リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「カロリー制限が嗅神経上皮の恒常性維持に与える影響についての研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

カロリー制限が嗅神経上皮の恒常性維持に与える影響についての研究

岩村, 均 東京大学 DOI:10.15083/0002004468

2022.06.22

概要

マウス嗅神経上皮におけるカロリー制限(CR)の効果を、細胞動態及び遺伝子発現の変化から評価した。8週齢の雄性C57BL/6マウスに対して、対照食(104kcal/週)又はカロリー制限ペレット(67kcal/週)のいずれかを給餌し、対照食と比較してカロリーが36%制限されるようにした。非障害状態及び嗅粘膜毒性物質メチマゾールによる障害後の嗅神経上皮細胞の再生過程を、対照食またはCR食で給餌したマウスで比較した。3ヵ月時点で、嗅覚受容体ニューロン(ORN)及び増殖性基底細胞数は、対照食群と比較してCR食群で有意に少なかった。増殖性基底細胞数は、対照食群とCR食群のいずれにおいてもメチマゾール障害後に増加が、その増加の度合いはCR食群で少なかった。メチマゾール投与後2ヵ月時点での嗅神経上皮の再生は、対照食群に比べてCR食群では回復が不完全であった。嗅神経上皮でのDNAマイクロアレイ及び定量的リアルタイムポリメラーゼ連鎖反応を用いた遺伝子発現解析を行った結果、2種の炎症性サイトカイン(IL-6,CCL-1)の発現が、対照食群と比較してCR食群で上昇していた。CRは、様々な臓器において組織の恒常性を維持し、老化プロセスを抑制するのに有益な効果を示すが、嗅神経上皮組織においては、特に障害を受けた場合に、嗅神経上皮の再生に不利益な効果をもたらすと考えられた。

この論文で使われている画像

参考文献

1. Carr, V.M. and A.I. Farbman, Ablation of the olfactory bulb up-regulates the rate of neurogenesis and induces precocious cell death in olfactory epithelium. Exp Neurol, 1992. 115(1): p. 55-9.

2. Ducray, A., et al., Recovery following peripheral destruction of olfactory neurons in young and adult mice. Eur J Neurosci, 2002. 15(12): p. 1907-17.

3. Schwob, J.E., K.E. Szumowski, and A.A. Stasky, Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival. J Neurosci, 1992. 12(10): p. 3896-919.

4. Schwob, J.E., S.L. Youngentob, and R.C. Mezza, Reconstitution of the rat olfactory epithelium after methyl bromide-induced lesion. J Comp Neurol, 1995. 359(1): p. 15-37.

5. Suzukawa, K., et al., Age-related changes of the regeneration mode in the mouse peripheral olfactory system following olfactotoxic drug methimazole-induced damage. J Comp Neurol, 2011. 519(11): p. 2154-74.

6. Suzuki, Y. and M. Takeda, Basal cells in the mouse olfactory epithelium after axotomy: immunohistochemical and electron-microscopic studies. Cell Tissue Res, 1991. 266(2): p. 239-45.

7. Calof, A.L., et al., Neurogenesis and cell death in olfactory epithelium. J Neurobiol, 1996. 30(1): p. 67-81.

8. Verhaagen, J., et al., Neuroplasticity in the olfactory system: differential effects of central and peripheral lesions of the primary olfactory pathway on the expression of B-50/GAP43 and the olfactory marker protein. J Neurosci Res, 1990. 26(1): p. 31-44.

9. Costanzo, R.M., Comparison of neurogenesis and cell replacement in the hamster olfactory system with and without a target (olfactory bulb). Brain Res, 1984. 307(1-2): p. 295-301.

10. Cummings, D.M., et al., Pattern of olfactory bulb innervation returns after recovery from reversible peripheral deafferentation. J Comp Neurol, 2000. 421(3): p. 362-73.

11. Schwob, J.E., et al., Reinnervation of the rat olfactory bulb after methyl bromide-induced lesion: timing and extent of reinnervation. J Comp Neurol, 1999. 412(3): p. 439-57.

12. Schwob, J.E., et al., Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J Comp Neurol, 2017. 525(4): p. 1034-1054.

13. Bauer, S., et al., Leukemia inhibitory factor is a key signal for injury-induced neurogenesis in the adult mouse olfactory epithelium. J Neurosci, 2003. 23(5): p. 1792-803.

14. Gokoffski, K.K., et al., Feedback Regulation of Neurogenesis in the Mammalian Olfactory Epithelium: New Insights from Genetics and Systems Biology, in The Neurobiology of Olfaction, A. Menini, Editor. 2010: Boca Raton (FL).

15. Jia, C., A.R. Cussen, and C.C. Hegg, ATP differentially upregulates fibroblast growth factor 2 and transforming growth factor alpha in neonatal and adult mice: effect on neuroproliferation. Neuroscience, 2011. 177: p. 335-46.

16. Simpson, P.J., et al., Atrial natriuretic peptide type C induces a cell-cycle switch from proliferation to differentiation in brain-derived neurotrophic factor- or nerve growth factor-primed olfactory receptor neurons. J Neurosci, 2002. 22(13): p. 5536-51.

17. Kawauchi, S., et al., Molecular signals regulating proliferation of stem and progenitor cells in mouse olfactory epithelium. Dev Neurosci, 2004. 26(2-4): p. 166-80.

18. McCurdy, R.D., et al., Regulation of adult olfactory neurogenesis by insulin-like growth factor-I. Eur J Neurosci, 2005. 22(7): p. 1581-8.

19. Moon, C., et al., Leukemia inhibitory factor promotes olfactory sensory neuronal survival via phosphoinositide 3-kinase pathway activation and Bcl-2. J Neurosci Res, 2009. 87(5): p. 1098-106.

20. Lema, S.C. and G.A. Nevitt, Evidence that thyroid hormone induces olfactory cellular proliferation in salmon during a sensitive period for imprinting. J Exp Biol, 2004. 207(Pt 19): p. 3317-27.

21. Paternostro, M. and E. Meisami, Selective effects of thyroid hormonal deprivation on growth and development of olfactory receptor sheet during the early postnatal period: a morphometric and cell count study in the rat. Int J Dev Neurosci, 1989. 7(3): p. 243-55.

22. Paternostro, M.A. and E. Meisami, Essential role of thyroid hormones in maturation of olfactory receptor neurons: an immunocytochemical study of number and cytoarchitecture of OMP-positive cells in developing rats. Int J Dev Neurosci, 1996. 14(7-8): p. 867-80.

23. Nathan, B.P., M. Tonsor, and R.G. Struble, Acute responses to estradiol replacement in the olfactory system of apoE-deficient and wild-type mice. Brain Res, 2010. 1343: p. 66-74.

24. Nathan, B.P., M. Tonsor, and R.G. Struble, Long-term effects of estradiol replacement in the olfactory system. Exp Neurol, 2012. 237(1): p. 1-7.

25. Barja, G., Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev Camb Philos Soc, 2004. 79(2): p. 235-51.

26. Dhahbi, J.M., et al., Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proc Natl Acad Sci U S A, 2004. 101(15): p. 5524-9.

27. Hursting, S.D., et al., Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med, 2003. 54: p. 131-52.

28. Masoro, E.J., Overview of caloric restriction and ageing. Mech Ageing Dev, 2005. 126(9): p. 913-22.

29. Padovani, M., et al., Distinct effects of calorie restriction and exercise on mammary gland gene expression in C57BL/6 mice. Cancer Prev Res (Phila), 2009. 2(12): p. 1076-87.

30. Swindell, W.R., Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse. BMC Genomics, 2009. 10: p. 585.

31. Hursting, S.D., et al., Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research. Carcinogenesis, 2010. 31(1): p. 83-9.

32. Masoro, E.J., Caloric restriction-induced life extension of rats and mice: a critique of proposed mechanisms. Biochim Biophys Acta, 2009. 1790(10): p. 1040-8.

33. Roth, G.S., D.K. Ingram, and M.A. Lane, Caloric restriction in primates and relevance to humans. Ann N Y Acad Sci, 2001. 928: p. 305-15.

34. Si, H. and D. Liu, Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J Nutr Biochem, 2014. 25(6): p. 581-91.

35. Bruss, M.D., et al., The effects of physiological adaptations to calorie restriction on global cell proliferation rates. Am J Physiol Endocrinol Metab, 2011. 300(4): p. E735-45.

36. Hong, D.S., L.S. Angelo, and R. Kurzrock, Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer, 2007. 110(9): p. 1911-28.

37. Lok, E., et al., Calorie restriction and cellular proliferation in various tissues of the female Swiss Webster mouse. Cancer Lett, 1990. 51(1): p. 67-73.

38. Yilmaz, Ö.H., et al., mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature, 2012. 486: p. 490.

39. Partridge, L., D. Gems, and D.J. Withers, Sex and death: what is the connection? Cell, 2005. 120(4): p. 461-72.

40. Newton, I.G., et al., Effects of aging and caloric restriction on dentate gyrus synapses and glutamate receptor subunits. Neurobiol Aging, 2008. 29(9): p. 1308-18.

41. Park, J.H., et al., Calorie restriction alleviates the age-related decrease in neural progenitor cell division in the aging brain. Eur J Neurosci, 2013. 37(12): p. 1987-93.

42. Kumar, S., et al., Interactive effect of excitotoxic injury and dietary restriction on neurogenesis and neurotrophic factors in adult male rat brain. Neurosci Res, 2009. 65(4): p. 367-74.

43. Someya, S., et al., Effects of caloric restriction on age-related hearing loss in rodents and rhesus monkeys. Curr Aging Sci, 2010. 3(1): p. 20-5.

44. Pugh, T.D., R.G. Klopp, and R. Weindruch, Controlling caloric consumption: protocols for rodents and rhesus monkeys. Neurobiol Aging, 1999. 20(2): p. 157-65.

45. Cao, S.X., et al., Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc Natl Acad Sci U S A, 2001. 98(19): p. 10630-5.

46. Selman, C., et al., Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiol Genomics, 2006. 27(3): p. 187-200.

47. Yoshikawa, K., et al., The human olfactory cleft mucus proteome and its age-related changes. Sci Rep, 2018. 8(1): p. 17170.

48. Mulligan, J.D., A.M. Stewart, and K.W. Saupe, Downregulation of plasma insulin levels and hepatic PPARgamma expression during the first week of caloric restriction in mice. Exp Gerontol, 2008. 43(3): p. 146-53.

49. Hallman, B.L. and J.W. Hurst, Loss of taste as toxic effect of methimazole (tapazole) therapy; report of three cases. J Am Med Assoc, 1953. 152(4): p. 322.

50. Genter, M.B., et al., Olfactory toxicity of methimazole: dose-response and structure-activity studies and characterization of flavin-containing monooxygenase activity in the Long-Evans rat olfactory mucosa. Toxicol Pathol, 1995. 23(4): p. 477-86.

51. Brittebo, E.B., Metabolism-dependent toxicity of methimazole in the olfactory nasal mucosa. Pharmacol Toxicol, 1995. 76(1): p. 76-9.

52. Sakamoto, T., et al., Methimazole-induced cell death in rat olfactory receptor neurons occurs via apoptosis triggered through mitochondrial cytochrome c-mediated caspase-3 activation pathway. J Neurosci Res, 2007. 85(3): p. 548-57.

53. Schwob, J.E., Neural regeneration and the peripheral olfactory system. Anat Rec, 2002. 269(1): p. 33-49.

54. Costanzo, R.M. and P.P. Graziadei, A quantitative analysis of changes in the olfactory epithelium following bulbectomy in hamster. J Comp Neurol, 1983. 215(4): p. 370-81.

55. Graziadei, P.P. and G.A. Graziadei, Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol, 1979. 8(1): p. 1-18.

56. Costanzo, R.M., Neural regeneration and functional reconnection following olfactory nerve transection in hamster. Brain Res, 1985. 361(1-2): p. 258-66.

57. Matulionis, D.H., Ultrastructural study of mouse olfactory epithelium following destruction by ZnSO4 and its subsequent regeneration. Am J Anat, 1975. 142(1): p. 67-89.

58. Williams, S.K., T. Gilbey, and S.C. Barnett, Immunohistochemical studies of the cellular changes in the peripheral olfactory system after zinc sulfate nasal irrigation. Neurochem Res, 2004. 29(5): p. 891-901.

59. Hurtt, M.E., et al., Degeneration and regeneration of the olfactory epithelium following inhalation exposure to methyl bromide: pathology, cell kinetics, and olfactory function. Toxicol Appl Pharmacol, 1988. 94(2): p. 311-28.

60. Baker, H., M. Grillo, and F.L. Margolis, Biochemical and immunocytochemical characterization of olfactory marker protein in the rodent central nervous system. J Comp Neurol, 1989. 285(2): p. 246-61.

61. Kondo, K., et al., Distribution and severity of spontaneous lesions in the neuroepithelium and Bowman's glands in mouse olfactory mucosa: age-related progression. Cell Tissue Res, 2009. 335(3): p. 489-503.

62. Schluter, C., et al., The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J Cell Biol, 1993. 123(3): p. 513-22.

63. Ribera, J., V. Ayala, and J.E. Esquerda, c-Jun-like immunoreactivity in apoptosis is the result of a crossreaction with neoantigenic sites exposed by caspase-3-mediated proteolysis. J Histochem Cytochem, 2002. 50(7): p. 961-72.

64. Fu, Z.D. and C.D. Klaassen, Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice. Toxicol Appl Pharmacol, 2014. 274(1): p. 137-46.

65. Rossner, R., M. Kaeberlein, and S.F. Leiser, Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. J Biol Chem, 2017. 292(27): p. 11138-11146.

66. Kondo, K., et al., Age-related changes in cell dynamics of the postnatal mouse olfactory neuroepithelium: cell proliferation, neuronal differentiation, and cell death. J Comp Neurol, 2010. 518(11): p. 1962-75.

67. Mackay-Sim, A. and P.W. Kittel, On the Life Span of Olfactory Receptor Neurons. Eur J Neurosci, 1991. 3(3): p. 209-215.

68. Chou, M.W., et al., Effect of caloric restriction on the induction of hepatic cytochrome P-450 and Ah receptor binding in C57BL/6N and DBA/2J mice. Drug Chem Toxicol, 1993. 16(1): p. 1-19.

69. Qin, L.Q., et al., One-day dietary restriction changes hepatic metabolism and potentiates the hepatotoxicity of carbon tetrachloride and chloroform in rats. Tohoku J Exp Med, 2007. 212(4): p. 379-87.

70. Hsieh, E.A., et al., Dynamics of keratinocytes in vivo using HO labeling: a sensitive marker of epidermal proliferation state. J Invest Dermatol, 2004. 123(3): p. 530-6.

71. Fedoroff, I.C., et al., Olfactory dysfunction in anorexia and bulimia nervosa. Int J Eat Disord, 1995. 18(1): p. 71-7.

72. Rapps, N., et al., Olfactory deficits in patients with anorexia nervosa. Eur Eat Disord Rev, 2010. 18(5): p. 385-9.

73. Roessner, V., et al., Olfactory deficits in anorexia nervosa. Eur Arch Psychiatry Clin Neurosci, 2005. 255(1): p. 6-9.

74. Spaulding, C.C., R.L. Walford, and R.B. Effros, Calorie restriction inhibits the age-related dysregulation of the cytokines TNF-alpha and IL-6 in C3B10RF1 mice. Mech Ageing Dev, 1997. 93(1-3): p. 87-94.

75. Tajik, N., et al., Effect of diet-induced weight loss on inflammatory cytokines in obese women. J Endocrinol Invest, 2013. 36(4): p. 211-5.

76. Kuilman, T., et al., Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell, 2008. 133(6): p. 1019-31.

77. O'Hagan-Wong, K., et al., Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells' homeostasis. Oncotarget, 2016. 7(12): p. 13285-96.

78. Sarkar, D. and P.B. Fisher, Molecular mechanisms of aging-associated inflammation. Cancer Lett, 2006. 236(1): p. 13-23.

79. Ueha, R., et al., Reduction of Proliferating Olfactory Cells and Low Expression of Extracellular Matrix Genes Are Hallmarks of the Aged Olfactory Mucosa. Front Aging Neurosci, 2018. 10: p. 86.

80. Lane, A.P., et al., A genetic model of chronic rhinosinusitis-associated olfactory inflammation reveals reversible functional impairment and dramatic neuroepithelial reorganization. J Neurosci, 2010. 30(6): p. 2324-9.

81. Turner, J.H., et al., Tumor necrosis factor alpha inhibits olfactory regeneration in a transgenic model of chronic rhinosinusitis-associated olfactory loss. Am J Rhinol Allergy, 2010. 24(5): p. 336-40.

82. Nan, B., et al., Leukemia inhibitory factor, interleukin-6, and their receptors are expressed transiently in the olfactory mucosa after target ablation. J Comp Neurol, 2001. 435(1): p. 60-77.

83. Kornack, D.R. and P. Rakic, The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4752-7.

84. Lois, C. and A. Alvarez-Buylla, Long-distance neuronal migration in the adult mammalian brain. Science, 1994. 264(5162): p. 1145-8.

85. Luskin, M.B., Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 1993. 11(1): p. 173-89.

86. Pencea, V., et al., Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol, 2001. 172(1): p. 1-16.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る