リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「新規作用を有する抗がん剤の創薬研究およびトランスレーショナルリサーチ」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

新規作用を有する抗がん剤の創薬研究およびトランスレーショナルリサーチ

岩井, 謙一 東京大学 DOI:10.15083/0002004204

2022.06.22

概要

序論
近年、遺伝子情報等を基に個々の患者に最も適した薬剤を選択し治療を行う個別化医療の実現に高い期待が寄せられている。がん領域では、診断薬によって個々の患者のがんの原因となったがん遺伝子を同定することで、その患者に最適な薬剤が顕著な効果を発揮している例が数多く存在する。一方で、がんの原因が明らかになっても有効な治療薬が存在しないがんは多く存在する。例えば、活性を阻害する薬剤の創出が困難ながん遺伝子の活性化で誘導されたがんや、がん抑制遺伝子の機能欠損によって誘導されたがんである。このようながんに対しては、細胞ががん化する際に生み出された脆弱性を標的とする薬剤の研究開発が活発に行われている。本学位論文では、がんの脆弱性を標的とした2つの薬剤についてその創薬研究およびトランスレーショナルリサーチについて報告する。

Pre-mRNAスプライシングを標的とするCLK阻害剤
pre-mRNAスプライシング因子の変異が様々ながんで発見されており、これらの変異等による異常なpre-mRNAスプライシング機構を有するがん細胞は、さらなるpre-mRNAスプライシング変化に対して脆弱性を示すことが示唆されている。Cdc2-like-kinase(CLK)は、pre-mRNAスプライシング機構に重要な役割を果たすことが知られているキナーゼである。CLKは、リン酸化を介してRNA結合タンパク質であるSRタンパク質の局在を制御し、pre-mRNAスプライシング機構におけるエクソン認識に関与することが知られている。

本研究において新規の経口投与可能なCLK阻害剤であるT-025を創出した。T-025はCLKファミリーのキナーゼ、特にCLK2に対しては非常に強い活性を有する低分子化合物である。T-025は、invitroでMDA-MB-468乳がん細胞株に対して、CLK2自己リン酸化の低下、選択的スプライシング変化、アポトーシスを伴う細胞増殖阻害を誘導した。またMDA-MB-468ゼノグラフトモデルを用いたinvivo薬効試験で顕著な抗腫瘍効果を発揮した。このT-025がより有効ながんの特徴を明らかにするために240種のがん細胞株に対する増殖阻害試験およびバイオインフォマティクス解析を実施した。その結果、CLK2高発現およびMYC遺伝子増幅がT-025の感受性と相関することが明らかになった。メカニズム解析によって、T-025によって誘導される選択的スプライシング変化の程度は細胞株のCLK2発現量に依存していること、MYC活性化はがん細胞をT-025に対して高感受性にさせることを明らかにした。最後にMYC活性化によって発症したマウスの自然発症乳がんに対する薬効を評価したところ、T-025は自然発症乳がんモデルでも顕著な抗腫瘍効果を発揮した。これらの結果はCLK阻害剤ががん患者、特にMYCが活性化したがんの患者に対して有用な治療となりうることを示している。

DNA複製ストレスを標的とするCDC7阻害剤
がん細胞は多くのDNA変異や染色体異常を有していることから正常細胞よりも大きなストレスがDNA複製にかかっていると考えられている。またRASやMYCなどのがん遺伝子の活性化もDNA複製ストレスの増大に繋がっていると考えられており、DNA複製ストレスを誘導する薬剤はこれらのがんにより大きな効果を発揮することが示唆されている。

CDC7はDNA複製の開始およびDNA損傷応答において重要な働きをもつキナーゼである。本研究において新規の経口投与可能、かつ選択的なCDC7阻害剤であるTAK-931を創出した。TAK-931はCOLO205大腸がん細胞株およびそのゼノグラフト腫瘍に対して、CDC7の基質であるMCM2のリン酸化抑制を誘導すると共に、増殖阻害および抗腫瘍効果を示した。246種の細胞株に対する増殖阻害試験を実施した結果、TAK-931に対する細胞の感受性は細胞株によって幅広く、正常細胞は比較的低感受性であった。さらにRAS変異を有する細胞株は、変異を有しない細胞株に比べて統計学的優位に感受性が高いことが明らかになった。患者由来ゼノグラフトモデル(Patient-derivedxenograft[PDX]モデル)を用いた前臨床Ph2様試験を実施した結果、TAK-931は多くのモデルにおいて薬効を示し、腫瘍の体積が600mm2に達するまでの期間を指標とした担がん動物の生存を優位に改善した。これらの結果は、TAK-931が幅広いがんに対して有効であることを示唆している。

総括
本研究によって新規作用を有する2つの抗腫瘍化合物を創出した。これらの化合物を用いた分子メカニズム解析およびバイオインフォマティクス解析によって、薬剤がより効果を発揮する可能性がある患者層を層別化するマーカー候補を明らかにすることができた。本研究で得られた結果は、本研究で使用した化合物だけでなく、同じ分子やメカニズムをターゲットとした薬剤の今後の臨床開発につながることが期待される。またKRASおよびMYCの新たな脆弱性を発見し、まだ治療法が確立していないがん遺伝子に関する新たな知見となった。

この論文で使われている画像

参考文献

1 Dugger, S. A., Platt, A. & Goldstein, D. B. Drug development in the era of precision medicine. Nat Rev Drug Discov 17, 183-196, doi:10.1038/nrd.2017.226 (2018).

2 Ashley, E. A. Towards precision medicine. Nat Rev Genet 17, 507-522, doi:10.1038/nrg.2016.86 (2016).

3 Janne, P. A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372, 1689-1699, doi:10.1056/NEJMoa1411817 (2015).

4 Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368, 2385-2394, doi:10.1056/NEJMoa1214886 (2013).

5 Dang, C. V., Reddy, E. P., Shokat, K. M. & Soucek, L. Drugging the 'undruggable' cancer targets. Nat Rev Cancer 17, 502-508, doi:10.1038/nrc.2017.36 (2017).

6 Huang, A., Garraway, L. A., Ashworth, A. & Weber, B. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov, doi:10.1038/s41573-019-0046-z (2019).

7 Nagel, R., Semenova, E. A. & Berns, A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep 17, 1516-1531, doi:10.15252/embr.201643030 (2016).

8 McLornan, D. P., List, A. & Mufti, G. J. Applying synthetic lethality for the selective targeting of cancer. N Engl J Med 371, 1725-1735, doi:10.1056/NEJMra1407390 (2014).

9 Mirza, M. R. et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N Engl J Med 375, 2154-2164, doi:10.1056/NEJMoa1611310 (2016).

10 Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913-917, doi:10.1038/nature03443 (2005).

11 Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64-69, doi:10.1038/nature10496 nature10496 [pii] (2011).

12 Dvinge, H., Kim, E., Abdel-Wahab, O. & Bradley, R. K. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer 16, 413-430, doi:10.1038/nrc.2016.51 (2016).

13 Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11, 220-228, doi:10.1038/nrm2858 (2010).

14 Chabot, B. & Shkreta, L. Defective control of pre-messenger RNA splicing in human disease. J Cell Biol 212, 13-27, doi:10.1083/jcb.201510032 jcb.201510032 [pii] (2016).

15 Vuong, C. K., Black, D. L. & Zheng, S. The neurogenetics of alternative splicing. Nat Rev Neurosci 17, 265-281, doi:10.1038/nrn.2016.27 nrn.2016.27 [pii] (2016).

16 Inoue, D., Bradley, R. K. & Abdel-Wahab, O. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Genes Dev 30, 989-1001, doi:10.1101/gad.278424.116 30/9/989 [pii] (2016).

17 Papaemmanuil, E. et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med 374, 2209-2221, doi:10.1056/NEJMoa1516192 (2016).

18 Donaires, F. S. et al. Splicing factor SF3B1 mutations and ring sideroblasts in myelodysplastic syndromes: a Brazilian cohort screening study. Rev Bras Hematol Hemoter 38, 320-324, doi:S1516-8484(16)30053-6 [pii] 10.1016/j.bjhh.2016.06.002 (2016).

19 Meggendorfer, M. et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood 120, 3080-3088, doi:10.1182/blood-2012-01-404863 blood-2012-01-404863 [pii] (2012).

20 Salton, M. & Misteli, T. Small Molecule Modulators of Pre-mRNA Splicing in Cancer Therapy. Trends Mol Med 22, 28-37, doi:10.1016/j.molmed.2015.11.005 S1471-4914(15)00213-0 [pii] (2016).

21 Lee, S. C. & Abdel-Wahab, O. Therapeutic targeting of splicing in cancer. Nat Med 22, 976-986, doi:10.1038/nm.4165 nm.4165 [pii] (2016).

22 Bonnal, S., Vigevani, L. & Valcarcel, J. The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov 11, 847-859, doi:10.1038/nrd3823 nrd3823 [pii] (2012).

23 Corkery, D. P., Holly, A. C., Lahsaee, S. & Dellaire, G. Connecting the speckles: Splicing kinases and their role in tumorigenesis and treatment response. Nucleus 6, 279-288, doi:10.1080/19491034.2015.1062194 (2015).

24 Colwill, K. et al. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J 15, 265-275 (1996).

25 Ghosh, G. & Adams, J. A. Phosphorylation mechanism and structure of serine-arginine protein kinases. FEBS J 278, 587-597, doi:10.1111/j.1742-4658.2010.07992.x (2011).

26 Singh, R. K. & Cooper, T. A. Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 18, 472-482, doi:10.1016/j.molmed.2012.06.006 (2012).

27 Dominguez, D. et al. An extensive program of periodic alternative splicing linked to cell cycle progression. Elife 5, doi:10.7554/eLife.10288 e10288 [pii] (2016).

28 Fedorov, O. et al. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Chem Biol 18, 67-76, doi:10.1016/j.chembiol.2010.11.009 S1074-5521(10)00444-8 [pii] (2011).

29 Sako, Y. et al. Development of an orally available inhibitor of CLK1 for skipping a mutated dystrophin exon in Duchenne muscular dystrophy. Sci Rep 7, 46126, doi:10.1038/srep46126 srep46126 [pii] (2017).

30 Muraki, M. et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 279, 24246-24254, doi:10.1074/jbc.M314298200 M314298200 [pii] (2004).

31 Hsu, T. Y. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384-388, doi:10.1038/nature14985 nature14985 [pii] (2015).

32 Koh, C. M. et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96-100, doi:10.1038/nature14351 nature14351 [pii] (2015).

33 Dang, C. V. MYC on the path to cancer. Cell 149, 22-35, doi:10.1016/j.cell.2012.03.003 S0092-8674(12)00296-6 [pii] (2012).

34 Kress, T. R., Sabo, A. & Amati, B. MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15, 593-607, doi:10.1038/nrc3984 nrc3984 [pii] (2015).

35 Cermelli, S., Jang, I. S., Bernard, B. & Grandori, C. Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med 4, doi:10.1101/cshperspect.a014209 a014209 [pii] 4/3/a014209 [pii] (2014).

36 Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target cMyc. Cell 146, 904-917, doi:10.1016/j.cell.2011.08.017 S0092-8674(11)00943-3 [pii] (2011).

37 Horiuchi, D. et al. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat Med 22, 1321-1329, doi:10.1038/nm.4213 nm.4213 [pii] (2016).

38 Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med 22, 427-432, doi:10.1038/nm.4055 nm.4055 [pii] (2016).

39 Kessler, J. D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348-353, doi:10.1126/science.1212728 science.1212728 [pii] (2012).

40 Araki, S. et al. Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLoS One 10, e0116929, doi:10.1371/journal.pone.0116929 PONE-D-14-35737 [pii] (2015).

41 Rodgers, J. T., Haas, W., Gygi, S. P. & Puigserver, P. Cdc2-like kinase 2 is an insulinregulated suppressor of hepatic gluconeogenesis. Cell Metab 11, 23-34, doi:10.1016/j.cmet.2009.11.006 S1550-4131(09)00370-2 [pii] (2010).

42 Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7, 1009-1015, doi:10.1038/nmeth.1528 nmeth.1528 [pii] (2010).

43 Yoshida, T. et al. CLK2 Is an Oncogenic Kinase and Splicing Regulator in Breast Cancer. Cancer Res 75, 1516-1526, doi:10.1158/0008-5472.CAN-14-2443 0008-5472.CAN-14-2443 [pii] (2015).

44 Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607, doi:10.1038/nature11003 nature11003 [pii] (2012).

45 Malynn, B. A. et al. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev 14, 1390-1399 (2000).

46 Bidinosti, M. et al. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 351, 1199-1203, doi:10.1126/science.aad5487 science.aad5487 [pii] (2016).

47 Funnell, T. et al. CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor. Nat Commun 8, 7, doi:10.1038/s41467-016-0008- 7 10.1038/s41467-016-0008-7 [pii] (2017).

48 Das, S., Anczukow, O., Akerman, M. & Krainer, A. R. Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Rep 1, 110-117, doi:10.1016/j.celrep.2011.12.001 (2012).

49 Butt, A. J. et al. The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome. Breast Cancer Res 10, R28, doi:10.1186/bcr1985 bcr1985 [pii] (2008).

50 Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346-352, doi:10.1038/nature10983 nature10983 [pii] (2012).

51 Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7, 11479, doi:10.1038/ncomms11479 ncomms11479 [pii] (2016).

52 Fernandez-Martinez, P., Zahonero, C. & Sanchez-Gomez, P. DYRK1A: the double-edged kinase as a protagonist in cell growth and tumorigenesis. Mol Cell Oncol 2, e970048, doi:10.4161/23723548.2014.970048 970048 [pii] (2015).

53 Haferlach, T. et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28, 241-247, doi:10.1038/leu.2013.336 leu2013336 [pii] (2014).

54 Shirai, C. L. et al. Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun 8, 14060, doi:10.1038/ncomms14060 ncomms14060 [pii] (2017).

55 Lee, S. C. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med 22, 672-678, doi:10.1038/nm.4097 nm.4097 [pii] (2016).

56 Anczukow, O. et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 19, 220-228, doi:10.1038/nsmb.2207 nsmb.2207 [pii] (2012).

57 Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235-239, doi:10.1038/nature09727 nature09727 [pii] (2011).

58 Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189-195, doi:10.1038/nature09730 nature09730 [pii] (2011).

59 Xu, F. et al. Whole-exome and targeted sequencing identify ROBO1 and ROBO2 mutations as progression-related drivers in myelodysplastic syndromes. Nat Commun 6, 8806, doi:10.1038/ncomms9806 ncomms9806 [pii] (2015).

60 Kurosawa, N., Yoshioka, M., Fujimoto, R., Yamagishi, F. & Isobe, M. Rapid production of antigen-specific monoclonal antibodies from a variety of animals. BMC Biol 10, 80, doi:10.1186/1741-7007-10-80 1741-7007-10-80 [pii] (2012).

61 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498-2504, doi:10.1101/gr.1239303 13/11/2498 [pii] (2003).

62 Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6, pl1, doi:10.1126/scisignal.2004088 scisignal.2004088 [pii] (2013).

63 Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401-404, doi:10.1158/2159- 8290.CD-12-0095 2/5/401 [pii] (2012).

64 Chakravarty, D. et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol 2017, doi:10.1200/PO.17.00011 (2017).

65 Muller, W. J., Sinn, E., Pattengale, P. K., Wallace, R. & Leder, P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54, 105-115, doi:0092-8674(88)90184-5 [pii] (1988).

66 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646- 674, doi:10.1016/j.cell.2011.02.013 (2011).

67 McGranahan, N. & Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 168, 613-628, doi:10.1016/j.cell.2017.01.018 (2017).

68 Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338-345, doi:10.1038/nature12625 (2013).

69 Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071-1078, doi:10.1038/nature08467 (2009).

70 Kotsantis, P. et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun 7, 13087, doi:10.1038/ncomms13087 (2016).

71 Dobbelstein, M. & Sorensen, C. S. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov 14, 405-423, doi:10.1038/nrd4553 (2015).

72 Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat Cell Biol 16, 2-9, doi:10.1038/ncb2897 (2014).

73 Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-913, doi:10.1038/nature03485 (2005).

74 Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355, doi:10.1126/science.1140735 (2008).

75 Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870, doi:10.1038/nature03482 (2005).

76 Koltun, E. S. et al. Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorganic & medicinal chemistry letters 22, 3727-3731, doi:10.1016/j.bmcl.2012.04.024 (2012).

77 Montagnoli, A. et al. A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat Chem Biol 4, 357-365, doi:10.1038/nchembio.90 nchembio.90 [pii] (2008).

78 Harrington, P. E. et al. The optimization of aminooxadiazoles as orally active inhibitors of Cdc7. Bioorganic & medicinal chemistry letters 23, 6396-6400, doi:10.1016/j.bmcl.2013.09.055 S0960-894X(13)01129-3 [pii] (2013).

79 Reichelt, A. et al. Synthesis and structure-activity relationship of trisubstituted thiazoles as Cdc7 kinase inhibitors. Eur J Med Chem 80, 364-382, doi:10.1016/j.ejmech.2014.04.013 S0223-5234(14)00332-8 [pii] (2014).

80 Kurasawa, O. et al. Identification of a new class of potent Cdc7 inhibitors designed by putative pharmacophore model: Synthesis and biological evaluation of 2,3- dihydrothieno[3,2-d]pyrimidin-4(1H)-ones. Bioorg Med Chem 25, 2133-2147, doi:10.1016/j.bmc.2017.02.021 (2017).

81 Kurasawa, O. et al. 2-Aminomethylthieno[3,2-d]pyrimidin-4(3H)-ones bearing 3- methylpyrazole hinge binding moiety: Highly potent, selective, and time-dependent inhibitors of Cdc7 kinase. Bioorg Med Chem 25, 3658-3670, doi:10.1016/j.bmc.2017.04.044 (2017).

82 Irie, T. et al. Discovery of novel furanone derivatives as potent Cdc7 kinase inhibitors. Eur J Med Chem 130, 406-418, doi:10.1016/j.ejmech.2017.02.030 (2017).

83 Jiang, W., McDonald, D., Hope, T. J. & Hunter, T. Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication. EMBO J 18, 5703-5713, doi:10.1093/emboj/18.20.5703 (1999).

84 Cho, W. H., Lee, Y. J., Kong, S. I., Hurwitz, J. & Lee, J. K. CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proc Natl Acad Sci U S A 103, 11521-11526, doi:10.1073/pnas.0604990103 (2006).

85 Montagnoli, A., Moll, J. & Colotta, F. Targeting cell division cycle 7 kinase: a new approach for cancer therapy. Clin Cancer Res 16, 4503-4508, doi:10.1158/1078- 0432.CCR-10-0185 (2010).

86 Yamada, M., Masai, H. & Bartek, J. Regulation and roles of Cdc7 kinase under replication stress. Cell Cycle 13, 1859-1866, doi:10.4161/cc.29251 (2014).

87 Kulkarni, A. A. et al. Cdc7 kinase is a predictor of survival and a novel therapeutic target in epithelial ovarian carcinoma. Clin Cancer Res 15, 2417-2425, doi:10.1158/1078- 0432.CCR-08-1276 (2009).

88 Montagnoli, A. et al. Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J Biol Chem 281, 10281-10290, doi:10.1074/jbc.M512921200 (2006).

89 Tsuji, T., Ficarro, S. B. & Jiang, W. Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells. Mol Biol Cell 17, 4459-4472, doi:10.1091/mbc.E06-03-0241 (2006).

90 Yin, T. et al. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol Cancer Ther 13, 1442-1456, doi:10.1158/1535- 7163.MCT-13-0849 (2014).

91 Petermann, E., Woodcock, M. & Helleday, T. Chk1 promotes replication fork progression by controlling replication initiation. Proc Natl Acad Sci U S A 107, 16090-16095, doi:10.1073/pnas.1005031107 (2010).

92 Moiseeva, T. et al. ATR kinase inhibition induces unscheduled origin firing through a Cdc7-dependent association between GINS and And-1. Nat Commun 8, 1392, doi:10.1038/s41467-017-01401-x (2017).

93 Rainey, M. D., Quachthithu, H., Gaboriau, D. & Santocanale, C. DNA Replication Dynamics and Cellular Responses to ATP Competitive CDC7 Kinase Inhibitors. ACS Chem Biol 12, 1893-1902, doi:10.1021/acschembio.7b00117 (2017).

94 Ohashi, A. et al. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity. PLoS One 10, e0144675, doi:10.1371/journal.pone.0144675 (2015).

95 Montagnoli, A. et al. Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res 64, 7110-7116, doi:10.1158/0008-5472.CAN-04- 1547 (2004).

96 Reaper, P. M. et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7, 428-430, doi:10.1038/nchembio.573 (2011).

97 O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33, 497-501, doi:10.1038/ng1129 (2003).

98 Sluder, G. & Nordberg, J. J. The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol 16, 49-54, doi:10.1016/j.ceb.2003.11.006 (2004).

99 Hemerly, A. S., Prasanth, S. G., Siddiqui, K. & Stillman, B. Orc1 controls centriole and centrosome copy number in human cells. Science 323, 789-793, doi:10.1126/science.1166745 (2009).

100 Ferguson, R. L. & Maller, J. L. Cyclin E-dependent localization of MCM5 regulates centrosome duplication. J Cell Sci 121, 3224-3232, doi:10.1242/jcs.034702 (2008).

101 Ferguson, R. L., Pascreau, G. & Maller, J. L. The cyclin A centrosomal localization sequence recruits MCM5 and Orc1 to regulate centrosome reduplication. J Cell Sci 123, 2743-2749, doi:10.1242/jcs.073098 (2010).

102 Lu, F., Lan, R., Zhang, H., Jiang, Q. & Zhang, C. Geminin is partially localized to the centrosome and plays a role in proper centrosome duplication. Biol Cell 101, 273-285, doi:10.1042/BC20080109 (2009).

103 Hossain, M. & Stillman, B. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Genes Dev 26, 1797-1810, doi:10.1101/gad.197178.112 (2012).

104 Xu, X. et al. DNA replication licensing factor Cdc6 and Plk4 kinase antagonistically regulate centrosome duplication via Sas-6. Nat Commun 8, 15164, doi:10.1038/ncomms15164 (2017).

105 McDonald, E. R., 3rd et al. Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell 170, 577-592 e510, doi:10.1016/j.cell.2017.07.005 (2017).

106 Ohashi, A. et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun 6, 7668, doi:10.1038/ncomms8668 (2015).

1 Dugger, S. A., Platt, A. & Goldstein, D. B. Drug development in the era of precision medicine. Nat Rev Drug Discov 17, 183-196, doi:10.1038/nrd.2017.226 (2018).

2 Ashley, E. A. Towards precision medicine. Nat Rev Genet 17, 507-522, doi:10.1038/nrg.2016.86 (2016).

3 Janne, P. A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372, 1689-1699, doi:10.1056/NEJMoa1411817 (2015).

4 Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368, 2385-2394, doi:10.1056/NEJMoa1214886 (2013).

5 Dang, C. V., Reddy, E. P., Shokat, K. M. & Soucek, L. Drugging the 'undruggable' cancer targets. Nat Rev Cancer 17, 502-508, doi:10.1038/nrc.2017.36 (2017).

6 Huang, A., Garraway, L. A., Ashworth, A. & Weber, B. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov, doi:10.1038/s41573-019-0046-z (2019).

7 Nagel, R., Semenova, E. A. & Berns, A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep 17, 1516-1531, doi:10.15252/embr.201643030 (2016).

8 McLornan, D. P., List, A. & Mufti, G. J. Applying synthetic lethality for the selective targeting of cancer. N Engl J Med 371, 1725-1735, doi:10.1056/NEJMra1407390 (2014).

9 Mirza, M. R. et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N Engl J Med 375, 2154-2164, doi:10.1056/NEJMoa1611310 (2016).

10 Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913-917, doi:10.1038/nature03443 (2005).

11 Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64-69, doi:10.1038/nature10496 nature10496 [pii] (2011).

12 Dvinge, H., Kim, E., Abdel-Wahab, O. & Bradley, R. K. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer 16, 413-430, doi:10.1038/nrc.2016.51 (2016).

13 Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11, 220-228, doi:10.1038/nrm2858 (2010).

14 Chabot, B. & Shkreta, L. Defective control of pre-messenger RNA splicing in human disease. J Cell Biol 212, 13-27, doi:10.1083/jcb.201510032 jcb.201510032 [pii] (2016).

15 Vuong, C. K., Black, D. L. & Zheng, S. The neurogenetics of alternative splicing. Nat Rev Neurosci 17, 265-281, doi:10.1038/nrn.2016.27 nrn.2016.27 [pii] (2016).

16 Inoue, D., Bradley, R. K. & Abdel-Wahab, O. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Genes Dev 30, 989-1001, doi:10.1101/gad.278424.116 30/9/989 [pii] (2016).

17 Papaemmanuil, E. et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med 374, 2209-2221, doi:10.1056/NEJMoa1516192 (2016).

18 Donaires, F. S. et al. Splicing factor SF3B1 mutations and ring sideroblasts in myelodysplastic syndromes: a Brazilian cohort screening study. Rev Bras Hematol Hemoter 38, 320-324, doi:S1516-8484(16)30053-6 [pii] 10.1016/j.bjhh.2016.06.002 (2016).

19 Meggendorfer, M. et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood 120, 3080-3088, doi:10.1182/blood-2012-01-404863 blood-2012-01-404863 [pii] (2012).

20 Salton, M. & Misteli, T. Small Molecule Modulators of Pre-mRNA Splicing in Cancer Therapy. Trends Mol Med 22, 28-37, doi:10.1016/j.molmed.2015.11.005 S1471-4914(15)00213-0 [pii] (2016).

21 Lee, S. C. & Abdel-Wahab, O. Therapeutic targeting of splicing in cancer. Nat Med 22, 976-986, doi:10.1038/nm.4165 nm.4165 [pii] (2016).

22 Bonnal, S., Vigevani, L. & Valcarcel, J. The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov 11, 847-859, doi:10.1038/nrd3823 nrd3823 [pii] (2012).

23 Corkery, D. P., Holly, A. C., Lahsaee, S. & Dellaire, G. Connecting the speckles: Splicing kinases and their role in tumorigenesis and treatment response. Nucleus 6, 279-288, doi:10.1080/19491034.2015.1062194 (2015).

24 Colwill, K. et al. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J 15, 265-275 (1996).

25 Ghosh, G. & Adams, J. A. Phosphorylation mechanism and structure of serine-arginine protein kinases. FEBS J 278, 587-597, doi:10.1111/j.1742-4658.2010.07992.x (2011).

26 Singh, R. K. & Cooper, T. A. Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 18, 472-482, doi:10.1016/j.molmed.2012.06.006 (2012).

27 Dominguez, D. et al. An extensive program of periodic alternative splicing linked to cell cycle progression. Elife 5, doi:10.7554/eLife.10288 e10288 [pii] (2016).

28 Fedorov, O. et al. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Chem Biol 18, 67-76, doi:10.1016/j.chembiol.2010.11.009 S1074-5521(10)00444-8 [pii] (2011).

29 Sako, Y. et al. Development of an orally available inhibitor of CLK1 for skipping a mutated dystrophin exon in Duchenne muscular dystrophy. Sci Rep 7, 46126, doi:10.1038/srep46126 srep46126 [pii] (2017).

30 Muraki, M. et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 279, 24246-24254, doi:10.1074/jbc.M314298200 M314298200 [pii] (2004).

31 Hsu, T. Y. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384-388, doi:10.1038/nature14985 nature14985 [pii] (2015).

32 Koh, C. M. et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96-100, doi:10.1038/nature14351 nature14351 [pii] (2015).

33 Dang, C. V. MYC on the path to cancer. Cell 149, 22-35, doi:10.1016/j.cell.2012.03.003 S0092-8674(12)00296-6 [pii] (2012).

34 Kress, T. R., Sabo, A. & Amati, B. MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15, 593-607, doi:10.1038/nrc3984 nrc3984 [pii] (2015).

35 Cermelli, S., Jang, I. S., Bernard, B. & Grandori, C. Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med 4, doi:10.1101/cshperspect.a014209 a014209 [pii] 4/3/a014209 [pii] (2014).

36 Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target cMyc. Cell 146, 904-917, doi:10.1016/j.cell.2011.08.017 S0092-8674(11)00943-3 [pii] (2011).

37 Horiuchi, D. et al. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat Med 22, 1321-1329, doi:10.1038/nm.4213 nm.4213 [pii] (2016).

38 Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med 22, 427-432, doi:10.1038/nm.4055 nm.4055 [pii] (2016).

39 Kessler, J. D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348-353, doi:10.1126/science.1212728 science.1212728 [pii] (2012).

40 Araki, S. et al. Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLoS One 10, e0116929, doi:10.1371/journal.pone.0116929 PONE-D-14-35737 [pii] (2015).

41 Rodgers, J. T., Haas, W., Gygi, S. P. & Puigserver, P. Cdc2-like kinase 2 is an insulinregulated suppressor of hepatic gluconeogenesis. Cell Metab 11, 23-34, doi:10.1016/j.cmet.2009.11.006 S1550-4131(09)00370-2 [pii] (2010).

42 Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7, 1009-1015, doi:10.1038/nmeth.1528 nmeth.1528 [pii] (2010).

43 Yoshida, T. et al. CLK2 Is an Oncogenic Kinase and Splicing Regulator in Breast Cancer. Cancer Res 75, 1516-1526, doi:10.1158/0008-5472.CAN-14-2443 0008-5472.CAN-14-2443 [pii] (2015).

44 Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607, doi:10.1038/nature11003 nature11003 [pii] (2012).

45 Malynn, B. A. et al. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev 14, 1390-1399 (2000).

46 Bidinosti, M. et al. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 351, 1199-1203, doi:10.1126/science.aad5487 science.aad5487 [pii] (2016).

47 Funnell, T. et al. CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor. Nat Commun 8, 7, doi:10.1038/s41467-016-0008- 7 10.1038/s41467-016-0008-7 [pii] (2017).

48 Das, S., Anczukow, O., Akerman, M. & Krainer, A. R. Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Rep 1, 110-117, doi:10.1016/j.celrep.2011.12.001 (2012).

49 Butt, A. J. et al. The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome. Breast Cancer Res 10, R28, doi:10.1186/bcr1985 bcr1985 [pii] (2008).

50 Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346-352, doi:10.1038/nature10983 nature10983 [pii] (2012).

51 Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7, 11479, doi:10.1038/ncomms11479 ncomms11479 [pii] (2016).

52 Fernandez-Martinez, P., Zahonero, C. & Sanchez-Gomez, P. DYRK1A: the double-edged kinase as a protagonist in cell growth and tumorigenesis. Mol Cell Oncol 2, e970048, doi:10.4161/23723548.2014.970048 970048 [pii] (2015).

53 Haferlach, T. et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28, 241-247, doi:10.1038/leu.2013.336 leu2013336 [pii] (2014).

54 Shirai, C. L. et al. Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun 8, 14060, doi:10.1038/ncomms14060 ncomms14060 [pii] (2017).

55 Lee, S. C. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med 22, 672-678, doi:10.1038/nm.4097 nm.4097 [pii] (2016).

56 Anczukow, O. et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 19, 220-228, doi:10.1038/nsmb.2207 nsmb.2207 [pii] (2012).

57 Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235-239, doi:10.1038/nature09727 nature09727 [pii] (2011).

58 Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189-195, doi:10.1038/nature09730 nature09730 [pii] (2011).

59 Xu, F. et al. Whole-exome and targeted sequencing identify ROBO1 and ROBO2 mutations as progression-related drivers in myelodysplastic syndromes. Nat Commun 6, 8806, doi:10.1038/ncomms9806 ncomms9806 [pii] (2015).

60 Kurosawa, N., Yoshioka, M., Fujimoto, R., Yamagishi, F. & Isobe, M. Rapid production of antigen-specific monoclonal antibodies from a variety of animals. BMC Biol 10, 80, doi:10.1186/1741-7007-10-80 1741-7007-10-80 [pii] (2012).

61 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498-2504, doi:10.1101/gr.1239303 13/11/2498 [pii] (2003).

62 Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6, pl1, doi:10.1126/scisignal.2004088 scisignal.2004088 [pii] (2013).

63 Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401-404, doi:10.1158/2159- 8290.CD-12-0095 2/5/401 [pii] (2012).

64 Chakravarty, D. et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol 2017, doi:10.1200/PO.17.00011 (2017).

65 Muller, W. J., Sinn, E., Pattengale, P. K., Wallace, R. & Leder, P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54, 105-115, doi:0092-8674(88)90184-5 [pii] (1988).

66 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646- 674, doi:10.1016/j.cell.2011.02.013 (2011).

67 McGranahan, N. & Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 168, 613-628, doi:10.1016/j.cell.2017.01.018 (2017).

68 Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338-345, doi:10.1038/nature12625 (2013).

69 Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071-1078, doi:10.1038/nature08467 (2009).

70 Kotsantis, P. et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun 7, 13087, doi:10.1038/ncomms13087 (2016).

71 Dobbelstein, M. & Sorensen, C. S. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov 14, 405-423, doi:10.1038/nrd4553 (2015).

72 Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat Cell Biol 16, 2-9, doi:10.1038/ncb2897 (2014).

73 Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-913, doi:10.1038/nature03485 (2005).

74 Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355, doi:10.1126/science.1140735 (2008).

75 Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870, doi:10.1038/nature03482 (2005).

76 Koltun, E. S. et al. Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorganic & medicinal chemistry letters 22, 3727-3731, doi:10.1016/j.bmcl.2012.04.024 (2012).

77 Montagnoli, A. et al. A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat Chem Biol 4, 357-365, doi:10.1038/nchembio.90 nchembio.90 [pii] (2008).

78 Harrington, P. E. et al. The optimization of aminooxadiazoles as orally active inhibitors of Cdc7. Bioorganic & medicinal chemistry letters 23, 6396-6400, doi:10.1016/j.bmcl.2013.09.055 S0960-894X(13)01129-3 [pii] (2013).

79 Reichelt, A. et al. Synthesis and structure-activity relationship of trisubstituted thiazoles as Cdc7 kinase inhibitors. Eur J Med Chem 80, 364-382, doi:10.1016/j.ejmech.2014.04.013 S0223-5234(14)00332-8 [pii] (2014).

80 Kurasawa, O. et al. Identification of a new class of potent Cdc7 inhibitors designed by putative pharmacophore model: Synthesis and biological evaluation of 2,3- dihydrothieno[3,2-d]pyrimidin-4(1H)-ones. Bioorg Med Chem 25, 2133-2147, doi:10.1016/j.bmc.2017.02.021 (2017).

81 Kurasawa, O. et al. 2-Aminomethylthieno[3,2-d]pyrimidin-4(3H)-ones bearing 3- methylpyrazole hinge binding moiety: Highly potent, selective, and time-dependent inhibitors of Cdc7 kinase. Bioorg Med Chem 25, 3658-3670, doi:10.1016/j.bmc.2017.04.044 (2017).

82 Irie, T. et al. Discovery of novel furanone derivatives as potent Cdc7 kinase inhibitors. Eur J Med Chem 130, 406-418, doi:10.1016/j.ejmech.2017.02.030 (2017).

83 Jiang, W., McDonald, D., Hope, T. J. & Hunter, T. Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication. EMBO J 18, 5703-5713, doi:10.1093/emboj/18.20.5703 (1999).

84 Cho, W. H., Lee, Y. J., Kong, S. I., Hurwitz, J. & Lee, J. K. CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proc Natl Acad Sci U S A 103, 11521-11526, doi:10.1073/pnas.0604990103 (2006).

85 Montagnoli, A., Moll, J. & Colotta, F. Targeting cell division cycle 7 kinase: a new approach for cancer therapy. Clin Cancer Res 16, 4503-4508, doi:10.1158/1078- 0432.CCR-10-0185 (2010).

86 Yamada, M., Masai, H. & Bartek, J. Regulation and roles of Cdc7 kinase under replication stress. Cell Cycle 13, 1859-1866, doi:10.4161/cc.29251 (2014).

87 Kulkarni, A. A. et al. Cdc7 kinase is a predictor of survival and a novel therapeutic target in epithelial ovarian carcinoma. Clin Cancer Res 15, 2417-2425, doi:10.1158/1078- 0432.CCR-08-1276 (2009).

88 Montagnoli, A. et al. Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J Biol Chem 281, 10281-10290, doi:10.1074/jbc.M512921200 (2006).

89 Tsuji, T., Ficarro, S. B. & Jiang, W. Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells. Mol Biol Cell 17, 4459-4472, doi:10.1091/mbc.E06-03-0241 (2006).

90 Yin, T. et al. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol Cancer Ther 13, 1442-1456, doi:10.1158/1535- 7163.MCT-13-0849 (2014).

91 Petermann, E., Woodcock, M. & Helleday, T. Chk1 promotes replication fork progression by controlling replication initiation. Proc Natl Acad Sci U S A 107, 16090-16095, doi:10.1073/pnas.1005031107 (2010).

92 Moiseeva, T. et al. ATR kinase inhibition induces unscheduled origin firing through a Cdc7-dependent association between GINS and And-1. Nat Commun 8, 1392, doi:10.1038/s41467-017-01401-x (2017).

93 Rainey, M. D., Quachthithu, H., Gaboriau, D. & Santocanale, C. DNA Replication Dynamics and Cellular Responses to ATP Competitive CDC7 Kinase Inhibitors. ACS Chem Biol 12, 1893-1902, doi:10.1021/acschembio.7b00117 (2017).

94 Ohashi, A. et al. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity. PLoS One 10, e0144675, doi:10.1371/journal.pone.0144675 (2015).

95 Montagnoli, A. et al. Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res 64, 7110-7116, doi:10.1158/0008-5472.CAN-04- 1547 (2004).

96 Reaper, P. M. et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7, 428-430, doi:10.1038/nchembio.573 (2011).

97 O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33, 497-501, doi:10.1038/ng1129 (2003).

98 Sluder, G. & Nordberg, J. J. The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol 16, 49-54, doi:10.1016/j.ceb.2003.11.006 (2004).

99 Hemerly, A. S., Prasanth, S. G., Siddiqui, K. & Stillman, B. Orc1 controls centriole and centrosome copy number in human cells. Science 323, 789-793, doi:10.1126/science.1166745 (2009).

100 Ferguson, R. L. & Maller, J. L. Cyclin E-dependent localization of MCM5 regulates centrosome duplication. J Cell Sci 121, 3224-3232, doi:10.1242/jcs.034702 (2008).

101 Ferguson, R. L., Pascreau, G. & Maller, J. L. The cyclin A centrosomal localization sequence recruits MCM5 and Orc1 to regulate centrosome reduplication. J Cell Sci 123, 2743-2749, doi:10.1242/jcs.073098 (2010).

102 Lu, F., Lan, R., Zhang, H., Jiang, Q. & Zhang, C. Geminin is partially localized to the centrosome and plays a role in proper centrosome duplication. Biol Cell 101, 273-285, doi:10.1042/BC20080109 (2009).

103 Hossain, M. & Stillman, B. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Genes Dev 26, 1797-1810, doi:10.1101/gad.197178.112 (2012).

104 Xu, X. et al. DNA replication licensing factor Cdc6 and Plk4 kinase antagonistically regulate centrosome duplication via Sas-6. Nat Commun 8, 15164, doi:10.1038/ncomms15164 (2017).

105 McDonald, E. R., 3rd et al. Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell 170, 577-592 e510, doi:10.1016/j.cell.2017.07.005 (2017).

106 Ohashi, A. et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun 6, 7668, doi:10.1038/ncomms8668 (2015).

参考文献をもっと見る