リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「高速Si フォトニック結晶光変調器とその応用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

高速Si フォトニック結晶光変調器とその応用

雛倉 陽介 横浜国立大学 DOI:info:doi/10.18880/00013476

2020.11.19

概要

近年, データセンタの大規模化と大容量化が進行するとともに, 機器間の電気配線を光配線に置き換える, 光インターコネクションの導入が始まっている.データセンタでは大量のサーバーやイーサネットスイッチが相互接続されるため, 安価な光トランシーバが大量に必要になる.そのための光集積技術として期待されているのがシリコン(Si)フォトニクスである.SiフォトニクスはSi on insulator(SOI)基板上に相補型金属酸化膜半導体(CMOS)プロセスで微細な光回路製作する技術で, 低コスト大規模生産が可能であるという大きな利点がある.データセンタ向け光トランシーバへの要求性能は, イーサネット規格によって定められている.次世代のデータセンタに適用されることが見込まれるIEEE802.3bsでは, 400Gbpsイーサネットの光トランシーバの仕様を, 例えば, 2シンボル×50Gbaud×4レーン, 伝送距離500mとして規定している.しかし, 現在の主要技術である垂直共振器面発光レーザの直接変調とマルチモードファイバを用いた方式では, このような高いビットレートと比較的長い距離での伝送は困難である.一方で, 外部光変調器とシングルモードファイバを備えたSiフォトニクストランシーバはより有望な解決策であり, Si光変調器がそのキーデバイスある.光インターコネクト向けの光トランシーバとそこに用いられるSi光変調器には, 小型化, 低動作電圧, 低消費電力, 低光損失, 高速化といった多くの性能が同時に要求される.しかしSiは変調の動作原理となるキャリアプラズマ分散が小さいため, そのサイズと性能のトレードオフ関係は厳しく制約される.例えば, マッハツェンダー型変調器(MZM)はキャリアプラズマ分散による十分な位相変化ΔΦを得るために数mmの長い移相器を必要とするが, 一方で, 共振を利用した小型なマイクロリング変調器は動作波長帯域が極端に狭く, 環境温度変化に対して不安定であるという課題がある.

 この制約を破る一つのアプローチがスローライトの利用である.小さな群速度vg(または大きな群屈折率ng≡c/vg)を持つスローライトは光-物質感相互作用を増大する.これは微細な周期構造体であるフォトニック結晶(PhC)を用いた, フォトニック結晶導波路(PCW)で容易に生成が可能である.MZMの移相器にスローライトを利用した場合, 単位長さ当たりのΔΦが増大されるため, 移相器の小型化に寄与する.またPCWの特定の円孔列の位置をシフトさせたLSPCWは広い波長範囲~20nmで一定のngをもつ低分散(LD)スローライトを生成するため, 広い動作波長帯域も同時に確保することができる.本研究室では移相器長L=50–200μmの小型Si PCW/LSCPW MZM変調器を研究しており, これまでに, LDスローライトを利用した19~124℃の範囲でのアサーマル動作や, 波長範囲Δλ=16.9nmでの一定のアイ開口が観測されているが, 明瞭なアイ開口が得られたビットレートは32Gbpsにとどまっている.そのため400Gイーサネットやさらに次世代の規格で求められる50Gbps以上の高いビットレートでの動作が可能になるように, 周波数応答の改善が必要である.

 本研究は, Si LSPCW MZMの周波数応答を改善し, ビットレート50Gbps以上での高速動作を実証することを大きな目標とする.このデバイスの周波数応答は電気光学(EO)位相不整合によって制限されている.この対策としてメアンダライン電極を導入し, その効果を理論と実験の両面から示す.またスローライト効果によるΔΦ増大や, 広い波長範囲の動作についてさらに詳細に検証し, MZMへのスローライトを適用する利点をより明確に示す.さらに新たな応用先として, 周波数変調連続波(FMCW)方式光レーダーで必要となる周波数掃引変調についても検討する.

 第2章ではマルチプロジェクトウェハサービスを用いたデバイス作製と, そこで用いられるCMOS互換プロセスの概要について述べる.このプロセスに含まれるフォトリソグラフィに使用するフォトマスクは, デバイスレイアウトのCADデータからGDSIIストリーム形式で作成した.またSi LSPCW MZMの基本的な構成要素であるSi導波路, スポットサイズ変換器(SSC), 多モード干渉(MMI)カプラ, LSPCW, 移相器のp-n接合の設計についてもここで説明する.Siワイヤ導波路, SSC, MMIカプラには本研究室で最適化された基本設計を採用した.一方, LSPCWとp-n接合は本研究の目的に合わせて設計し, シミュレーションによりその基本的な特性を確認した.LSPCWのフォトニックバンドとngスペクトルは時間領域有限差分(FDTD)法を用いたシミュレーションにより計算され, これをもとにLSPCWの構造パラメータを決定した.p-n接合に関しては, そのキャリア分布や電圧に対するその挙動, キャリア空乏領域とスローライトモードの重なり具合を確認した.製作したデバイスの基本的な光学特性である光透過スペクトルとngスペクトルを評価するための測定系についてもここで述べる.

 第3章ではスローライト効果による変調効率の向上について実験を通して議論する.波長に対してngが20–80の範囲で緩やかに変化する高分散デバイスを設計, 作製し, これを用いてngを変化させながら25Gbps変調実験を行った.駆動電圧Vpp=1.75V, バイアス電圧VDC=–0.9Vに対して観測されたアイパターンの消光比(ER)は, ngの増加に伴って増大した.ERから推定されたΔΦは理論的な予測の通り, ngとほぼ比例関係にあることを確認した.つまりngが増大してもスローライトモードと屈折率変化領域との重なり効率は低下せず, スローライト効果の有効性が維持されることが示された.さらに設計が異なる5つのLSPCWデバイス(L=90μm)でLDスローライトによる変調効率の増大を確認した.5つのデバイスはng=22, 26, 31, 33, 38を示し, ここでもngにほぼ比例してΔΦが増大した.特にng=33のデバイスで小さな半波長電圧-移相器長積VπL=0.22V·cmが得られた.

 第4章ではSi LSPCW MZMの広い波長範囲での周波数応答, ER, BERの測定と調査について議論する.設計, 作製した3列目シフトLSPCWデバイスは, 広いLD帯域21nmを示した.周波数応答測定では, VDC=–1.1V印可時に波長範囲λ=1550–1556nmで遮断周波数f3dB=18GHzを観測した.この値はp-n接合のRC時定数やEO位相不整合だけでなく, 望まれないRF反射の影響も受けたものである.またΔλ=16nmでアイパターンを観測したところ, 消光比ERは1dBの幅をもって変動した.BER測定では受光パワーPr₌-4dBmのときすべての測定波長でエラーフリーな伝送が観測されたものの, それより小さいPrではERの変動に対応してエラーフリーとなるPrも約1dB変動した.つまりPrかERに対して1dBのマージンを与えれば広いΔλ=16nmで安定したエラーフリー動作が可能であることが分かった.

 第5章では周波数応答の改善と高速動作の実証に取り組んだ.はじめに高分散デバイスを用いてngに対する周波数応答スペクトルを測定したところ, ngが大きくなるほど周波数応答が劣化し, そのf3dBも低下することが観測された.これはスローライトと変調に用いるRF信号の間のEO位相不整合によるものである.そこでRF信号を迂回, 遅延させ, EO位相不整合を軽減するメアンダライン電極を導入した.その設計のために, 進行波電極モデルと分布定数回路モデルを構築し, 理論的な解析を行ったところ, メアンダライン長Ldに加えてRF反射の位相を制御するΓLも重要な要素であることがわかった.またLd=425μm, ΓL=-0.5のとき非常に高いf3dB=56GHzが得られると予測された.この製作と実証実験の前に, 第4章で測定した周波数応答に現れたディップとピークを除去することを試みた.これらの望まれないディップとピークはコプレーナ伝送路内の2つのグランド(G)電極間の電位非平衡により励起される結合スロットラインモードに起因するものである.そこで2つのG電極を共通化した構造を導入することで, その励振を抑制し, ディップとピークを除去した.このようなG共通化構造を取り入れた上で, L=200μmのメアンダライン電極デバイスを製作, 周波数特性を測定した.実際のデバイスにおいてΓLは電極端に負荷する終端電極によって決定される.50Ωの抵抗で終端した通常電極デバイスはVDC=-2V印可時にf3dB=19GHzを示した一方で, メアンダライン電極デバイスではf3dB>30GHz程度が観測された.さらに20Ω終端したメアンダライン電極デバイスでは, より高いf3dB=38GHzが得られた.DC変調実験ではそのVπLは0.44V∙cmと評価された.一方, 高速変調実験においては, 50Ω終端メアンダライン電極素子に対してVpp=1, 2Vを印可したとき, それぞれ, 25, 32Gbpsで非常に明瞭なアイパターンが観測された.また20Ω終端メアンダラインデバイスではVpp=3.5V印可時に50Gbpsと56Gbpsの明瞭なアイ開口が得られ、Vppを5.2Vに増加させた場合はさらに高速な64Gbpsでの明瞭なアイ開口が得られた.さらに1シンボル当たり2bitの情報をエンコードする4値パルス振幅変調(PAM4)実験も行った.シンボルレート20, 25, 28GbaudではPAM-4変調としては小さなVpp=3.5Vに対してアイ開口が観測されより高いシンボルレート32, 40, 50Gbaudではノイズが増加したものの, アイの形状は維持された.これらの変調を発展させ, 追加の光マルチプレクサチップを用いて波長分割多重(WDM)伝送を試みたところ, 50Gbps/chの伝送速度で明瞭なアイパターンが観測された.ただしこの実験用いた変調器はWDM用に設計されたものではないため, 波長チャネルが4チャネルに制限された.WDM専用の設計に変更すれば, 8チャネルに拡張可能, つまり合計ビットレート400GbpsのWDM伝送が可能になると期待される.

 第6章ではFMCW LiDAR向け周波数掃引変調に関する検討を行った.はじめに周波数掃引変調の基礎となる単一周波数変調を行い, 光電変換された信号の周波数スペクトルを観測した.単一周波数成分を持つスペクトルピークの線幅は1.2kHzと狭く, 十分なコヒーレント長が確保できることを確認した.さらに任意波形発生器を用いてノコギリ歯形もしくは三角形に周波数が時間的に変化する, 掃引幅3GHzの周波数掃引信号を生成し, Si LSPCW MZMで変調を行った.変調された信号の周波数スペクトルは生成された信号に対応したことから, 周波数掃引変調が行われたことを確認した.同様の信号を用いて光ファイバ系での初期的な測距実験を試みた.測距対象との距離を模擬した遅延用ファイバ長Ldelay=1002±10cmに対して, 理論値と一致するビート周波数fbeat=25.0MHzが得られた.また異なるLdelay=556.8, 2009cmに対しても対応するfbeatも観測されたことから, 初期的な測距動作が実証された.

 本研究では64Gbps動作可能なL=200mのSi PCW変調器を実証した.同時にこのデバイスに3列目LSPCWを採用することで容易に広いΔλ=16nmを持つことになる.またVπLは0.44V·cmと評価された.以上のことから400Gイーサネットやさらに次世代の規格で使用される小さなフットプリント, 低い製作コスト, 広い動作波長を持つ高速変調器として, Si LSPCW MZMの可能性を示した.またFMCW LiDARに使用される周波数掃引光源の実現可能性も示した.

この論文で使われている画像

参考文献

[1-1] B. Jalali and S. Fathpour, “Silicon photonics,” J. Light. Technol., vol. 24, no. 12, pp. 4600– 4615, Dec. 2006, doi: 10.1109/JLT.2006.885782.

[1-2] R. Soref, “The past, present, and future of silicon photonics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, 2. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA, pp. 1678–1687, Dec. 2006, doi: 10.1109/JSTQE.2006.883151.

[1-3] D. Thomson et al., “Roadmap on silicon photonics,” J. Opt., vol. 18, no. 7, p. 073003, Jul. 2016, doi: 10.1088/2040-8978/18/7/073003.

[1-4] R. A. Soref and J. P. Lorenzo, “Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components,” Electron. Lett., vol. 21, no. 21, pp. 953–954, Oct. 1985, doi: 10.1049/el:19850673.

[1-5] D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE, vol. 97, no. 7, pp. 1166–1185, Jul. 2009, doi: 10.1109/JPROC.2009.2014298.

[1-6] A. Benner, M. Ignatowski, J. Kash, D. Kuchta, and M. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev., vol. 49, no. 4–5, pp. 755–775, Sep. 2005, doi: 10.1147/rd.494.0755.

[1-7] D. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE, vol. 88, no. 6, pp. 728–749, Jun. 2000, doi: 10.1109/5.867687.

[1-8] K. Lee, D. Lim, L. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Optics Letters, vol. 26, no. 23. OPTICAL SOC AMER, 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA, pp. 1888–1890, Dec. 2001, doi: 10.1364/OL.26.001888.

[1-9] T. Lipka, O. Horn, J. Amthor, and J. Mueller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” Journal of The European Optical Society-Rapid Publications, vol. 7. SPRINGEROPEN, CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND, 2012, doi: 10.2971/jeos.2012.12033.

[1-10] R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long- wave infrared region,” Journal of Optics A-Pure and Applied Optics, vol. 8, no. 10. IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND, pp. 840–848, Oct. 2006, doi: 10.1088/1464-4258/8/10/004.

[1-11] D. Dai and S. He, “Design of an ultrashort Si-nanowaveguide-based multimode interference coupler of arbitrary shape,” Applied Optics, vol. 47, no. 1. OPTICAL SOC AMER, 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA, pp. 38–44, Jan. 2008, doi: 10.1364/AO.47.000038.

[1-12] Q. Lai, M. Bachmann, and H. Melchior, “Low-loss 1xN multimode interference couplers with homogeneous output power distributions realised in silica on Si material,” Electronics Letters, vol. 33, no. 20. IEE-INST ELEC ENG, MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND, pp. 1699–1700, Sep. 1997, doi: 10.1049/el:19971142.

[1-13] J. David Domenech, J. S. Fandino, B. Gargallo, and P. Munoz, “Arbitrary Coupling Ratio Multimode Interference Couplers in Silicon-on-Insulator,” Journal of Lightwave Technology, vol. 32, no. 14. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA, Jul. 2014, doi: 10.1109/JLT.2014.2329994.

[1-14] A. Hosseini, D. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output Formulation for Symmetrically Excited One-to-N Multimode Interference Coupler,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 1. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA, pp. 61–69, Feb. 2010, doi: 10.1109/JSTQE.2009.2032669.

[1-15] B. Little et al., “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett., vol. 10, no. 4, pp. 549–551, Apr. 1998, doi: 10.1109/68.662590.

[1-16] M. Greenberg and M. Orenstein, “Multimode Add-Drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express, vol. 13, no. 23, pp. 9381–9387, Nov. 2005, doi: 10.1364/OPEX.13.009381.

[1-17] T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. Part 2-Lett. Express Lett., vol. 43, no. 5B, pp. L673–L675, May 2004, doi: 10.1143/JJAP.43.L673.

[1-18] K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60 mu m(2) size based on Si photonic wire waveguides,” Electron. Lett., vol. 41, no. 14, pp. 801–802, Jul. 2005, doi: 10.1049/el:20051541.

[1-19] D. Ahn et al., “High performance, waveguide integrated Ge photodetectors,” Optics Express, vol. 15, no. 7. OPTICAL SOC AMER, 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA, pp. 3916–3921, Apr. 2007, doi: 10.1364/OE.15.003916.

[1-20] L. Vivien et al., “High speed and high responsivity germanium photodetector integrated in a Silicon-on-insulator microwaveguide,” Opt. Express, vol. 15, no. 15, pp. 9843–9848, Jul. 2007, doi: 10.1364/OE.15.009843.

[1-21] T. Yin et al., “31GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Optics Express, vol. 15, no. 21. OPTICAL SOC AMER, 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA, pp. 13965–13971, Oct. 2007, doi: 10.1364/OE.15.013965.

[1-22] D. J. Thomson et al., “50-Gb/s Silicon Optical Modulator,” IEEE Photonics Technol. Lett., vol. 24, no. 4, pp. 234–236, Feb. 2012, doi: 10.1109/LPT.2011.2177081.

[1-23] H. Xu et al., “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express, vol. 20, no. 14, p. 15093, Jul. 2012, doi: 10.1364/OE.20.015093.

[1-24] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, May 2005, doi: 10.1038/nature03569.

[1-25] F. Y. Gardes et al., “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express, vol. 17, no. 24, p. 21986, Nov. 2009, doi: 10.1364/OE.17.021986.

[1-26] A. W. Snyder and J. Love, Optical waveguide theory. Springer Science & Business Media, 2012.

[1-27] A. Sakai, G. Hara, and T. Baba, “Propagation Characteristics of Ultrahigh-Δ Optical Waveguide on Silicon-on-Insulator Substrate,” vol. 40, no. 4, p. 3, 2001.

[1-28] A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 4, no. 6, pp. 913–924, Dec. 1998, doi: 10.1109/2944.736076.

[1-29] K. Kant, “Data center evolution,” Comput. Netw., vol. 53, no. 17, pp. 2939–2965, Dec. 2009, doi: 10.1016/j.comnet.2009.10.004.

[1-30] “Cisco Annual Internet Report,” Cisco Annual Internet Report - Cisco. https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet- report/index.html#cloud-forecast (accessed Apr. 20, 2020).

[1-31] “Understanding Different Types of Data Center,” AFL Hyperscale. https://www.aflhyperscale.com/understanding-different-types-of-data-center (accessed Aug. 05, 2020).

[1-32] “IEEE Standard for Information technology– Local and metropolitan area networks– Specific requirements– Part 3: CSMA/CD Access Method and Physical Layer Specifications Amendment 4: Media Access Control Parameters, Physical Layers, and Management Parameters for 40 Gb/s and 100 Gb/s Operation,” IEEE Std 8023ba-2010 Amend. IEEE Stand. 8023-2008, pp. 1–457, Jun. 2010, doi: 10.1109/IEEESTD.2010.5501740.

[1-33] “IEEE Standard for Ethernet - Amendment 3: Physical Layer Specifications and Management Parameters for 40 Gb/s and 100 Gb/s Operation over Fiber Optic Cables,” IEEE Stand. Ethernet Amend. 3 Phys. Layer Specif. Manag. Parameters 40 Gbs 100 Gbs Oper. Fiber Opt. Cables, pp. 1–172, 2015.

[1-34] “IEEE Standard for Ethernet - Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation,” IEEE Std 8023bs- 2017 Amend. IEEE 8023-2015 Amend. IEEEs 8023bw-2015 8023by-2016 8023bq-2016 8023bp-2016 8023br-2016 8023bn-2016 8023bz-2016 8023bu-2016 8023bv-2017 IEEE 8023-2015Cor1-2017, pp. 1–372, Dec. 2017, doi: 10.1109/IEEESTD.2017.8207825.

[1-35] “100G Lambda MSA.” https://100glambda.com/ (accessed Apr. 20, 2020).

[1-36] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica, vol. 5, no. 11, p. 1354, Nov. 2018, doi: 10.1364/OPTICA.5.001354.

[1-37] X. Ma, Z. Zhang, and S. Su, “Cost-Aware Multi-Domain Virtual Data Center Embedding,” CHINA Commun., vol. 15, no. 12, pp. 190–207, Dec. 2018.

[1-38] F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic coherent imager,” Opt. Express, vol. 23, no. 4, p. 5117, Feb. 2015, doi: 10.1364/OE.23.005117.

[1-39] C. V. Poulton et al., “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett., vol. 42, no. 20, p. 4091, Oct. 2017, doi: 10.1364/OL.42.004091.

[1-40] J. Dieckroger, R. Marz, P. C. Clemens, G. Heise, and H. W. Schneider, “Thermooptically Tunable Optical Phased Array in SiO –Si,” IEEE Photonics Technol. Lett., vol. 11, no. 2, p. 3, 1999.

[1-41] C. T. DeRose et al., “Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas,” Opt. Express, vol. 21, no. 4, p. 5198, Feb. 2013, doi: 10.1364/OE.21.005198.

[1-42] Jie Sun et al., “Large-Scale Silicon Photonic Circuits for Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 4, pp. 264–278, Jul. 2014, doi: 10.1109/JSTQE.2013.2293316.

[1-43] K. Wang et al., “Si Integrated Optical Phased Array for Efficient Beam Steering in Optical Wireless Communications,” in 2014 GLOBECOM WORKSHOPS (GC WKSHPS), 2014, pp. 541–546.

[1-44] K. Kikuchi, “Digital coherent optical communication systems: fundamentals and future prospects,” IEICE Electron. Express, vol. 8, no. 20, pp. 1642–1662, 2011, doi: 10.1587/elex.8.1642.

[1-45] R. Safaisini, E. Haglund, A. Larsson, J. S. Gustavsson, E. P. Haglund, and P. Westbergh, “High- speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett., vol. 49, no. 16, pp. 1021–1023, Aug. 2013, doi: 10.1049/el.2013.2042.

[1-46] D. M. Kuchta et al., “A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link,” IEEE Photonics Technol. Lett., vol. 27, no. 6, pp. 577–580, Mar. 2015, doi: 10.1109/LPT.2014.2385671.

[1-47] “ISO/IEC 11801-1:2017(en), Information technology — Generic cabling for customer premises — Part 1: General requirements.” https://www.iso.org/obp/ui/#iso:std:iso- iec:11801:-1:ed-1:v1:en (accessed Apr. 21, 2020).

[1-48] Y. Sun et al., “Advanced multimode fiber for high-speed short-read interconnect,” Hangzhou, China, Nov. 2008, p. 71341L, doi: 10.1117/12.803721.

[1-49] S. Paul et al., “10-Gb/s Direct Modulation of Widely Tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 6, pp. 436–443, Nov. 2015, doi: 10.1109/JSTQE.2015.2418218.

[1-50] W. Kobayashi et al., “50-Gb/s Direct Modulation of a 1.3-μm InGaAlAs-Based DFB Laser With a Ridge Waveguide Structure,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, pp. 1500908–1500908, Jul. 2013, doi: 10.1109/JSTQE.2013.2238509.

[1-51] K. Nakahara et al., “Direct Modulation at 56 and 50 Gb/s of 1.3- $¥mu $ m InGaAlAs Ridge- Shaped-BH DFB Lasers,” IEEE Photonics Technol. Lett., vol. 27, no. 5, pp. 534–536, Mar. 2015, doi: 10.1109/LPT.2014.2384520.

[1-52] A. Abbasi et al., “43 Gb/s NRZ-OOK Direct Modulation of a Heterogeneously Integrated InP/Si DFB Laser,” J. Light. Technol., vol. 35, no. 6, pp. 1235–1240, Mar. 2017, doi: 10.1109/JLT.2016.2638619.

[1-53] S. Kanazawa et al., “214-Gb/s 4-PAM Operation of Flip-Chip Interconnection EADFB Laser Module,” J. Light. Technol., vol. 35, no. 3, pp. 418–422, Feb. 2017, doi: 10.1109/JLT.2016.2632164.

[1-54] J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Light. Technol., vol. 7, no. 3, pp. 568–573, Mar. 1989, doi: 10.1109/50.16895.

[1-55] H. Masuda et al., “13.5-Tb/s (135 × 111-Gb/s/ch) No-Guard-Interval Coherent OFDM Transmission over 6,248 km using SNR Maximized Second-order DRA in the Extended L- band,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, 2009, p. PDPB5, doi: 10.1364/NFOEC.2009.PDPB5.

[1-56] Y. Miyamoto, “Digital modulation challenges for high-capacity Optical Transport Network with 100Gbps channels and beyond,” p. 4, 2009.

[1-57] X. Zhou et al., “32Tb/s (320×114Gb/s) PDM-RZ-8QAM transmission over 580km of SMF- 28 ultra-low-loss fiber,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, 2009, p. PDPB4, doi: 10.1364/OFC.2009.PDPB4.

[1-58] M. Izutsu, Y. Yamane, and T. Sueta, “Broad-band traveling-wave modulator using a LiNbO3 optical waveguide,” IEEE J. Quantum Electron., vol. 13, no. 4, pp. 287–290, Apr. 1977, doi: 10.1109/JQE.1977.1069310.

[1-59] K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving- power phase modulator employing a Ti:LiNbO/sub 3/ optical waveguide at 1.5 mu m,” IEEE Photonics Technol. Lett., vol. 1, no. 2, pp. 33–34, Feb. 1989, doi: 10.1109/68.91000.

[1-60] M. Howerton, R. Moeller, A. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photonics Technol. Lett., vol. 12, no. 7, pp. 792–794, Jul. 2000, doi: 10.1109/68.853502.

[1-61] K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett., vol. 37, no. 8, pp. 515–516, Apr. 2001, doi: 10.1049/el:20010342.

[1-62] M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14-$¥mu¥hbox{m}$ Infrared Wavelength Range,” IEEE Photonics J., vol. 3, no. 6, pp. 1171– 1180, Dec. 2011, doi: 10.1109/JPHOT.2011.2171930.

[1-63] G. Zhou et al., “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express, vol. 16, no. 8, p. 5218, Apr. 2008, doi: 10.1364/OE.16.005218.

[1-64] W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express, vol. 15, no. 25, p. 17106, 2007, doi: 10.1364/OE.15.017106.

[1-65] Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection- based silicon micro-ring silicon modulators,” Opt. Express, vol. 15, no. 2, p. 430, Jan. 2007, doi: 10.1364/OE.15.000430.

[1-66] Z.-Y. Li et al., “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” Opt. Express, vol. 17, no. 18, p. 15947, Aug. 2009, doi: 10.1364/OE.17.015947.

[1-67] X. Xiao et al., “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express, vol. 20, no. 3, p. 2507, Jan. 2012, doi: 10.1364/OE.20.002507.

[1-68] M. Streshinsky et al., “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express, vol. 21, no. 25, pp. 30350–30357, Dec. 2013, doi: 10.1364/OE.21.030350.

[1-69] H. Xu et al., “High-speed silicon modulator with band equalization,” Opt. Lett., vol. 39, no. 16, pp. 4839–4842, Aug. 2014, doi: 10.1364/OL.39.004839.

[1-70] Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express, vol. 22, no. 24, p. 29978, Dec. 2014, doi: 10.1364/OE.22.029978.

[1-71] D. Patel et al., “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express, vol. 23, no. 11, p. 14263, Jun. 2015, doi: 10.1364/OE.23.014263.

[1-72] C. Xiong, D. M. Gill, J. E. Proesel, J. S. Orcutt, W. Haensch, and W. M. Green, “Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter,” Optica, vol. 3, no. 10, pp. 1060–1065, 2016.

[1-73] M. Pantouvaki et al., “Active Components for 50 Gb/s NRZ-OOK Optical Interconnects in a Silicon Photonics Platform,” J. Light. Technol., vol. 35, no. 4, pp. 631–638, Feb. 2017, doi: 10.1109/JLT.2016.2604839.

[1-74] M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications,” Photonics Res., vol. 6, no. 2, p. 109, Feb. 2018, doi: 10.1364/PRJ.6.000109.

[1-75] X. Wu, C. Huang, K. Xu, C. Shu, and H. K. Tsang, “128-Gb/s Line Rate OFDM Signal Modulation Using an Integrated Silicon Microring Modulator,” IEEE Photonics Technol. Lett., vol. 28, no. 19, pp. 2058–2061, Oct. 2016, doi: 10.1109/LPT.2016.2575042.

[1-76] H. Ramon et al., “Low-Power 56Gb/s NRZ Microring Modulator Driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett., vol. 30, no. 5, pp. 467–470, Mar. 2018, doi: 10.1109/LPT.2018.2799004.

[1-77] J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 Silicon Microring Modulator with Integrated Thermo-optic Resonance Tuning,” J. Light. Technol., 2018.

[1-78] M. Moralis-Pegios et al., “52 km-Long Transmission Link Using a 50 Gb/s O -Band Silicon Microring Modulator Co-Packaged With a 1V-CMOS Driver,” IEEE Photonics J., vol. 11, no. 4, pp. 1–7, Aug. 2019, doi: 10.1109/JPHOT.2019.2921730.

[1-79] H. Li et al., “A 112 Gb/s PAM4 Silicon Photonics Transmitter With Microring Modulator and CMOS Driver,” J. Light. Technol., vol. 38, no. 1, pp. 131–138, Jan. 2020, doi: 10.1109/JLT.2019.2938731.

[1-80] K. Okamoto, Fundamentals of optical waveguides, 2nd ed. Amsterdam ; Boston: Elsevier, 2006.

[1-81] K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express, vol. 20, no. 27, p. 27999, Dec. 2012, doi: 10.1364/OE.20.027999.

[1-82] H. Jayatilleka et al., “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express, vol. 23, no. 19, p. 25084, Sep. 2015, doi: 10.1364/OE.23.025084.

[1-83] H. Zhu et al., “Optimized Silicon QPSK Modulator With 64-Gb/s Modulation Speed,” IEEE Photonics J., vol. 7, no. 3, pp. 1–6, Jun. 2015, doi: 10.1109/JPHOT.2015.2425875.

[1-84] K. Bédard, A. D. Simard, B. Filion, Y. Painchaud, L. A. Rusch, and S. LaRochelle, “Dual phase-shift Bragg grating silicon photonic modulator operating up to 60 Gb/s,” Opt. Express, vol. 24, no. 3, p. 2413, Feb. 2016, doi: 10.1364/OE.24.002413.

[1-85] S. Pitris et al., “O-Band Silicon Photonic Transmitters for Datacom and Computercom Interconnects,” J. Light. Technol., vol. 37, no. 19, pp. 5140–5148, Oct. 2019, doi: 10.1109/JLT.2019.2929593.

[1-86] T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-Clad Silicon Photonic Crystal Waveguides for Wideband Dispersion-Free Slow Light,” J. Light. Technol., vol. 33, no. 14, pp. 3034–3040, Jul. 2015, doi: 10.1109/JLT.2015.2420685.

[1-87] D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Ultrashort Photonic Crystal Optical Switch Actuated by a Microheater,” IEEE Photonics Technol. Lett., vol. 21, no. 1, pp. 24–26, Jan. 2009, doi: 10.1109/LPT.2008.2008104.

[1-88] L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact Optical Switches and Modulators Based on Dispersion Engineered Photonic Crystals,” IEEE Photonics J., vol. 2, no. 3, pp. 404–414, Jun. 2010, doi: 10.1109/JPHOT.2010.2047918.

[1-89] J. H. Wuelbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express, vol. 17, no. 1, pp. 304–313, Jan. 2009, doi: 10.1364/OE.17.000304.

[1-90] C.-Y. Lin et al., “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett., vol. 97, no. 9, p. 093304, Aug. 2010, doi: 10.1063/1.3486225.

[1-91] X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r_33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett., vol. 36, no. 6, p. 882, Mar. 2011, doi: 10.1364/OL.36.000882.

[1-92] X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett., vol. 38, no. 22, pp. 4931–4934, Nov. 2013, doi: 10.1364/OL.38.004931.

[1-93] Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett., vol. 87, no. 22, p. 221105, Nov. 2005, doi: 10.1063/1.2138367.

[1-94] X. Chen, Y.-S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett., vol. 34, no. 5, pp. 602–604, Mar. 2009, doi: 10.1364/OL.34.000602.

[1-95] A. Hosseini, X. Xu, H. Subbaraman, C.-Y. Lin, S. Rahimi, and R. T. Chen, “Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express, vol. 20, no. 11, pp. 12318–12325, May 2012, doi: 10.1364/OE.20.012318.

[1-96] H. C. Nguyen, S. Hashimoto, M. Shinkawa, and T. Baba, “Compact and fast photonic crystal silicon optical modulators,” Opt. Express, vol. 20, no. 20, p. 22465, Sep. 2012, doi: 10.1364/OE.20.022465.

[1-97] H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 6, pp. 127–137, Nov. 2013, doi: 10.1109/JSTQE.2013.2265193.

[1-98] Y. Terada, H. Ito, H. C. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-volgage and low-loss 25-Gbps Si photonic crystal slow light Mach–Zehnder modulators with interleaved p/n junction,” Front. Phys., vol. 2, Nov. 2014, doi: 10.3389/fphy.2014.00061.

[1-99] K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM Modulators With Si Photonic Crystal Slow-Light Phase Shifters,” IEEE Photonics Technol. Lett., vol. 28, no. 13, pp. 1438–1441, Jul. 2016, doi: 10.1109/LPT.2016.2544848.

[1-100] Y. Terada, T. Tatebe, Y. Hinakura, and T. Baba, “Si Photonic Crystal Slow-Light Modulators with Periodic p–n Junctions,” J. Light. Technol., vol. 35, no. 9, pp. 1684–1692, May 2017, doi: 10.1109/JLT.2017.2658668.

[1-101] Y. Terada, K. Kondo, R. Abe, and T. Baba, “Full C-band Si photonic crystal waveguide modulator,” Opt. Lett., vol. 42, no. 24, p. 5110, Dec. 2017, doi: 10.1364/OL.42.005110.

[1-102] T. Hiraki et al., “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nature Photonics, vol. 11, no. 8. NATURE PUBLISHING GROUP, MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND, p. 482+, Aug. 2017, doi: 10.1038/NPHOTON.2017.120.

[1-103] S. Wolf et al., “Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s on- off Keying,” Sci. Rep., vol. 8, no. 1, p. 2598, Dec. 2018, doi: 10.1038/s41598-017-19061-8.

[1-104] C. Haffner et al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, pp. 483–486, Apr. 2018, doi: 10.1038/s41586-018-0031-4.

[1-105] C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, p. 1547, Jan. 2018, doi: 10.1364/OE.26.001547.

[1-106] M. Takenaka et al., “III–V/Si Hybrid MOS Optical Phase Shifter for Si Photonic Integrated Circuits,” J. Light. Technol., vol. 37, no. 5, pp. 1474–1483, Mar. 2019, doi: 10.1109/JLT.2019.2892752.

[1-107] K. Kondo, “Co-propagating slow-light systems in photonic crystal waveguides,” Doctral Dissertation, Yokohama National University, 2016.

[1-108] H. Ito, “Wavelength division multiplexing in Si photonics and its applications,” Doctral Dissertation, Yokohama National University, 2019.

[1-109] Y. Terada, K. Miyasaka, K. Kondo, N. Ishikura, T. Tamura, and T. Baba, “Optimized optical coupling to silica-clad photonic crystal waveguides,” Opt. Lett., vol. 42, no. 22, p. 4695, Nov. 2017, doi: 10.1364/OL.42.004695.

[2-1] F. Boeuf et al., “Silicon Photonics R&D and Manufacturing on 300-mm Wafer Platform,” J. Lightwave Technol., vol. 34, no. 2, pp. 286–295, Jan. 2016, doi: 10.1109/JLT.2015.2481602.

[2-2] K. Giewont et al., “300-mm Monolithic Silicon Photonics Foundry Technology,” IEEE J. Select. Topics Quantum Electron., vol. 25, no. 5, pp. 1–11, Sep. 2019, doi: 10.1109/JSTQE.2019.2908790.

[2-3] “Advanced Micro Foundry” http://www.advmf.com/ (accessed Apr. 24, 2020).

[2-4] “imec.IC-link.” https://www.imec-int.com/en/iclink (accessed Apr. 24, 2020).

[2-5] K. Kondo, “Co-propagating slow-light systems in photonic crystal waveguides,” Doctral Dissertation, Yokohama National University, 2016.

[2-6] H. Ito, “Wavelength division multiplexing in Si photonics and its applications,” Doctral Dissertation, Yokohama National University, 2019.

[2-7] Y. Terada, K. Miyasaka, K. Kondo, N. Ishikura, T. Tamura, and T. Baba, “Optimized optical coupling to silica-clad photonic crystal waveguides,” Opt. Lett., vol. 42, no. 22, p. 4695, Nov. 2017, doi: 10.1364/OL.42.004695.

[2-8] T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-Clad Silicon Photonic Crystal Waveguides for Wideband Dispersion-Free Slow Light,” J. Light. Technol., vol. 33, no. 14, pp. 3034–3040, Jul. 2015, doi: 10.1109/JLT.2015.2420685.

[3-1] T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-Clad Silicon Photonic Crystal Waveguides for Wideband Dispersion-Free Slow Light,” J. Light. Technol., vol. 33, no. 14, pp. 3034–3040, Jul. 2015, doi: 10.1109/JLT.2015.2420685.

[3-2] H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 6, pp. 127–137, Nov. 2013, doi: 10.1109/JSTQE.2013.2265193.

[3-3] D. J. Thomson et al., “50-Gb/s Silicon Optical Modulator,” IEEE Photonics Technol. Lett., vol. 24, no. 4, pp. 234–236, Feb. 2012, doi: 10.1109/LPT.2011.2177081.

[3-4] M. Streshinsky et al., “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express, vol. 21, no. 25, pp. 30350–30357, Dec. 2013, doi: 10.1364/OE.21.030350.

[3-5] Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express, vol. 22, no. 24, p. 29978, Dec. 2014, doi: 10.1364/OE.22.029978.

[3-6] H. Xu et al., “High-speed silicon modulator with band equalization,” Opt. Lett., vol. 39, no. 16, pp. 4839–4842, Aug. 2014, doi: 10.1364/OL.39.004839.

[3-7] D. Patel et al., “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express, vol. 23, no. 11, p. 14263, Jun. 2015, doi: 10.1364/OE.23.014263.

[3-8] M. Pantouvaki et al., “Active Components for 50 Gb/s NRZ-OOK Optical Interconnects in a Silicon Photonics Platform,” J. Light. Technol., vol. 35, no. 4, pp. 631–638, Feb. 2017, doi: 10.1109/JLT.2016.2604839.

[3-9] M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications,” Photonics Res., vol. 6, no. 2, p. 109, Feb. 2018, doi: 10.1364/PRJ.6.000109.

[3-10] T. Hiraki et al., “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nature Photonics, vol. 11, no. 8, p. 482+, Aug. 2017, doi: 10.1038/NPHOTON.2017.120.

[3-11] S. Wolf et al., “Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s on-off Keying,” Sci. Rep., vol. 8, no. 1, p. 2598, Dec. 2018, doi: 10.1038/s41598-017-19061-8.

[4-1] H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 6, pp. 127–137, Nov. 2013, doi: 10.1109/JSTQE.2013.2265193.

[4-2] Y. Terada, T. Tatebe, Y. Hinakura, and T. Baba, “Si Photonic Crystal Slow-Light Modulators with Periodic p–n Junctions,” J. Light. Technol., vol. 35, no. 9, pp. 1684–1692, May 2017, doi: 10.1109/JLT.2017.2658668.

[4-3] T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D, vol. 40, no. 9, pp. 2659–2665, Apr. 2007, doi: 10.1088/0022-3727/40/9/s06.

[4-4] “How Do I Measure the Bit Error Rate (BER) to a Given Confidence Level on the J-BERT M8020A and the M8040A High-Performance BERT? | Keysight Technologies.” https://www.Keysight Technologies.com/main/editorial.jspx?ckey=1481106&id=1481106&nid=- 11143.0.00&lc=eng&cc=US (accessed Jun. 07, 2020).

[4-5] R. Sarkissian and J. O’Brien, “Group index oscillations in photonic crystal waveguides,” Applied Physics Letters, vol. 105, no. 12, p. 121102, Sep. 2014, doi: 10.1063/1.4896519.

[5-1] R. Ding et al., “Design and characterization of a 30-GHz bandwidth low-power silicon travelingwave modulator,” Optics Communications, vol. 321, pp. 124–133, Jun. 2014, doi: 10.1016/j.optcom.2014.01.071.

[5-2] R. Ding et al., “High-Speed Silicon Modulator With Slow-Wave Electrodes and Fully Independent Differential Drive,” J. Lightwave Technol., vol. 32, no. 12, pp. 2240–2247, Jun. 2014, doi: 10.1109/JLT.2014.2323954.

[1-3] H. Xu et al., “High-speed silicon modulator with band equalization,” Optics Letters, vol. 39, no. 16, pp. 4839–4842, Aug. 2014, doi: 10.1364/OL.39.004839.

[5-4] D. Patel et al., “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express, vol. 23, no. 11, p. 14263, Jun. 2015, doi: 99 10.1364/OE.23.014263.

[5-5] A. Samani et al., “A Low-Voltage 35-GHz Silicon Photonic Modulator-Enabled 112-Gb/s Transmission System,” IEEE Photonics Journal, vol. 7, no. 3, pp. 1–13, Jun. 2015, doi: 10.1109/JPHOT.2015.2426875.

[5-6] Y. Tang, Y. Yu, Y. Ye, U. Westergren, and S. He, “Design and optimization of an arbitrarily segmented traveling wave electrode for an ultrahigh speed electroabsorption modulator,” Optics Communications, vol. 281, no. 20, pp. 5177–5182, Oct. 2008, doi: 10.1016/j.optcom.2008.07.014.

[5-7] R. E. Collin, Foundations for microwave engineering. John Wiley & Sons, 2007.

[5-8] D. M. Pozar, Microwave Engineering, 4th Edition. Wiley, 2011.

[5-9] E. Carlsson and S. Gevorgian, “Conformal mapping of the field and charge distributions in multilayered substrate CPWs,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1544–1552, 1999.

[5-10] X. Tu et al., “Silicon optical modulator with shield coplanar waveguide electrodes,” Optics Express, vol. 22, no. 19, p. 23724, Sep. 2014, doi: 10.1364/OE.22.023724.

[5-11] G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, “Excitation of coupled slotline mode in finite-ground CPW with unequal ground-plane widths,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 2, pp. 713–717, Feb. 2005, doi: 10.1109/TMTT.2004.840571.

[5-12] A. Leven, F. Vacondio, L. Schmalen, S. ten Brink, and W. Idler, “Estimation of Soft FEC Performance in Optical Transmission Experiments,” IEEE Photon. Technol. Lett., vol. 23, no. 20, pp. 1547–1549, Oct. 2011, doi: 10.1109/LPT.2011.2162725.

[5-13] F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express, vol. 21, no. 10, p. 11652, May 2013, doi: 10.1364/OE.21.011652.

[6-1] S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers,” Opt. Lett., vol. 16, no. 10, pp. 773–775, May 1991, doi: 10.1364/OL.16.000773.

[6-2] C. V. Poulton et al., “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Optics Letters, vol. 42, no. 20, p. 4091, Oct. 2017, doi: 10.1364/OL.42.004091.

[6-3] A. Martin et al., “Photonic Integrated Circuit-Based FMCW Coherent LiDAR,” J. Lightwave Technol., vol. 36, no. 19, pp. 4640–4645, Oct. 2018, doi: 10.1109/JLT.2018.2840223.

[6-4] Z. Xu et al., “Frequency-Modulated Continuous-Wave Coherent Lidar With Downlink Communications Capability,” IEEE Photon. Technol. Lett., vol. 32, no. 11, pp. 655–658, Jun. 2020, doi: 10.1109/LPT.2020.2990942.

[6-5] K. Iiyama, Lu-Tang Wang, and Ken-Ichi Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol., vol. 14, no. 2, pp. 173–178, Feb. 1996, doi: 10.1109/50.482260.

[6-6] L. N. Langley et al., “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Techn., vol. 47, no. 7, pp. 1257–1264, Jul. 1999, doi: 10.1109/22.775465.

[6-7] C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express, vol. 16, no. 12, p. 8916, Jun. 2008, doi: 10.1364/OE.16.008916.

[7-1] D. J. Thomson et al., “50-Gb/s Silicon Optical Modulator,” IEEE Photonics Technol. Lett., vol. 24, no. 4, pp. 234–236, Feb. 2012, doi: 10.1109/LPT.2011.2177081.

[7-2] M. Streshinsky et al., “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express, vol. 21, no. 25, pp. 30350–30357, Dec. 2013, doi: 10.1364/OE.21.030350.

[7-3] Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express, vol. 22, no. 24, p. 29978, Dec. 2014, doi: 10.1364/OE.22.029978.

[7-4] H. Xu et al., “High-speed silicon modulator with band equalization,” Opt. Lett., vol. 39, no. 16, pp. 4839–4842, Aug. 2014, doi: 10.1364/OL.39.004839.

[7-5] D. Patel et al., “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express, vol. 23, no. 11, p. 14263, Jun. 2015, doi: 10.1364/OE.23.014263.

[7-6] M. Pantouvaki et al., “Active Components for 50 Gb/s NRZ-OOK Optical Interconnects in a Silicon Photonics Platform,” J. Light. Technol., vol. 35, no. 4, pp. 631–638, Feb. 2017, doi: 10.1109/JLT.2016.2604839.

[7-7] M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications,” Photonics Res., vol. 6, no. 2, p. 109, Feb. 2018, doi: 10.1364/PRJ.6.000109.

[7-8] S. Wolf et al., “Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s on-off Keying,” Sci. Rep., vol. 8, no. 1, p. 2598, Dec. 2018, doi: 10.1038/s41598-017-19061-8.

[7-9] T. Hiraki et al., “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nature Photonics, vol. 11, no. 8, p. 482+, Aug. 2017, doi: 10.1038/NPHOTON.2017.120.

[7-10] H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 6, pp. 127–137, Nov. 2013, doi: 10.1109/JSTQE.2013.2265193.

[7-11] Y. Terada, K. Miyasaka, K. Kondo, N. Ishikura, T. Tamura, and T. Baba, “Optimized optical coupling to silica-clad photonic crystal waveguides,” Opt. Lett., vol. 42, no. 22, p. 4695, Nov. 2017, doi: 10.1364/OL.42.004695.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る