, C. Pecharromán, J.E. Iglesias, J.M. Rojo, Relationship between activation energy and bottleneck size for Li+ ion conduction in NASICON materials of composition LiMM’(PO4)3; M, M’ = Ge, Ti, Sn, Hf, J. Phys. Chem. B. 102 (1998) 372–375. https://doi.org/10.1021/jp973296c

[69] S. Stramare, V. Thangadurai, W. Weppner, Lithium lanthanum titanates: a review, Chem.Mater. 15 (2003) 3974–3990. https://doi.org/10.1021/cm0300516

[70] J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction, Chem. Rev. 116 (2016) 140–162.https://doi.org/10.1021/acs.chemrev.5b00563

[71] S. Muy, J.C. Bachman, L. Giordano, H.-H. Chang, D.L. Abernathy, D. Bansal, O. Delaire,S. Hori, R. Kanno, F. Maglia, S. Lupart, P. Lamp, Y. Shao-Horn, Tuning mobility and stability of lithium ion conductors based on lattice dynamics, Energy Environ. Sci. 11 (2018) 850–859. https://doi.org/10.1039/C7EE03364H

[72] M. Amores, T.E. Ashton, P.J. Baker, E.J. Cussen, S.A. Corr, Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy,J. Mater. Chem. A. 4 (2016) 1729–1736. https://doi.org/10.1039/C5TA08107F

[73] B. Xu, H. Duan, W. Xia, Y. Guo, H. Kang, H. Li, H. Liu, Multistep sintering to synthesize fast lithium garnets, J. Power Sources. 302 (2016) 291–297. https://doi.org/10.1016/j.jpowsour.2015.10.084

[74] D. Rettenwander, G. Redhammer, F. Preishuber-Pflügl, L. Cheng, L. Miara, R. Wagner,A. Welzl, E. Suard, M.M. Doeff, M. Wilkening, J. Fleig, G. Amthauer, Structural and electrochemical consequences of Al and Ga cosubstitution in Li7La3Zr2O12 solid electrolytes, Chem. Mater. 28 (2016) 2384–2392. https://doi.org/10.1021/acs.chemmater.6b00579

[75] J.-F. Wu, E.-Y. Chen, Y. Yu, L. Liu, Y. Wu, W.K. Pang, V.K. Peterson, X. Guo, Gallium- doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity, ACS Appl. Mater. Interfaces. 9 (2017) 1542–1552. https://doi.org/10.1021/acsami.6b13902

[76] C.R. Mariappan, C. Yada, F. Rosciano, B. Roling, Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics, J. Power Sources. 196 (2011) 6456–6464. https://doi.org/10.1016/j.jpowsour.2011.03.065

[77] H. Yamada, D. Tsunoe, S. Shiraishi, G. Isomichi, Reduced grain boundary resistance by surface modification, J. Phys. Chem. C. 119 (2015) 5412–5419. https://doi.org/10.1021/jp510077z

[78] K. Takahashi, J. Ohmura, D. Im, D.J. Lee, T. Zhang, N. Imanishi, A. Hirano, M.B. Phillipps, Y. Takeda, O. Yamamoto, A super high lithium ion conducting solid electrolyte of grain boundary modified Li1.4Ti1.6Al0.4(PO4)3, J. Electrochem. Soc. 159 (2012) A342. https://doi.org/10.1149/2.018204jes

[79] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Electrical Properties and Sinterability for Lithium Germanium Phosphate Li1+xMxGe2-x(PO4)3, M= Al, Cr, Ga, Fe, Sc, and In Systems, Bull. Chem. Soc. Jpn. 65 (1992) 2200–2204. https://doi.org/10.1246/bcsj.65.2200

[80] S. Hao, H. Zhang, W. Yao, J. Lin, Solid-state lithium battery chemistries achieving high cycle performance at room temperature by a new garnet-based composite electrolyte, J.Power Sources. 393 (2018) 128–134. https://doi.org/10.1016/j.jpowsour.2018.05.028

[81] G. Nuspl, T. Takeuchi, A. Weiß, H. Kageyama, K. Yoshizawa, T. Yamabe, Lithium ion migration pathways in LiTi2(PO4)3 and related materials, J. Appl. Phys. 86 (1999) 5484–5491. https://doi.org/10.1063/1.371550

[82] J.A.S. Oh, L. He, A. Plewa, M. Morita, Y. Zhao, T. Sakamoto, X. Song, W. Zhai, K. Zeng,L. Lu, Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: effect of liquid phase sintering, ACS Appl. Mater. Interfaces. 11 (2019) 40125–40133. https://doi.org/10.1021/acsami.9b14986

[83] C.C. Liang, Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes, J. Electrochem. Soc. 120 (1973) 1289. https://doi.org/10.1149/1.2403248

[84] T. Jow, J.B. Wagner Jr, The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride, J. Electrochem. Soc. 126 (1979) 1963. https://doi.org/10.1149/1.2128835

[85] K. Shahi, J.B. Wagner Jr, Ionic Conductivity and Thermoelectric Power of Pure and Al2O3-Dispersed AgI, J. Electrochem. Soc. 128 (1981) 6. https://doi.org/10.1149/1.2127390

[86] K. Shahi, J.B. Wagner Jr, Enhanced ionic conduction in dispersed solid electrolyte systems (DSES) and/or multiphase systems: Agl-Al2O3, Agl-SiO2, Agl-Fly ash, and Agl- AgBr, J. Solid State Chem. 42 (1982) 107–119.https://doi.org/10.1016/0022-4596(82)90256-0

[87] U. Lauer, J. Maier, Impedance Spectroscopic Investigation of the Interface Silver Halide/Oxide: Detection of an Ionic Depletion Layer, J. Electrochem. Soc. 139 (1992) 1472. https://doi.org/10.1149/1.2069434

[88] J. Maier, Heterogeneous doping of silver bromide (AgBr:Al2O3), Mater. Res. Bull. 20 (1985) 383–392. https://doi.org/10.1016/0025-5408(85)90005-4

[89] J. Maier, On the heterogeneous doping of ionic conductors, Solid State Ionics. 18 (1986) 1141–1145. https://doi.org/10.1016/0167-2738(86)90323-1

[90] A.C. Khandkar, J.B. Wagner Jr, Fast ion transport in composites, Solid State Ionics. 18 (1986) 1100–1104. https://doi.org/10.1016/0167-2738(86)90316-4

[91] R.E. Soltis, E.M. Logothetis, A.D. Brailsford, J.B. Wagner Jr, AC Impedance Studies of AgI/Al2O3 Composites, J. Electrochem. Soc. 135 (1988) 2380. https://doi.org/10.1149/1.2096276

[92] H. Maekawa, R. Tanaka, T. Sato, Y. Fujimaki, T. Yamamura, Size-dependent ionic conductivity observed for ordered mesoporous alumina-LiI composite, Solid State Ionics. 175 (2004) 281–285. https://doi.org/10.1016/j.ssi.2003.12.032

[93] S. Sultana, R. Rafiuddin, Enhancement of ionic conductivity in the composite solid electrolyte system: TlI–Al2O3, Ionics. 15 (2009) 621–625. https://doi.org/10.1007/s11581-008-0312-2

[94] C. Wagner, The electrical conductivity of semi-conductors involving inclusions of another phase, J. Phys. Chem. Solids. 33 (1972) 1051–1059. https://doi.org/10.1016/S0022-3697(72)80265-8

[95] J. Bruce, J.B. Wagner Jr, Composite solid ion conductors, in: T. Takahashi (Ed.), High Conductivity Solid Ion Conductors Recent Trends and Application, World Scientific, 1989: pp. 146–165. https://doi.org/10.1142/9789814434294_0007

[96] X. Chen, P.M. Vereecken, Solid and Solid-Like Composite Electrolyte for Lithium Ion Batteries: Engineering the Ion Conductivity at Interfaces, Adv. Mater. Interfaces. 6 (2019) 1800899. https://doi.org/https://doi.org/10.1002/admi.201800899

[97] J. Maier, Defect chemistry and conductivity effects in heterogeneous solid electrolytes, J.Electrochem. Soc. 134 (1987) 1524. https://doi.org/10.1149/1.2100703

[98] J. Maier, Pushing nanoionics to the limits: charge carrier chemistry in extremely small systems, Chem. Mater. 26 (2014) 348–360. https://doi.org/10.1021/cm4021657

[99] J. Maier, Ionic conduction in space charge regions, Prog. Solid State Chem. 23 (1995) 171–263. https://doi.org/10.1016/0079-6786(95)00004-E

[100] E. Schreck, K. Läuger, K. Dransfeld, Enhanced ionic conductivity at the interface between sapphire and solid lithium iodide, Zeitschrift Für Phys. B Condens. Matter. 62 (1986) 331–334. https://doi.org/10.1007/BF01313455

[101] N. Sata, K. Eberman, K. Eberl, J. Maier, Mesoscopic fast ion conduction in nanometre- scale planar heterostructures, Nature. 408 (2000) 946–949. https://doi.org/10.1038/35050047

[102] X.X. Guo, J. Maier, Ionic conductivity of epitactic MBE-grown BaF2 films, Surf. Sci. 549 (2004) 211–216. https://doi.org/10.1016/j.susc.2003.11.044

[103] X. Guo, I. Matei, J. Jamnik, J.-S. Lee, J. Maier, Defect chemical modeling of mesoscopic ion conduction in nanosized CaF2/BaF2 multilayer heterostructures, Phys. Rev. B. 76 (2007) 125429. https://doi.org/10.1103/PhysRevB.76.125429

[104] X. Guo, J. Maier, Ionically conducting two-dimensional heterostructures, Adv. Mater. 21 (2009) 2619–2631. https://doi.org/10.1002/adma.200900412

[105] X. Guo, J. Maier, Comprehensive modeling of ion conduction of nanosized CaF2/BaF2 multilayer heterostructures, Adv. Funct. Mater. 19 (2009) 96–101. https://doi.org/10.1002/adfm.200800805

[106] N.J. Dudney, Effect of Interfacial Space-Charge Polarization on the Ionic Conductivity of Composite Electrolytes, J. Am. Ceram. Soc. 68 (1985) 538–545. https://doi.org/10.1111/j.1151-2916.1985.tb11520.x

[107] J.C. Wang, N.J. Dudney, Model for the composition dependence of conductivity of an ionic conductor containing submicron particles of an insulator, Solid State Ionics. 18 (1986) 112–116. https://doi.org/10.1016/0167-2738(86)90096-2

[108] A. Bunde, W. Dieterich, E. Roman, Dispersed ionic conductors and percolation theory,Phys. Rev. Lett. 55 (1985) 5. https://doi.org/10.1103/PhysRevLett.55.5

[109] A. Bunde, W. Dieterich, E. Roman, Monte Carlo studies of ionic conductors containing an insulating second phase, Solid State Ionics. 18 (1986) 147–150. https://doi.org/10.1016/0167-2738(86)90102-5

[110] H.E. Roman, A. Bunde, W. Dieterich, Conductivity of dispersed ionic conductors: A percolation model with two critical points, Phys. Rev. B. 34 (1986) 3439. https://doi.org/10.1103/PhysRevB.34.3439

[111] H.E. Roman, M. Yussouff, Particle-size effect on the conductivity of dispersed ionic conductors, Phys. Rev. B. 36 (1987) 7285. https://doi.org/10.1103/PhysRevB.36.7285

[112] A.M. Stoneham, E. Wade, J.A. Kilner, A model for the fast ionic diffusion in alumina- doped LiI, Mater. Res. Bull. 14 (1979) 661–666.https://doi.org/10.1016/0025-5408(79)90049-7

[113] S. Fujitsu, H. Kobayashi, K. Koumoto, H. Yanagida, Enhancement of Ionic Conductivity in the SrCl2-Al2O3 System, J. Electrochem. Soc. 133 (1986) 1497. https://doi.org/10.1149/1.2108943

[114] I.V. Belova, G.E. Murch, Calculation of the effective conductivity and diffusivity in composite solid electrolytes, J. Phys. Chem. Solids. 66 (2005) 722–728. https://doi.org/10.1016/j.jpcs.2004.09.009

[115] N.F. Uvarov, V.P. Isupov, V. Sharma, A.K. Shukla, Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes, Solid State Ionics. 51 (1992) 41–52. https://doi.org/10.1016/0167-2738(92)90342-M

[116] V. Epp, M. Wilkening, Motion of Li+ in nanoengineered LiBH4 and LiBH4:Al2O3 comparison with the microcrystalline form, ChemPhysChem. 14 (2013) 3706–3713. https://doi.org/10.1002/cphc.201300743

[117] S. Breuer, V. Pregartner, S. Lunghammer, H.M.R. Wilkening, Dispersed solid conductors: fast interfacial Li-ion dynamics in nanostructured LiF and LiF:γ-Al2O3 composites, J. Phys. Chem. C. 123 (2019) 5222–5230.https://doi.org/https://doi.org/10.1021/acs.jpcc.8b10978

[118] V. Gulino, M. Brighi, F. Murgia, P. Ngene, P. de Jongh, R. Černý, M. Baricco, Room- Temperature Solid-State Lithium-Ion Battery Using a LiBH4–MgO Composite Electrolyte, ACS Appl. Energy Mater. 4 (2021) 1228–1236 https://doi.org/10.1021/acsaem.0c02525

[119] S. Pack, J.B. Wagner Jr, B. Owens, Electrical Conductivity of the LiI-H2O-Al2O3 System,J. Electrochem. Soc. 127 (1980) 2177–2179. https://doi.org/10.1149/1.2129368

[120] R. Dupree, J.R. Howells, A. Hooper, F.W. Poulsen, NMR studies of lithium iodide based solid electrolytes, Solid State Ionics. 9 (1983) 131–133.https://doi.org/10.1016/0167-2738(83)90221-7

[121] N.J. Dudney, Enhanced Ionic Conduction in AgCl-Al2O3 Composites Induced by Plastic Deformation, J. Am. Ceram. Soc. 70 (1987) 65–68.https://doi.org/10.1111/j.1151-2916.1987.tb04930.x

[122] D.A. Jones, J.W. Mitchell, Observations on helical dislocations in crystals of silver chloride, Philos. Mag. 3 (1958) 1–7. ttps://doi.org/10.1080/14786435808243219

[123] A. Fick, Ueber diffusion, Ann. Phys. 170 (1855) 59–86. https://doi.org/10.1002/andp.18551700105

[124] A.R. West, Crystalline solid electrolytes I: general considerations and the major materials, in: P.G. Bruce (Ed.), Solid state electrochemistry, Cambridge University press, Oxford,UK, 1997: pp. 8-9. https://doi.org/10.1017/CBO9780511524790.003

[125] J. Crank, The mathematics of diffusion, Oxford university press, UK, 1979.

[126] J.B. Goodenough, Oxide-ion electrolytes, Annu. Rev. Mater. Res. 33 (2003) 91–128. https://doi.org/10.1146/annurev.matsci.33.022802.091651

[127] H. Mehrer, Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, Springer Science Business Media, Berlin, Germany, 2007. https://doi.org/10.1007/978-3-540-71488-0

[128] M. V Reddy, C.M. Julien, A. Mauger, K. Zaghib, Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: A Review, Nanomaterials. 10 (2020) 1606. https://doi.org/10.3390/nano10081606

[129] J.T.S. Irvine, A.R. West, Crystalline lithium ion conductors, in: T. Takahashi (Ed.), High Conductivity Solid Ion Conductors Recent Trends and Application, World Scientific, 1989: pp. 201–222. https://doi.org/10.1142/9789814434294_0009

第2章

[1] B. Lang, B. Ziebarth, C. Elsässer, Lithium ion conduction in LiTi2(PO4)3 and related compounds based on the NASICON structure: a first-principles study, Chem. Mater. 27 (2015) 5040–5048. https://doi.org/10.1021/acs.chemmater.5b01582

[2] Y. Xiao, K. Jun, Y. Wang, L.J. Miara, Q. Tu, G. Ceder, Lithium oxide superionic conductors inspired by garnet and NASICON structures, Adv. Energy Mater. 11 (2021) 2101437. https://doi.org/10.1002/aenm.202101437

[3] B. Yan, L. Kang, M. Kotobuki, L. He, B. Liu, K. Jiang, Boron group element doping of Li1.5Al0.5Ge1.5(PO4)3 based on microwave sintering, J. Solid State Electrochem. 25 (2021) 527–534. https://doi.org/10.1007/s10008-020-04829-2

[4] X. Xu, Z. Wen, Z. Gu, X. Xu, Z. Lin, Lithium ion conductive glass ceramics in the system Li1. 4Al0. 4(Ge1-xTix)1.6(PO4)3 (x=0–1.0), Solid State Ionics. 171 (2004) 207–213.https://doi.org/10.1016/j.ssi.2004.05.009

[5] X. Xu, Z. Wen, Z. Gu, X. Xu, Z. Lin, Preparation and characterization of lithium ion- conducting glass-ceramics in the Li1+xCrxGe2-x(PO4)3 system, Electrochem. Commun. 6 (2004) 1233–1237. https://doi.org/10.1016/j.elecom.2004.09.024

[6] Y. Nikodimos, M.-C. Tsai, L.H. Abrha, H.H. Weldeyohannis, S.-F. Chiu, H.K. Bezabh,K.N. Shitaw, F.W. Fenta, S.-H. Wu, W.-N. Su, W.-C. Yang, B.J. Hwang, Al-Sc dual- doped LiGe2(PO4)3 - a NASICON-type solid electrolyte with improved ionic conductivity,J. Mater. Chem. A. 8 (2020) 11302–11313. https://doi.org/10.1039/D0TA00517G

[7] Y. Nikodimos, L.H. Abrha, H.H. Weldeyohannes, K.N. Shitaw, N.T. Temesgen, B.W. Olbasa, C.-J. Huang, S.-K. Jiang, C.-H. Wang, H.-S. Sheu, S.-H. Wu, W.-N. Su, C.-C. Yang, B.J. Hwang, A new high-Li+-conductivity Mg-doped Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with enhanced electrochemical performance for solid-state lithium metal batteries, J. Mater. Chem. A. 8 (2020) 26055–26065. https://doi.org/10.1039/D0TA07807G

[8] P. Maldonado-Manso, E.R. Losilla, M. Martínez-Lara, M.A.G. Aranda, S. Bruque, F.E. Mouahid, M. Zahir, High Lithium Ionic Conductivity in the Li1+xAlxGeyTi2−x−y(PO4)3 NASICON Series, Chem. Mater. 15 (2003) 1879–1885.https://doi.org/10.1021/cm021717j

[9] C.R. Mariappan, C. Yada, F. Rosciano, B. Roling, Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics, J. Power Sources. 196 (2011) 6456–6464. https://doi.org/10.1016/j.jpowsour.2011.03.065

[10] C.R. Mariappan, C. Yada, F. Rosciano, B. Roling, Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics, J. Power Sources. 196 (2011) 6456–6464. https://doi.org/10.1016/j.jpowsour.2011.03.065

[11] X. Xu, Z. Wen, X. Wu, X. Yang, Z. Gu, Lithium ion-conducting glass–ceramics of Li1.5Al0.5Ge1.5(PO4)3 – xLi2O (x=0.0 – 0.20) with good electrical and electrochemical properties, J. Am. Ceram. Soc. 90 (2007) 2802–2806.https://doi.org/10.1111/j.1551-2916.2007.01827.x

[12] H. Chung, B. Kang, Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3by adding excess lithium, Solid State Ionics. 263 (2014) 125–130. https://doi.org/10.1016/j.ssi.2014.05.016

[13] Y. Saito, J. Mayne, K. Ado, Y. Yamamoto, O. Nakamura, Electrical conductivity enhancement of Na4Zr2Si3O12 dispersed with ferroelectric BaTiO3, Solid State Ionics. 40 (1990) 72–75. https://doi.org/10.1016/0167-2738(90)90289-4

[14] A. Mei, X.-L. Wang, Y.-C. Feng, S.-J. Zhao, G.-J. Li, H.-X. Geng, Y.-H. Lin, C.-W. Nan,Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica, Solid State Ionics. 179 (2008) 2255–2259. https://doi.org/10.1016/j.ssi.2008.08.013

[15] F. Bai, X. Shang, H. Nemori, M. Nomura, D. Mori, M. Matsumoto, N. Kyono, Y. Takeda,O. Yamamoto, N. Imanishi, Lithium-ion conduction of Li1.4Al0.4Ti1.6(PO4)3-GeO2 composite solid electrolyte, Solid State Ionics. 329 (2019) 40–45. https://doi.org/10.1016/j.ssi.2018.11.005

[16] H. Onishi, S. Takai, T. Yabutsuka, T. Yao, Synthesis and electrochemical properties of LATP-LLTO lithium ion conductive composites, Electrochemistry. 84 (2016) 967–970. https://doi.org/10.5796/electrochemistry.84.967

[17] S. Takai, T. Yabutsuka, T. Yao, Synthesis and ion conductiviyt enhancement in oxide- based solid electrolyte LLZ-LLTO and LATO-LLTO compsite (in Japanese), in: Technical Information Institute (Ed.), Dev. Technol. Mater. Fabr. Process Improv. Ion Conduct. All Solid State Batter., Technical Information Institute, Tokyo, 2017: pp. 74–80.

[18] C.C. Liang, Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes, J. Electrochem. Soc. 120 (1973) 1289. https://doi.org/10.1149/1.2403248

[19] J. Maier, Heterogeneous doping of silver bromide (AgBr:Al2O3), Mater. Res. Bull. 20 (1985) 383–392. https://doi.org/10.1016/0025-5408(85)90005-4

[20] J. Maier, On the heterogeneous doping of ionic conductors, Solid State Ionics. 18 (1986) 1141–1145. https://doi.org/10.1016/0167-2738(86)90323-1

[21] A.C. Khandkar, J.B. Wagner Jr, Fast ion transport in composites, Solid State Ionics. 18 (1986) 1100–1104. https://doi.org/10.1016/0167-2738(86)90316-4

[22] J. Schoonman, F.W. Poulsen, N.H. Andersen, B. Kindl, Properties of LiI—Alumina composite electrolytes, Solid State Ionics. 9 (1983) 119–122. https://doi.org/10.1016/0167-2738(83)90219-9

[23] H. Maekawa, R. Tanaka, T. Sato, Y. Fujimaki, T. Yamamura, Size-dependent ionic conductivity observed for ordered mesoporous alumina-LiI composite, Solid State Ionics. 175 (2004) 281–285. https://doi.org/10.1016/j.ssi.2003.12.032

[24] S. Sultana, R. Rafiuddin, Enhancement of ionic conductivity in the composite solid electrolyte system: TlI–Al2O3, Ionics. 15 (2009) 621–625. https://doi.org/10.1007/s11581-008-0312-2

[25] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics. 180 (2009) 911–916. https://doi.org/10.1016/j.ssi.2009.03.022

[26] J. Maier, Ionic conduction in space charge regions, Prog. Solid State Chem. 23 (1995) 171–263. https://doi.org/10.1016/0079-6786(95)00004-E

[27] J. Maier, Pushing nanoionics to the limits: charge carrier chemistry in extremely small systems, Chem. Mater. 26 (2014) 348–360

[28] T. Asai, C.-H. Hu, S. Kawai, 7Li NMR study on the LiI Al2O3 composite electrolyte,Mater. Res. Bull. 22 (1987) 269–274. https://doi.org/10.1016/0025-5408(87)90080-8

[29] J. Lefevr, L. Cervini, J.M. Griffin, D. Blanchard, Lithium Conductivity and Ions Dynamics in LiBH4/SiO2 Solid Electrolytes Studied by Solid-State NMR and Quasi- Elastic Neutron Scattering and Applied in Lithium–Sulfur Batteries, J. Phys. Chem. C. 122 (2018) 15264–15275. https://doi.org/10.1021/acs.jpcc.8b01507

[30] S. Breuer, V. Pregartner, S. Lunghammer, H.M.R. Wilkening, Dispersed solid conductors: fast interfacial Li-ion dynamics in nanostructured LiF and LiF: γ-Al2O3 composites, J. Phys. Chem. C. 123 (2019) 5222–5230.https://doi.org/https://doi.org/10.1021/acs.jpcc.8b10978

[31] V. Gulino, M. Brighi, F. Murgia, P. Ngene, P. de Jongh, R. Černý, M. Baricco, Room- Temperature Solid-State Lithium-Ion Battery Using a LiBH4–MgO Composite Electrolyte, ACS Appl. Energy Mater. 4 (2021) 1228–1236 https://doi.org/10.1021/acsaem.0c02525

[32] E. Zhao, F. Ma, Y. Guo, Y. Jin, Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries, Rsc Adv. 6 (2016) 92579–92585. https://doi.org/10.1039/C6RA19415J

[33] M. Weiss, D.A. Weber, A. Senyshyn, J. Janek, W.G. Zeier, Correlating Transport and Structural Properties in Li1+xAlxGe2–x(PO4)3 (LAGP) Prepared from Aqueous Solution, ACS Appl. Mater. Interfaces. 10 (2018) 10935–10944. https://doi.org/10.1021/acsami.8b00842

[34] G.J. Redhammer, D. Rettenwander, S. Pristat, E. Dashjav, C.M.N. Kumar, D. Topa, F. Tietz, A single crystal X-ray and powder neutron diffraction study on NASICON-type Li1+xAlxTi2−x(PO4)3 (0 ≤ x ≤ 0.5) crystals: Implications on ionic conductivity, Solid State Sci. 60 (2016) 99–107. https://doi.org/10.1016/j.solidstatesciences.2016.08.011

[35] S. V Pershina, B.D. Antonov, A.S. Farlenkov, E.G. Vovkotrub, Glass-ceramics in Li1+xAlxGe2–x(PO4)3 system: the effect of Al2O3 addition on microstructure, structure and electrical properties, J. Alloys Compd. 835 (2020) 155281. https://doi.org/10.1016/j.jallcom.2020.155281

[36] P. Hartmann, T. Leichtweiss, M.R. Busche, M. Schneider, M. Reich, J. Sann, P. Adelhelm,J. Janek, Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes, J. Phys. Chem. C. 117 (2013) 21064–21074. https://doi.org/10.1021/jp4051275

[37] S.-G. Ling, J.-Y. Peng, Q. Yang, J.-L. Qiu, J.-Z. Lu, H. Li, Enhanced ionic conductivity in LAGP/LATP composite electrolyte, Chinese Phys. B. 27 (2018) 38201. https://doi.org/10.1088/1674-1056/27/3/038201

[38] O. Nakamura, J.B. Goodenough, Conductivity enhancement of lithium bromide monohydrate by Al2O3 particles, Solid State Ionics. 7 (1982) 119–123. https://doi.org/10.1016/0167-2738(82)90004-2.

[39] R. Mercier, M. Tachez, J.P. Malugani, G. Robert, Effect of homovalent (I––Br–) ion substitution on the ionic conductivity of LiI1– x Brx systems, Solid State Ionics. 15 (1985)109–112. https://doi.org/10.1016/0167-2738(85)90088-8

[40] R.C.T. Slade, I.M. Thompson, Influence of surface area and particle size of dispersed oxide on conductivities of lithium bromide composite electrolytes, Solid State Ionics. 26 (1988) 287–294. https://doi.org/10.1016/0167-2738(88)90256-1

[41] Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui, B. Guo, Y. Li, X. Liang, J. Feng, H. Li, C.-W.Nan, M. Armand, L. Chen, K. Xu, S. Shi, Mobile Ions in Composite Solids, Chem. Rev. 120 (2020) 4169–4221. https://doi.org/10.1021/acs.chemrev.9b00760

第3章

[1] M.A. Subramanian, R. Subramanian, A. Clearfield, Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf), Solid State Ionics. 18 (1986) 562–569. https://doi.org/10.1016/0167-2738(86)90179-7

[2] Z.-X. Lin, H.-J. Yu, S.-C. Li, S.-B. Tian, Lithium ion conductors based on LiTi2P3O12 compound, Solid State Ionics. 31 (1988) 91–94.https://doi.org/10.1016/0167-2738(88)90291-3

[3] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate, J. Electrochem. Soc. 137 (1990) 1023. https://doi.org/10.1149/1.2086597

[4] H. Aono, N. Imanaka, G. Adachi, High Li+ conducting ceramics, Acc. Chem. Res. 27 (1994) 265–270. https://doi.org/10.1021/ar00045a002

[5] Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries,Adv. Mater. 30 (2018) 1705702. https://doi.org/10.1002/adma.201705702

[6] F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, Review on solid electrolytes for all- solid-state lithium-ion batteries, J. Power Sources. 389 (2018) 198–213. https://doi.org/10.1016/j.jpowsour.2018.04.022

[7] M. Monchak, T. Hupfer, A. Senyshyn, H. Boysen, D. Chernyshov, T. Hansen, K.G. Schell, E.C. Bucharsky, M.J. Hoffmann, H. Ehrenberg, Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor, Inorg. Chem. 55 (2016) 2941–2945. https://doi.org/10.1021/acs.inorgchem.5b02821

[8] A.S. Best, P.J. Newman, D.R. Macfarlane, K.M. Nairn, S. Wong, M. Forsyth, Characterisation and impedance spectroscopy of substituted Li1.3Al0.3Ti1.7(PO4)3−x(ZO4)x (Z= V, Nb) ceramics, Solid State Ionics. 126 (1999) 191–196. https://doi.org/10.1016/S0167-2738(99)00212-X

[9] D.H. Kothari, D.K. Kanchan, Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3Ti1.7(PO4)3 (LATP) system on Li+ ion conductivity, Phys. B Condens. Matter. 501 (2016) 90–94. https://doi.org/10.1016/j.physb.2016.08.020

[10] Z. Cai, Y. Huang, W. Zhu, R. Xiao, Increase in ionic conductivity of NASICON-type solid electrolyte Li1.5Al0.4Ti1.5(PO4)3 by Nb2O5 doping, Solid State Ionics. 354 (2020) 115399. https://doi.org/10.1016/j.ssi.2020.115399

[11] A. Kızılaslan, M. Kırkbınar, T. Cetinkaya, H. Akbulut, Sulfur doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes with enhanced ionic conductivity and a reduced activation energy barrier, Phys. Chem. Chem. Phys. 22 (2020) 17221–17228. https://doi.org/10.1039/D0CP03442H

[12] H. Onishi, S. Takai, T. Yabutsuka, T. Yao, Synthesis and electrochemical properties of LATP-LLTO lithium ion conductive composites, Electrochemistry. 84 (2016) 967–970. https://doi.org/10.5796/electrochemistry.84.967

[13] S. Takai, T. Yabutsuka, T. Yao, Synthesis and ion conductiviyt enhancement in oxide- based solid electrolyte LLZ-LLTO and LATO-LLTO compsite (in Japanese), in:Technical Information Institute (Ed.), Dev. Technol. Mater. Fabr. Process Improv. Ion Conduct. All Solid State Batter., Technical Information Institute, Tokyo, 2017: pp. 74–80.

[14] J. Maier, Pushing nanoionics to the limits: charge carrier chemistry in extremely small systems, Chem. Mater. 26 (2014) 348–360. https://doi.org/10.1021/cm4021657

[15] S. Breuer, V. Pregartner, S. Lunghammer, H.M.R. Wilkening, Dispersed solid conductors: fast interfacial Li-ion dynamics in nanostructured LiF and LiF:γ-Al2O3 composites, J. Phys. Chem. C. 123 (2019) 5222–5230.https://doi.org/https://doi.org/10.1021/acs.jpcc.8b10978

[16] V. Gulino, M. Brighi, F. Murgia, P. Ngene, P. de Jongh, R. Černý, M. Baricco, Room- Temperature Solid-State Lithium-Ion Battery Using a LiBH4–MgO Composite Electrolyte, ACS Appl. Energy Mater. 4 (2021) 1228–1236 https://doi.org/10.1021/acsaem.0c025254.5. SummaryIn summary, the long-range tracer diffusion coefficients of pristine LATP and LATP – LaPO4 composite have been measured in the first time through the neutron radiography technique in the temperature range 300 ℃ to 500 ℃. While the tracer diffusion coefficients of LATP – LaPO4 is slightly higher than that of pristine LATP, the difference is smaller than that expected from the room-temperature conductivity. This is presumably due to the reduced Debye length of the space charge layer which results in an enhanced bulk diffusion contribution in this temperature range. For further precise discussion on the contribution of space charge layer, diffusion measurements should be carried out at lower temperatures where the enhancement effect from space charge layer is more signfinicant, such that the difference in tracer diffusion coefficients between composite and pritine LATP at these tempeartures can be verified. At near room temperatures, owing to the ralatively low lithium mobitliy, solid-state NMR experimens should be employed instead of NR to investigate the lithium diffusion behaviors in composite samples[51]. Nonetheless, it has been revealed that the long-range lithium diffusion in the LATP-based system which demonstrated their potential as solid-state electrolytes for All-Solid-State-Batteries. From HR-TEM and EDS results, the LaPO4 particles dispersed in LATP matrix have been directly observed. TEM images at LATP matrix / LaPO4 particle interface suggest an intimate contact that is attributed to the reaction between LATP precursor and LLTO during the sintering process. Such microstructural feature is essential for the formation of the space charge layer at the LATP matrix / LaPO4 particle interface.

第4章

[1] H. Onishi, S. Takai, T. Yabutsuka, T. Yao, Synthesis and electrochemical properties of LATP-LLTO lithium ion conductive composites, Electrochemistry. 84 (2016) 967–970. https://doi.org/10.5796/electrochemistry.84.967

[2] P. Heitjans, S. Indris, Diffusion and ionic conduction in nanocrystalline ceramics, J. Phys.Condens. Matter. 15 (2003) R1257. https://doi.org/10.1557/PROC-676-Y6.6

[3] R.H. Brugge, R.J. Chater, J.A. Kilner, A. Aguadero, Experimental determination of Li diffusivity in LLZO using isotopic exchange and FIB-SIMS, J. Phys. Energy. 3 (2021) 34001. https://doi.org/10.1088/2515-7655/abe2f7

[4] C. Wagner, Investigations on silver sulfide, J. Chem. Phys. 21 (1953) 1819–1827. https://doi.org/10.1063/1.1698670

[5] A. Kuhn, S. Narayanan, L. Spencer, G. Goward, V. Thangadurai, M. Wilkening, Li self- diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin- lattice relaxation NMR spectroscopy, Phys. Rev. B. 83 (2011) 94302. https://doi.org/10.1103/PhysRevB.83.094302

[6] A. Kuhn, V. Epp, G. Schmidt, S. Narayanan, V. Thangadurai, M. Wilkening, Spin- alignment echo NMR: probing Li+ hopping motion in the solid electrolyte Li7La3Zr2O12 with garnet-type tetragonal structure, J. Phys. Condens. Matter. 24 (2011) 35901. http://doi.org/10.1088/0953-8984/24/3/035901

[7] V. Epp, Q. Ma, E.-M. Hammer, F. Tietz, M. Wilkening, Very fast bulk Li ion diffusivity in crystalline Li1.5Al0.5Ti1.5(PO4)3 as seen using NMR relaxometry, Phys. Chem. Chem.Phys. 17 (2015) 32115–32121. https://doi.org/10.1039/C5CP05337D

[8] P. Bottke, D. Rettenwander, W. Schmidt, G. Amthauer, M. Wilkening, Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12, Chem. Mater. 27 (2015) 6571–6582.https://doi.org/10.1021/acs.chemmater.5b02231

[9] K. Hayamizu, Y. Matsuda, M. Matsui, N. Imanishi, Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin- echo NMR method, Solid State Nucl. Magn. Reson. 70 (2015) 21–27. https://doi.org/10.1016/j.ssnmr.2015.05.002

[10] K. Hayamizu, Y. Aihara, Lithium ion diffusion in solid electrolyte (Li2S)7(P2S5)3 measured by pulsed-gradient spin-echo 7Li NMR spectroscopy, Solid State Ionics. 238 (2013) 7–14. https://doi.org/10.1016/j.ssi.2013.02.014

[11] K. Hayamizu, Y. Aihara, N. Machida, Anomalous lithium ion migration in the solid electrolyte (Li2S)7(P2S5)3; fast ion transfer at short time intervals studied by PGSE NMR spectroscopy, Solid State Ionics. 259 (2014) 59–64. https://doi.org/10.1016/j.ssi.2014.02.016

[12] K. Hayamizu, Y. Aihara, T. Watanabe, T. Yamada, S. Ito, N. Machida, NMR studies on lithium ion migration in sulfide-based conductors, amorphous and crystalline Li3PS4, Solid State Ionics. 285 (2016) 51–58. https://doi.org/10.1016/j.ssi.2015.06.016

[13] K. Hayamizu, S. Seki, T. Haishi, Lithium ion micrometer diffusion in a garnet-type cubic Li7La3Zr2O12 (LLZO) studied using 7Li NMR spectroscopy, J. Chem. Phys. 146 (2017) 24701. https://doi.org/10.1063/1.4973827

[14] J. Sugiyama, K. Mukai, Y. Ikedo, H. Nozaki, M. Månsson, I. Watanabe, Li diffusion in LixCoO2 probed by muon-spin spectroscopy, Phys. Rev. Lett. 103 (2009) 147601. https://doi.org/10.1103/PhysRevLett.103.147601

[15] Y. Ikedo, J. Sugiyama, O. Ofer, M. Månsson, H. Sakurai, E. Takayama-Muromachi, E.J. Ansaldo, J.H. Brewer, K.H. Chow, Comparative μ+SR study of the zigzag chain compounds NaMn2O4 & LiMn2O4, in: J. Phys. Conf. Ser., 2010: p. 12017. https://doi.org/10.1088/1742-6596/225/1/012017

[16] M. Amores, T.E. Ashton, P.J. Baker, E.J. Cussen, S.A. Corr, Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy,J. Mater. Chem. A. 4 (2016) 1729–1736. https://doi.org/10.1039/C5TA08107F

[17] H. Nozaki, M. Harada, S. Ohta, I. Watanabe, Y. Miyake, Y. Ikedo, N.H. Jalarvo, E. Mamontov, J. Sugiyama, Li diffusive behavior of garnet-type oxides studied by muon- spin relaxation and QENS, Solid State Ionics. 262 (2014) 585–588. https://doi.org/10.1016/j.ssi.2013.10.014

[18] K. Kamazawa, H. Nozaki, M. Harada, K. Mukai, Y. Ikedo, K. Iida, T.J. Sato, Y. Qiu, M. Tyagi, J. Sugiyama, Interrelationship between Li+ diffusion, charge, and magnetism in 7LiMn2O4 and 7Li1.1Mn1.9O4 spinels: Elastic, inelastic, and quasielastic neutron scattering,Phys. Rev. B. 83 (2011) 94401. https://doi.org/10.1103/PhysRevB.83.094401

[19] S.E. Ormrod, D.L. Kirk, The relationship between sodium ion diffusion and conductivity in polycrystalline β"-alumina, J. Phys. D. Appl. Phys. 10 (1977) 1497. https://doi.org/10.1088/0022-3727/10/11/014/

[20] Y. Nosé, T. Ikeda, H. Nakajima, H. Numakura, Tracer and Chemical Diffusion in L12-Ordered Pt3Fe, Mater. Trans. 44 (2003) 34–39. https://doi.org/10.2320/matertrans.44.34

[21] E. Zinner, Depth profiling by secondary ion mass spectrometry, Scanning. 3 (1980) 57–78. https://doi.org/10.1002/sca.4950030202

[22] T. Okumura, T. Fukutsuka, Y. Uchimoto, N. Sakai, K. Yamaji, H. Yokokawa, Determination of lithium ion diffusion in lithium–manganese-oxide-spinel thin films by secondary-ion mass spectrometry, J. Power Sources. 189 (2009) 643–645. https://doi.org/10.1016/j.jpowsour.2008.09.043

[23] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Li self-diffusion in lithium niobate single crystals at low temperatures, Phys. Chem. Chem. Phys. 14 (2012) 2427–2433. https://doi.org/10.1039/C2CP23548J

[24] J. Rahn, P. Heitjans, H. Schmidt, Li self-diffusivities in lithium niobate single crystals as a function of Li2O content, J. Phys. Chem. C. 119 (2015) 15557–15561. https://doi.org/10.1021/acs.jpcc.5b04391

[25] D. Wiedemann, S. Nakhal, J. Rahn, E. Witt, M.M. Islam, S. Zander, P. Heitjans, H. Schmidt, T. Bredow, M. Wilkening, M. Lerch, Unravelling ultraslow lithium-ion diffusion in γ-LiAlO2: experiments with tracers, neutrons, and charge carriers, Chem. Mater. 28 (2016) 915–924. https://doi.org/10.1021/acs.chemmater.5b04608

[26] N. Kuwata, G. Hasegawa, D. Maeda, N. Ishigaki, T. Miyazaki, J. Kawamura, Tracer Diffusion Coefficients of Li Ions in LixMn2O4 Thin Films Observed by Isotope Exchange Secondary Ion Mass Spectrometry, J. Phys. Chem. C. 124 (2020) 22981–22992. https://doi.org/10.1021/acs.jpcc.0c06375

[27] C. Schwab, A. Höweling, A. Windmüller, J. Gonzalez-Julian, S. Möller, J.R. Binder, S. Uhlenbruck, O. Guillon, M. Martin, Bulk and grain boundary Li-diffusion in dense LiMn2O4 pellets by means of isotope exchange and ToF-SIMS analysis, Phys. Chem.Chem. Phys. 21 (2019) 26066–26076. https://doi.org/10.1039/C9CP05128G

[28] N. Kuwata, X. Lu, T. Miyazaki, Y. Iwai, T. Tanabe, J. Kawamura, Lithium diffusion coefficient in amorphous lithium phosphate thin films measured by secondary ion mass spectroscopy with isotope exchange methods, Solid State Ionics. 294 (2016) 59–66.

[29] N. Kuwata, M. Nakane, T. Miyazaki, K. Mitsuishi, J. Kawamura, Lithium diffusion coefficient in LiMn2O4 thin films measured by secondary ion mass spectrometry with ion- exchange method, Solid State Ionics. 320 (2018) 266–271.

[30] M. Kamata, T. Esaka, K. Takami, S. Takai, S. Fujine, K. Yoneda, K. Kanda, Studies on the lithium ion conduction in Ca0. 95Li0. 10WO4 using cold neutron radiography, Solid State Ionics. 91 (1996) 303–306. https://doi.org/10.1016/j.ssi.2016.06.015

[31] M. Kamata, T. Esaka, K. Takami, S. Takai, S. Fujine, K. Yoneda, K. Kanda, Application of Cold Neutron Radiography to Study the Lithium Ion Movement in Li1. 33Ti1. 67O4, Denki Kagaku Oyobi Kogyo Butsuri Kagaku. 64 (1996) 984–987. https://doi.org/10.5796/kogyobutsurikagaku.64.984

[32] J.C. Hopkins, D.M. Drake, H. Conde, Elastic and inelastic scattering of fast neutrons from6Li and 7Li, Nucl. Phys. A. 107 (1968) 139–152.https://doi.org/10.1016/0375-9474(68)90731-8

[33] S. Takai, M. Kamata, S. Fujine, K. Yoneda, K. Kanda, T. Esaka, Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography,Solid State Ionics. 123 (1999) 165–172. https://doi.org/10.1016/S0167-2738(99)00095-8

[34] M. Hayashi, H. Sakaguchi, S. Takai, T. Esaka, Lithium ion conduction in scheelite-type oxides and analysis of lithium ion motion by neutron radiography, Solid State Ionics. 140 (2001) 71–76. https://doi.org/10.1016/S0167-2738(01)00704-4

[35] S. Takai, K. Kurihara, K. Yoneda, S. Fujine, Y. Kawabata, T. Esaka, Tracer diffusion experiments on LISICON and its solid solutions by means of neutron radiography, Solid State Ionics. 171 (2004) 107–112. https://doi.org/10.1016/S0167-2738(03)00305-9

[36] S. Takai, T. Mandai, Y. Kawabata, T. Esaka, Diffusion coefficient measurements of La2/3− xLi3xTiO3 using neutron radiography, Solid State Ionics. 176 (2005) 2227–2233. https://doi.org/10.1016/j.ssi.2005.06.012

[37] S. Takai, K. Yoshioka, H. Iikura, M. Matsubayashi, T. Yao, T. Esaka, Tracer diffusion coefficients of lithium ion in LiMn2O4 measured by neutron radiography, Solid State Ionics. 256 (2014) 93–96. https://doi.org/10.1016/j.ssi.2014.01.013

[38] T. Shinohara, T. Kai, K. Oikawa, T. Nakatani, M. Segawa, K. Hiroi, Y. Su, M. Ooi, M. Harada, H. Iikura, H. Hayashida, J.D. Parker, Y. Matsumoto, T. Kamiyama, H. Sato, Y. Kiyanagi, The energy-resolved neutron imaging system, RADEN, Rev. Sci. Instrum. 91 (2020) 43302. https://doi.org/10.1063/1.5136034

[39] W.J. Richards, M.R. Gibbons, K.C. Shields, Neutron tomography developments and applications, Appl. Radiat. Isot. 61 (2004) 551–559. https://doi.org/10.1016/j.apradiso.2004.03.121

[40] S.H. Giegel, A.E. Craft, G.C. Papaioannou, A.T. Smolinski, C.L. Pope, Neutron Beam Characterization at Neutron Radiography (NRAD) Reactor East Beam Following Reactor Modifications, Quantum Beam Sci. 5 (2021) 8. https://doi.org/10.3390/qubs5020008

[41] S.W. Morgan, J.C. King, C.L. Pope, Beam characterization at the neutron radiography reactor, Nucl. Eng. Des. 265 (2013) 639–653. https://doi.org/10.1016/j.nucengdes.2013.08.059

[42] T. Nemec, J. Rant, E. Kristof, B. Glumac, Characterization of the Ljubljana TRIGA thermal column neutron radiographic facility, in: 2nd Regional Meeting: Nuclear Energy in Central Europe, Portoroz, 1995: pp. 161–167. https://www.osti.gov/etdeweb/servlets/purl/314360.

[43] S. Kasperl, P. Vontobel, Application of an iterative artefact reduction method to neutron tomography, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect.Assoc. Equip. 542 (2005) 392–398. https://doi.org/10.1016/j.nima.2005.01.167

[44] D. Case, A.J. McSloy, R. Sharpe, S.R. Yeandel, T. Bartlett, J. Cookson, E. Dashjav, F. Tietz, C.M.N. Kumar, P. Goddard, Structure and ion transport of lithium-rich Li1+xAlxTi2– x(PO4)3 with 0.3< x< 0.5: A combined computational and experimental study, Solid State Ionics. 346 (2020) 115192. https://doi.org/10.1016/j.ssi.2019.115192

[45] N. V Kosova, E.T. Devyatkina, A.P. Stepanov, A.L. Buzlukov, Lithium conductivity and lithium diffusion in NASICON-type rich Li1+xAlxTi2–x(PO4)3 (x=0; 0.3) prepared by mechanical activation, Ionics. 14 (2008) 303–311.https://doi.org/10.1007/s11581-007-0197-5

[46] J. Maier, Ionic conduction in space charge regions, Prog. Solid State Chem. 23 (1995) 171–263. https://doi.org/10.1016/0079-6786(95)00004-E

[47] J. Maier, Pushing nanoionics to the limits: charge carrier chemistry in extremely small systems, Chem. Mater. 26 (2014) 348–360. https://doi.org/10.1021/cm4021657

[48] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics. 180 (2009) 911–916. https://doi.org/10.1016/j.ssi.2009.03.022

[49] T. Jow, J.B. Wagner Jr, The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride, J. Electrochem. Soc. 126 (1979) 1963. https://doi.org/10.1149/1.2128835

[50] F. Song, H. Onishi, W.-J. Chen, T. Yabutsuka, T. Yao, S. Takai, TEM Observation of LaPO4-Dispersed LATP Lithium-Ion Conductor, Electrochemistry. (2021) 21–71. https://doi.org/10.5796/electrochemistry.21-00071

[51] S. Breuer, V. Pregartner, S. Lunghammer, H.M.R. Wilkening, Dispersed solid conductors: fast interfacial Li-ion dynamics in nanostructured LiF and LiF: γ-Al2O3 composites, J. Phys. Chem. C. 123 (2019) 5222–5230.https://doi.org/https://doi.org/10.1021/acs.jpcc.8b10978

[52] N.M. Vargas-Barbosa, B. Roling, Dynamic ion correlations in solid and liquid electrolytes:how do they affect charge and mass transport?, ChemElectroChem. 7 (2020) 367–385. https://doi.org/10.1002/celc.201901627

[53] G.E. Murch, The Haven ratio in fast ionic conductors, Solid State Ionics. 7 (1982) 177–198. https://doi.org/10.1016/0167-2738(82)90050-9

[54] K. Arbi, M. Hoelzel, A. Kuhn, F. Garcia-Alvarado, J. Sanz, Local structure and lithium mobility in intercalated Li1+xAlxTi2–x(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study, Phys. Chem. Chem. Phys. 16 (2014) 18397–18405. https://doi.org/10.1039/C4CP02938K

[55] S.D. Jackman, R.A. Cutler, Effect of microcracking on ionic conductivity in LATP, J.Power Sources. 218 (2012) 65–72. https://doi.org/10.1016/j.jpowsour.2012.06.081

[56] M. Monchak, T. Hupfer, A. Senyshyn, H. Boysen, D. Chernyshov, T. Hansen, K.G. Schell, E.C. Bucharsky, M.J. Hoffmann, H. Ehrenberg, Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor, Inorg. Chem. 55 (2016) 2941–2945. https://doi.org/10.1021/acs.inorgchem.5b02821

[57] X. He, Y. Zhu, Y. Mo, Origin of fast ion diffusion in super-ionic conductors, Nat. Commun. 8 (2017) 1–7. https://doi.org/10.1038/ncomms15893

第5章

[1] H. Onishi, S. Takai, T. Yabutsuka, T. Yao, Synthesis and electrochemical properties of LATP-LLTO lithium ion conductive composites, Electrochemistry. 84 (2016) 967–970. https://doi.org/10.5796/electrochemistry.84.967.

[2] I. V Krasnikova, M.A. Pogosova, A.O. Sanin, K.J. Stevenson, Toward Standardization of Electrochemical Impedance Spectroscopy Studies of Li-Ion Conductive Ceramics, Chem. Mater. 32 (2020) 2232–2241.

[3] C.R. Mariappan, C. Yada, F. Rosciano, B. Roling, Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics, J. Power Sources. 196 (2011) 6456–6464. https://doi.org/10.1016/j.jpowsour.2011.03.065.

[4] S. Breuer, V. Pregartner, S. Lunghammer, H.M.R. Wilkening, Dispersed solid conductors: fast interfacial Li-ion dynamics in nanostructured LiF and LiF: $γ$-Al2O3 composites, J. Phys. Chem. C. 123 (2019) 5222–5230.https://doi.org/https://doi.org/10.1021/acs.jpcc.8b10978.

[5] V. Epp, M. Wilkening, Motion of Li+ in nanoengineered LiBH4 and LiBH4: Al2O3 comparison with the microcrystalline form, ChemPhysChem. 14 (2013) 3706–3713.

[6] V. Gulino, M. Brighi, F. Murgia, P. Ngene, P. de Jongh, R. Černý, M. Baricco, Room- Temperature Solid-State Lithium-Ion Battery Using a LiBH4--MgO Composite Electrolyte, ACS Appl. Energy Mater. 4 (2021) 1228–1236.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る