リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「直線磁化プラズマにおける乱流ダイナミクスの研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

直線磁化プラズマにおける乱流ダイナミクスの研究

河内, 裕一 KAWACHI, Yuichi カワチ, ユウイチ 九州大学

2022.03.23

概要

持続可能な社会の実現へ向けて脱炭素エネルギーが求められている昨今、その解決策の一つである核融合発電炉の実現を目指して、国際熱核融合実験炉(ITER)が建設中である。核融合炉では、高温高密度のプラズマを閉じ込めて核融合反応を引き起こすので、プラズマ中に強い圧力勾配が生じ乱流が励起する。励起したプラズマ乱流は非線形過程を経て複雑なパターンを形成し、衝突輸送よりも遥かに大きいプラズマ輸送を駆動する。この乱流輸送は核融合発電の成否に直結する。プラズマ乱流の基礎物理過程を理解し乱流を制御することは核融合発電の実現や性能向上において極めて重要である。

 プラズマ乱流の基礎過程を理解するためには、実験にて乱流の時空間発展を高い時間分解能で計測・解析することが必要不可欠である。これまでに乱流ダイナミクスを計測・解析するために多くの計測器や解析手法が開発され多くの成果を上げてきが、依然として課題が残っている。例えば、密度乱流揺動の計測は比較的容易である一方で、温度揺動の計測は困難であり、多くの制限が存在する。データ解析にも制限がある。一般に乱流は非定常現象であるため、定常フーリエスペクトル解析が適用できない現象がある。このように、プラズマ乱流の基礎過程の理解へ向けて、新たな乱流ダイナミクスの観測・解析手法の開発が求められている。

 本研究では、乱流ダイナミクスを明らかにするために、既存の計測や解析の時間分解能を向上させる新たなデータ解析手法を開発した。開発した手法を直線磁化プラズマ装置 PANTA で観測される乱流揺動へ適用し、これまでに観測が困難であった、瞬時周波数揺らぎ、電子温度揺動を含む乱流揺動の時空間ダイナミクス、異種揺動間の非線形エネルギー移送ダイナミクスの観測に成功した。以下に本論文の構成をまとめる。
第一章では、核融合における乱流基礎過程の理解の重要性、及び現在の乱流の観測・解析の問題点について述べた。第二章では、本研究で用いた実験環境及び解析手法について述べた。実験環境として、研究に利用した実験装置 PANTA の概要及び計測器である静電プローブアレイについて説明した。解析手法として、パワースペクトルを始めとするフーリエ解析や、デジタルフィルター、ヒルベルト変換について解説した。第三章では、乱流揺動の計測・解析の問題について考察し、その問題を解決するために本研究で開発した、揺動の出現時間を精度良く検知するテンプレート法について説明した。さらに、テンプレート法の利点と手法の検証についてまとめた。第四章では、PANTA で観測される乱流揺動に対してテンプレート法を適用して得られた解析結果とその物理的な解釈についてまとめた。解析結果は大きく分けて、乱流揺動の時空間ダイナミクスの同定、異種揺動間の間欠的非線形ダイナミクスの発見としてまとめている。前者については、はじめにテンプレート法を用いた条件付き抽出法による電子温度揺動の解析方法について解説し、電子温度揺動が静電プローブ計測に与える影響について述べた。その後、PANTA で観測される 周方向に回転する2種類の揺動に対してテンプレート法で評価した密度・電位・温度ゆらぎの時 空間ダイナミクスを解析した結果、及びそこから評価した揺動駆動輸送について報告した。更に、 得られた時空間ダイナミクス及び輸送を元に2種類の揺動の元となる不安定性について議論した。後者については、2種の揺動の競合関係を瞬時波数スペクトル解析によって観測し、テンプレー ト法により競合の特性を評価した結果について報告した。また、テンプレート法と非線形エネル ギー移送解析を組み合わせ、競合における非線形エネルギーの時間変化を評価した結果について 述べた。得られた結果を元に、競合の物理的な背景について議論した。第5章では、本研究結果 を元に議論を総括した。

 本研究を通じて、以下のことが成果として示された。
1) テンプレート法が従来手法の閾値法に比べて揺動の出現時間を精度良く検知できることを示した。また、フーリエ変換による揺動駆動輸送評価法と比べて、テンプレート法によって評価した揺動駆動輸送が精度良く一致することを示した。テンプレート法は、高調波も成分もまとめて抽出できるため、フーリエ変換と比べて自由度を減らして輸送を評価できるという利点がある。
2) テンプレート法を用いて高い時間分解能で瞬時周波数を評価することに成功し、平均 9.4kHzの揺動の瞬時周波数が 1.7kHz で揺らいでいることを示した。本手法は、フーリエ変換よりも高い時間分解能でかつ、ヒルベルト変換と比べて低ノイズで瞬時周波数の評価できる。
3) 2 種類の揺動の、密度・電子温度・電位のゆらぎの時空間ダイナミクス及び二次元断面構造の再構成に成功した。得られた構造から、揺動波面の歪みや固有関数、各物理量の振幅比等が明らかとなった。特に、テンプレート法をダブルプローブ計測に適用することで、観測が困難とされている電子温度揺動の観測を実現した。
4) 異種揺動の間欠的な競合を観測し、競合時に揺動間で非線形相互作用を介してエネルギーをやり取りしていることを発見した。また、この間欠的競合は周方向に対称な電位揺動と同期していることがわかった。このような三種類の揺動が関わる相互作用や、非線形エネルギー移送のダイナミクスを実験的に観測した例はなく、この研究で初めて示された。
このように、本研究では新規解析手法の開発から始まり、手法の検証し、様々な乱流のダイナミクスの観測に成功した。これらの成果は、プラズマ乱流基礎過程の理解の発展に大きく寄与した。

参考文献

[1] J. D. Lawson. SOME CRITERIA FOR A POWER PRODUCING THER-MONUCLEAR REACTOR. Proc. Phys. Soc. (London), Vol: B70, January 1957.

[2] https://www.euro-fusion.org.

[3] L.A. Artsimovich, G.A. Brobrovskii, E.P. Gorbunov, D.P. Ivanov, V.D. Kirillov, E.I. Kuznetsov, S.V. Mirnov, M.P Petrov, K.A. Rasumova, V.S Strelkov, and D.A. Shcheglov. Survey on Closed Plasma Systems. Plasma Physics and Controlled Nuclear Fusion Research, Novosibirsk, 1(17), 1968.

[4] N. J. Peacock, D. C. Robinson, M. J. Forrest, P. D. Wilcock, and V. V. San- nikov. Measurement of the Electron Temperature by Thomson Scat- tering in Tokamak T3. Nature, 224(5218):488–490, November 1969.

[5] James Glanz. Turbulence May Sink Titanic Reactor. Science, 274(5293):1600–1600, December 1996.

[6] F. Wagner. A quarter-century of H-mode studies. Plasma Physics and Controlled Fusion, 49(12B):B1–B33, November 2007.

[7] A. Fujisawa, K. Itoh, H. Iguchi, K. Matsuoka, S. Okamura, A. Shimizu, T. Minami, Y. Yoshimura, K. Nagaoka, C. Takahashi, M. Kojima, H. Nakano, S. Ohsima, S. Nishimura, M. Isobe, C. Suzuki, T Akiyama, K. Ida, K. Toi, S.-I. Itoh, and P. H. Diamond. Identification of Zonal Flows in a Toroidal Plasma. Physical Review Letters, 93(16):165002, October 2004.

[8] P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm. Zonal flows in plasma—a review. Plasma Physics and Controlled Fusion, 47(5):R35– R161, April 2005.

[9] M. N. Rosenbluth and F. L. Hinton. Poloidal Flow Driven by Ion- Temperature-Gradient Turbulence in Tokamaks. Physical Review Let- ters, 80(4):724–727, January 1998.

[10] K. Ikeda. Progress in the ITER Physics Basis. Nuclear Fusion, 47(6), June 2007.

[11] http://www.iter.org.

[12] W. Horton. Drift waves and transport. Reviews of Modern Physics, 71(3):735–778, 1999.

[13] Akira Hasegawa, Carol G. Maclennan, and Yuji Kodama. Nonlinear behavior and turbulence spectra of drift waves and Rossby waves. The Physics of Fluids, 22(11):2122–2129, November 1979.

[14] Eun-jin Kim and P. H. Diamond. Dynamics of zonal flow saturation in strong collisionless drift wave turbulence. Physics of Plasmas, 9(11):4530–4539, November 2002.

[15] Y. Nagashima, K. Hoshino, A. Ejiri, K. Shinohara, Y. Takase, K. Tsuzuki, K. Uehara, H. Kawashima, H. Ogawa, T. Ido, Y. Kusama, and Y. Miura. Observation of Nonlinear Coupling between Small-Poloidal Wave- Number Potential Fluctuations and Turbulent Potential Fluctuations in Ohmically Heated Plasmas in the JFT-2M Tokamak. Physical Review Letters, 95(9):095002, August 2005.

[16] P. Manz, M. Ramisch, and U. Stroth. Physical mechanism behind zonal- flow generation in drift-wave turbulence. Physical Review Letters, 103(16):1–4, 2009.

[17] J. F. Drake, P. N. Guzdar, and A. B. Hassam. Streamer Formation in Plasma with a Temperature Gradient. Physical Review Letters, 61(19):2205–2208, November 1988.

[18] W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers. Elec- tron Temperature Gradient Turbulence. Physical Review Letters, 85(26):5579–5582, December 2000.

[19] Takuma Yamada, Sanae I. Itoh, Takashi Maruta, Naohiro Ka- suya, Yoshihiko Nagashima, Shunjiro Shinohara, Kenichiro Terasaka, Masatoshi Yagi, Shigeru Inagaki, Yoshinobu Kawai, Akihide Fujisawa, and Kimitaka Itoh. Anatomy of plasma turbulence. Nature Physics, 4(9):721–725, 2008.

[20] T. Yamada, S.-I. Itoh, S. Inagaki, Y. Nagashima, N. Kasuya, K. Kamataki,

H. Arakawa, T. Kobayashi, M. Yagi, A. Fujisawa, and K. Itoh. Obser- vation of Quasi-Two-Dimensional Nonlinear Interactions in a Drift- Wave Streamer. Physical Review Letters, 105(22):225002, November 2010.

[21] F. Kin, A. Fujisawa, K. Itoh, Y. Kosuga, M. Sasaki, S. Inagaki, Y. Na- gashima, T. Yamada, N. Kasuya, K. Yamasaki, K. Hasamada, B. Y. Zhang, Y. Kawachi, H. Arakawa, T. Kobayashi, and S.-I. Itoh. Observa- tions of radially elongated particle flux induced by streamer in a lin- ear magnetized plasma. Physics of Plasmas, 26(4):042306, April 2019.

[22] E. Mazzucato, T. Munsat, H. Park, B. H. Deng, C. W. Domier, N. C. Luh- mann, A. J. H. Donné, and M. J. van de Pol. Fluctuation measurements in tokamaks with microwave imaging reflectometry. Physics of Plas- mas, 9(5):1955–1961, May 2002.

[23] A. V. Melnikov, L. I. Krupnik, L. G. Eliseev, J. M. Barcala, A. Bravo, A. A. Chmyga, G. N. Deshko, M. A. Drabinskij, C. Hidalgo, P. O. Kha- banov, S. M. Khrebtov, N. K. Kharchev, A. D. Komarov, A. S. Kozachek, J. Lopez, S. E. Lysenko, G. Martin, A. Molinero, J. L. de Pablos, A. Soleto, M. V. Ufimtsev, V. N. Zenin, A. I. Zhezhera, and and. Heavy ion beam probing—diagnostics to study potential and turbulence in toroidal plasmas. Nuclear Fusion, 57(7):072004, March 2017.

[24] L. Schmitz, L. Zeng, T. L. Rhodes, J. C. Hillesheim, E. J. Doyle, R. J. Groebner, W. A. Peebles, K. H. Burrell, and G. Wang. Role of Zonal Flow Predator-Prey Oscillations in Triggering the Transition to H- Mode Confinement. Physical Review Letters, 108(15):155002, April 2012.

[25] F. Brochard, T. Windisch, O. Grulke, and T. Klinger. Experimen- tal evidence of mode coupling in drift wave intermittent turbulence using a wave number bicoherence analysis. Physics of Plasmas, 13(12):122305, December 2006.

[26] Chanho Moon, Toshiro Kaneko, and Rikizo Hatakeyama. Dynamics of Nonlinear Coupling between Electron-Temperature-Gradient Mode and Drift-Wave Mode in Linear Magnetized Plasmas. Physical Review Letters, 111(11):115001, September 2013.

[27] Yoshihiko Nagashima, Sanae I. Itoh, Shunjiro Shinohara, Masayuki Fukao, Akihide Fujisawa, Kenichiro Terasaka, Yoshinobu Kawai, George R. Tynan, Patrick H. Diamond, Masatoshi Yagi, Shigeru In- agaki, Takuma Yamada, and Kimitaka Itoh. Observation of the parametric-modulational instability between the drift-wave fluctu- ation and azimuthally symmetric sheared radial electric field os- cillation in a cylindrical laboratory plasma. Physics of Plasmas, 16(2):20706, 2009.

[28] H. Arakawa, S. Inagaki, M. Sasaki, Y. Kosuga, T. Kobayashi, N. Ka- suya, Y. Nagashima, T. Yamada, M. Lesur, A. Fujisawa, K. Itoh, and S.-I. Itoh. Eddy, drift wave and zonal flow dynamics in a linear mag- netized plasma. Scientific Reports, 6(1):33371, September 2016.

[29] A. E. Costley, R. J. Hastie, J. W. M. Paul, and J. Chamberlain. Electron Cyclotron Emission from a Tokamak Plasma: Experiment and Theory. Physical Review Letters, 33(13):758–761, September 1974.

[30] H. M. Mott-Smith and Irving Langmuir. The Theory of Collectors in Gaseous Discharges. Physical Review, 28(4):727–763, October 1926.

[31] Robert B. Lobbia and Alec D. Gallimore. Temporal limits of a rapidly swept Langmuir probe. Physics of Plasmas, 17(7):073502, July 2010.

[32] Shinji Kobayashi, Akira Sakasai, Yoshihiko Koide, Yoshiteru Sakamoto, Yutaka Kamada, Takaki Hatae, Naoyuki Oyama, and Yukitoshi Miura. Development of Fast Charge Exchange Recombi- nation Spectroscopy by Using Interference Filter Method in JT-60U. , 79(10):1043–1050, 2003.

[33] Lyman Spitzer. Particle Diffusion across a Magnetic Field. The Physics of Fluids, 3(4):659–661, July 1960.

[34] R. J. Hawryluk. AN EMPIRICAL APPROACH TO TOKAMAK TRANS-PORT. In B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni, editors, Physics of Plasmas Close to Thermonuclear Conditions, pages 19–46. Pergamon, January 1981.

[35] J. B. Taylor and B. McNamara. Plasma Diffusion in Two Dimensions. The Physics of Fluids, 14(7):1492–1499, July 1971.

[36] C. C. Petty, T. C. Luce, K. H. Burrell, S. C. Chiu, J. S. deGrassie, C. B. Forest, P. Gohil, C. M. Greenfield, R. J. Groebner, R. W. Harvey, R. I. Pinsker, R. Prater, R. E. Waltz, R. A. James, and D. Wròblewski. Nondimensional transport scaling in DIII-D: Bohm versus gyro-Bohm resolved. Physics of Plasmas, 2(6):2342–2348, June 1995.

[37] S. Oldenbürger, S. Inagaki, T. Kobayashi, H. Arakawa, N. Ohyama, K. Kawashima, Y. Tobimatsu, A. Fujisawa, K. Itoh, and S.-I. Itoh. Dy- namics of particle flux in a cylindrical magnetized plasma. Plasma Physics and Controlled Fusion, 54(5):055002, April 2012.

[38] S. Inagaki, T. Kobayashi, Y. Kosuga, S.-I. Itoh, T. Mitsuzono, Y. Na- gashima, H. Arakawa, T. Yamada, Y. Miwa, N. Kasuya, M. Sasaki, M. Lesur, A. Fujisawa, and K. Itoh. A Concept of Cross-Ferroic Plasma Turbulence. Scientific Reports, 6(1):22189, February 2016.

[39] A. V. Melnikov, L. G. Eliseev, E. Ascasibar, A. A. Chmyga, C. Hidalgo, T. Ido, R. Jiménez-Gómez, A. D. Komarov, A. S. Kozachek, L. I. Krup- nik, S. M. Khrebtov, A. Könies, Yu K. Kuznetsov, A. López-Fraguas, S. E. Lysenko, V. A. Mavrin, K. Nagaoka, J. L. de Pablos, M. A. Pedrosa, S. V. Perfilov, A. I. Smolyakov, D. A. Spong, M. V. Ufimtsev, and S. Yamamoto and. Alfvén eigenmode properties and dynamics in the TJ-II stellara- tor. Nuclear Fusion, 52(12):123004, November 2012.

[40] Leonid G. Eliseev, Alexander V. Melnikov, Sergey E. Lysenko, Philipp O. Khabanov, Vitaly N. Zenin, Mikhail A. Drabinskij, Niko- laj K. Kharchev, Alexander S. Kozachek, Ludmila I. Krupnik, and Hibp Team. Evaluation of Turbulent Particle Flux by Heavy Ion Beam Probe in the T-10 Tokamak. Plasma and Fusion Research, 13:3402106– 3402106, 2018.

[41] A. Le, V. Roytershteyn, H. Karimabadi, A. Stanier, L. Chacon, and K. Schneider. Wavelet methods for studying the onset of strong plasma turbulence. Physics of Plasmas, 25(12):122310, December 2018.

[42] B. Ph. van Milligen, C. Hidalgo, and E. Sánchez. Nonlinear Phenom- ena and Intermittency in Plasma Turbulence. Physical Review Letters, 74(3):395–398, January 1995.

[43] Tatsuya Kobayashi, Shigeru Inagaki, Hiroyuki Arakawa, Stella Old- enbürger, Makoto Sasaki, Yoshihiko Nagashima, Takuma Yamada, Satoru Sugita, Masatoshi Yagi, Naohiro Kasuya, Akihide Fujisawa, Sanae-I. Itoh, and Kimitaka Itoh. Observation of Nonlinear Coupling between Low Frequency Coherent Modes and Background Turbu- lence in LMD-U. Plasma and Fusion Research, 6:2401082–2401082, 2011.

[44] R Antonia. Conditional Sampling in Turbulence Measurement. An- nual Review of Fluid Mechanics, 13:131–156, 1981.

[45] Y. M. Yuan and M. R. Mokhtarzadeh-Dehghan. A comparison study of conditional-sampling methods used to detect coherent structures in turbulent boundary layers. Physics of Fluids, 6(6):2038–2057, June 1994.

[46] R. A. Moyer, T. E. Evans, T. H. Osborne, P. R. Thomas, M. Becoulet, J. Harris, K.-H. Finken, J. A. Boedo, E. J. Doyle, M. E. Fenstermacher, P. Gohil, R. J. Groebner, M. Groth, G. L. Jackson, R. J. La Haye, C. J. Lasnier, A. W. Leonard, G. R. McKee, H. Reimerdes, T. L. Rhodes, D. L. Rudakov, M. J. Schaffer, P. B. Snyder, M. R. Wade, G. Wang, J. G. Watkins, W. P. West, and L. Zeng. Edge localized mode control with an edge resonant magnetic perturbation. Physics of Plasmas, 12(5):056119, May 2005.

[47] I. Furno, B. Labit, M. Podestà, A. Fasoli, S. H. Müller, F. M. Poli, P. Ricci,

C. Theiler, S. Brunner, A. Diallo, and J. Graves. Experimental observa- tion of the blob-generation mechanism from interchange waves in a plasma. Physical Review Letters, 100(5):55004, 2008.

[48] C. Theiler, A. Diallo, A. Fasoli, I. Furno, B. Labit, M. Podestà, F. M. Poli, and P. Ricci. The role of the density gradient on intermittent cross-field transport events in a simple magnetized toroidal plasma. Physics of Plasmas, 15(4):042303, April 2008.

[49] K. E. Thome, M. W. Bongard, J. L. Barr, G. M. Bodner, M. G. Burke, R. J. Fonck, D. M. Kriete, J. M. Perry, and D. J. Schlossberg. High Confine- ment Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak. Physical Review Letters, 116(17):175001, April 2016.

[50] B. Nold, T. T. Ribeiro, M. Ramisch, Z. Huang, H. W. Müller, B. D. Scott, and U. Stroth and. Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes. New Journal of Physics, 14(6):063022, June 2012.

[51] Takuma Yamada, Sanae-I. Itoh, Kenichiro Terasaka, Naohiro Ka- suya, Yoshihiko Nagashima, Shunjiro Shinohara, Takashi Maruta, Masatoshi Yagi, Shigeru Inagaki, Yoshinobu Kawai, Akihide Fujisawa, and Kimitaka Itoh. Spatiotemporal Behavior of Drift Waves in LMD-U. Plasma and Fusion Research, 3:S1021–S1021, 2008.

[52] W. Horton, Jean C. Perez, Troy Carter, and Roger Bengtson. Vorticity probes and the characterization of vortices in the Kelvin–Helmholtz instability in the large plasma device experiment. Physics of Plasmas, 12(2):022303, February 2005.

[53] F. Brochard, E. Gravier, and G. Bonhomme. Transition from flute modes to drift waves in a magnetized plasma column. Physics of Plas- mas, 12(6):062104, June 2005.

[54] M. J. Burin, G. R. Tynan, G. Y. Antar, N. A. Crocker, and C. Holland. On the transition to drift turbulence in a magnetized plasma column. Physics of Plasmas, 12(5):052320, May 2005.

[55] G. R. Tynan, C. Holland, J. H. Yu, A. James, D. Nishijima, M. Shimada, and N. Taheri. Observation of turbulent-driven shear flow in a cylin- drical laboratory plasma device. Plasma Physics and Controlled Fu- sion, 48(4):S51–S73, March 2006.

[56] T. Kobayashi, S. Inagaki, Y. Kosuga, M. Sasaki, Y. Nagashima, T. Ya- mada, H. Arakawa, N. Kasuya, A. Fujisawa, S.-I. Itoh, and K. Itoh. Structure formation in parallel ion flow and density profiles by cross- ferroic turbulent transport in linear magnetized plasma. Physics of Plasmas, 23(10):102311, October 2016.

[57] Yoshihiko Nagashima, Shigeru Inagaki, Kunihiro Kamakaki, Hiroyuki Arakawa, Takuma Yamada, Shunjiro Shinohara, Yoshinobu Kawai, Masatoshi Yagi, Akihide Fujisawa, Sanae I. Itoh, Kimitaka Itoh, and Yuichi Takase. Development of radially movable multichannel Reynolds stress probe system for a cylindrical laboratory plasma. Re- view of Scientific Instruments, 82(3), March 2011.

[58] G. R. Tynan, A. D. Bailey, G. A. Campbell, R. Charatan, A. de Cham- brier, G. Gibson, D. J. Hemker, K. Jones, A. Kuthi, C. Lee, T. Shoji, and M. Wilcoxson. Characterization of an azimuthally symmetric helicon wave high density plasma source. Journal of Vacuum Science & Tech- nology A, 15(6):2885–2892, November 1997.

[59] Franklin Díaz. The Vasimr Rocket. Scientific American - SCI AMER, 283:90–97, November 2000.

[60] Kazunori Takahashi and Akira Ando. Laboratory Observation of a Plasma-Flow-State Transition from Diverging to Stretching a Mag- netic Nozzle. Physical Review Letters, 118(22):225002, June 2017.

[61] Kazunori Takahashi, Yoshinori Takao, and Akira Ando. Thrust im- parted by a stepped-diameter magnetic nozzle rf plasma thruster. Ap- plied Physics Letters, 113(3):034101, July 2018.

[62] A. W. Trivelpiece and R. W. Gould. Space Charge Waves in Cylindri- cal Plasma Columns. Journal of Applied Physics, 30(11):1784–1793, November 1959.

[63] Konstantin P. Shamrai. Stable modes and abrupt density jumps in a helicon plasma source. Plasma Sources Science and Technology, 7(4):499–511, November 1998.

[64] Shogo Isayama, Shunjiro Shinohara, and Tohru Hada. Review of He- licon High-Density Plasma: Production Mechanism and Plasma/Wave Characteristics. Plasma and Fusion Research, 13:1101014–1101014, 2018.

[65] Hirotyuki Arakawa, Shigeru Inagaki, Yusuke Kosuga, Makoto Sasaki, Fumiyoshi Kin, Kazunobu Hasamada, Kotaro Yamasaki, Tatsuya Kobayashi, Takuma Yamada, Yoshihiko Nagashima, Akihide Fuji- sawa, Naohiro Kasuya, Kimitaka Itoh, and Sanae-I. Itoh. Ion tem- perature measurement by laser-induced fluorescence spectroscopy in panta. IEEJ Transactions on Electrical and Electronic Engineering, 14(10):1450–1454, 2019.

[66] S. Tokuda, Y. Kawachi, M. Sasaki, H. Arakawa, K. Yamasaki, K. Terasaka, and S. Inagaki. Bayesian inference of ion velocity dis- tribution function from laser-induced fluorescence spectra. Scientific Reports, 11(1):20810, October 2021.

[67] J. E. Allen, R. L. F. Boyd, and P. Reynolds. The Collection of Positive Ions by a Probe Immersed in a Plasma. Proceedings of the Physical Society. B, 70(3):297–304, March 1957.

[68] Francis F. Chen. Langmuir probe analysis for high density plasmas. Physics of Plasmas, 8(6):3029–3041, June 2001.

[69] K. Riemann. The Bohm criterion and sheath formation. Journal of Physics D: Applied Physics, 1991.

[70] E. O. Johnson and L. Malter. A Floating Double Probe Method for Mea- surements in Gas Discharges. Physical Review, 80(1):58–68, October 1950.

[71] A. Qayyum, N. Ahmad, S. Ahmad, Farah Deeba, Rafaqat Ali, and S. Hus- sain. Time-resolved measurement of plasma parameters by means of triple probe. Review of Scientific Instruments, 84(12):123502, Decem- ber 2013.

[72] J. P. Sheehan and N. Hershkowitz. Emissive probes. Plasma Sources Science and Technology, 20(6):063001, November 2011.

[73] T. Klinger and A. Piel. Investigations of attractors arising from the in- teraction of drift waves and potential relaxation instabilities. Physics of Fluids B: Plasma Physics, 4(12):3990–3995, December 1992.

[74] Christiane Schröder, Thomas Klinger, Dietmar Block, Alexander Piel, Gérard Bonhomme, and Volker Naulin. Mode Selective Control of Drift Wave Turbulence. Physical Review Letters, 86(25):5711–5714, June 2001.

[75] U. Stroth, F. Greiner, C. Lechte, N. Mahdizadeh, K. Rahbarnia, and M. Ramisch. Study of edge turbulence in dimensionally similar labo- ratory plasmas. Physics of Plasmas, 11(5):2558–2564, May 2004.

[76] T. Yamada, Y. Nagashima, S. Inagaki, Y. Kawai, M. Yagi, S.-I. Itoh, T. Maruta, S. Shinohara, K. Terasaka, M. Kawaguchi, M. Fukao, A. Fu- jisawa, and K. Itoh. Fine positioning of a poloidal probe array. Review of Scientific Instruments, 78(12):123501, December 2007.

[77] P. Welch. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified peri- odograms. IEEE Transactions on Audio and Electroacoustics, 15(2):70– 73, June 1967.

[78] R. B. Blackman and J. W. Tukey. The measurement of power spectra from the point of view of communications engineering — Part I. The Bell System Technical Journal, 37(1):185–282, January 1958.

[79] Tad J. Ulrych and Thomas N. Bishop. Maximum entropy spectral analysis and autoregressive decomposition. Reviews of Geophysics, 13(1):183–200, 1975.

[80] N. R. Lomb. Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39(2):447–462, February 1976.

[81] J. D. Scargle. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysi- cal Journal, 263:835–853, December 1982.

[82] M. Zechmeister and M. Kürster. The generalised Lomb-Scargle peri- odogram - A new formalism for the floating-mean and Keplerian pe- riodograms. Astronomy & Astrophysics, 496(2):577–584, March 2009.

[83] Jacob T. VanderPlas. Understanding the Lomb–Scargle Periodogram. Astrophysical Journal Supplement, 236(1):16, May 2018.

[84] H. Gupta and R. Mehra. Power Spectrum Estimation using Welch Method for various Window Techniques. Computer Science, 2013.

[85] K. M. M. Prabhu. Window Functions and Their Applications in Signal Processing. Taylor & Francis, 2014.

[86] Ch. P. Ritz, E. J. Powers, R. W. Miksad, and R. S. Solis. Nonlinear spectral dynamics of a transitioning flow. The Physics of Fluids, 31(12):3577– 3588, December 1988.

[87] P. H. Diamond, M. N. Rosenbluth, E. Sanchez, C. Hidalgo, B. Van Milli- gen, T. Estrada, B. Brañas, M. Hirsch, H. J. Hartfuss, and B. A. Carreras. In Search of the Elusive Zonal Flow Using Cross-Bicoherence Analysis. Physical Review Letters, 84(21):4842–4845, May 2000.

[88] Sanae-I. Itoh, Kimitaka Itoh, Yoshihiko Nagashima, and Yusuke Ko- suga. On the Application of Cross Bispectrum and Cross Bicoherence. Plasma and Fusion Research, 12:1101003–1101003, 2017.

[89] Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971):903–995, March 1998.

[90] Dragan B. Ilić. Measurement of Ion-Acoustic Plasma Turbulence by Cross-Power Spectra. Physical Review Letters, 34(8):464–466, Febru- ary 1975.

[91] J. M. Beall, Y. C. Kim, and E. J. Powers. Estimation of wavenumber and frequency spectra using fixed probe pairs. Journal of Applied Physics, 53(6):3933–3940, June 1982.

[92] E. Wigner. On the Quantum Correction For Thermodynamic Equilib- rium. Physical Review, 40(5):749–759, June 1932.

[93] H. Inuzuka, T. Ishiguro, and S. Mizuno. Elimination of cross- components in the Wigner distribution of the exponentially swept data by varying the sampling rate. In Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I M. 1994 IEEE Instru- mentation and Measurement Technolgy Conference (Cat. No.94CH3424- 9), pages 717–720 vol.2, May 1994.

[94] K. Narahari Rao, R. Narasimha, and M. A. Badri Narayanan. The ‘bursting’ phenomenon in a turbulent boundary layer. Journal of Fluid Mechanics, 48(2):339–352, July 1971.

[95] R. F. Blackwelder and R. E. Kaplan. On the wall structure of the tur- bulent boundary layer. Journal of Fluid Mechanics, 76(1):89–112, July 1976.

[96] Garry L. Brown and Andrew S. W. Thomas. Large structure in a turbu- lent boundary layer. The Physics of Fluids, 20(10):S243–S252, October 1977.

[97] J. H. Shin, B. H. Choi, Y. G. Lim, D. U. Jeong, and K. S. Park. Automatic ballistocardiogram (BCG) beat detection using a template matching approach. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1144–1146, August 2008.

[98] Angela O. Leung, Ian Paterson, and Richard B. Thompson. Free- breathing cine MRI. Magnetic Resonance in Medicine, 60(3):709–717, 2008.

[99] Shigeru Inagaki, Yudai Miwa, Tatsuya Kobayashi, Takuma Ya- mada, Yoshihiko Nagashima, Tomohiro Mitsuzono, Hiromitsu Fujino, Makoto Sasaki, Naohiro Kasuya, Maxime Lesur, Yusuke Kosuga, Ak- ihide Fujisawa, Sanae I. Itoh, and Kimitaka Itoh. Identification of quasi-periodic nonlinear waveforms in turbulent plasmas. Plasma and Fusion Research, 9:1201016, 2014.

[100] Fumiyoshi Kin, Kimitaka Itoh, Tim Happel, Gregor Birkenmeier, Aki- hide Fujisawa, Sigeru Inagaki, Sanae-I. Itoh, Ulrich Stroth, and ASDEX Upgrade Team. Comparison of Conditional Average Using Thresh- old and Template Methods for Quasi-Periodic Phenomena in Plasmas. Plasma and Fusion Research, 14(0):1402114–1402114, June 2019.

[101] Yuichi Kawachi, Sigeru Inagaki, Kentaro Tomita, Kotaro Yamasaki, Fumiyoshi Kin, Yusuke Kosuga, Makoto Sasaki, Yoshihiko Nagashima, Naohiro Kasuya, Kazunobu Hasamada, Boyu Zhang, and Akihide Fujisawa. Determination of Spatiotemporal Structure of Fluctua- tions by Statistical Averaging Method. Plasma and Fusion Research, 13:3401105–3401105, 2018.

[102] Feng-Jen Chang and Eiichirou Kawamori. Control of solitary-drift- wave formation by radial density gradient in laboratory magnetized cylindrical plasma. Physics of Plasmas, 26(7):072304, July 2019.

[103] F. Kin, K. Itoh, A. Fujisawa, Y. Kosuga, M. Sasaki, T. Yamada, S. Ina- gaki, S.-I. Itoh, T. Kobayashi, Y. Nagashima, N. Kasuya, H. Arakawa,

K. Yamasaki, and K. Hasamada. Extraction of nonlinear waveform in turbulent plasma. Physics of Plasmas, 25(6):062304, June 2018.

[104] A. I. Smolyakov, P. H. Diamond, and M. Malkov. Coherent Structure Phenomena in Drift Wave–Zonal Flow Turbulence. Physical Review Letters, 84(3):491–494, January 2000.

[105] G. Chiodini, C. Riccardi, and M. Fontanesi. A 400 kHz, fast-sweep Lang- muir probe for measuring plasma fluctuations. Review of Scientific Instruments, 70(6):2681–2688, June 1999.

[106] Mark A. Meier, Roger D. Bengtson, Gary A. Hallock, and Alan J. Woot- ton. Adiabatic Electron Thermal Pressure Fluctuations in Tokamak Plasmas. Physical Review Letters, 87(8):085003, August 2001.

[107] V. Skoutnev, P. Dourbal, E. Rodríguez, and Y. Raitses. Fast sweeping probe system for characterization of spokes in E × B discharges. Re- view of Scientific Instruments, 89(12):123501, December 2018.

[108] B. N. Rogers and Paolo Ricci. Low-frequency turbulence in a linear magnetized plasma. Physical Review Letters, 104(22):225002, 2010.

[109] P. Popovich, M. V. Umansky, T. A. Carter, and B. Friedman. Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device. Physics of Plasmas, 17(10):102107, 2010.

[110] R. Kaur, A. K. Singh, R. Singh, A. Sarada Sree, and S. K. Mattoo. Ter- ritorial characteristics of low frequency electrostatic fluctuations in a simple magnetized torus. Physics of Plasmas, 18(1):012109, January 2011.

[111] D. Biskamp and A. Zeiler. Nonlinear Instability Mechanism in 3D Colli- sional Drift-Wave Turbulence. Physical Review Letters, 74(5):706–709, January 1995.

[112] J. Weiland, Heiji Sanuki, and C. S. Liu. Convective cell formation and anomalous diffusion due to electromagnetic drift wave turbulence. The Physics of Fluids, 24(1):93–101, January 1981.

[113] J. S. Kim, R. D. Durst, R. J. Fonck, E. Fernandez, A. Ware, and P. W. Terry. Technique for the experimental estimation of nonlinear energy trans- fer in fully developed turbulence. Physics of Plasmas, 3(11):3998– 4009, 1996.

[114] T. Dudok de Wit, V. V. Krasnosel’skikh, M. Dunlop, and H. Lühr. Identifying nonlinear wave interactions in plasmas using two-point measurements: A case study of Short Large Amplitude Magnetic Structures (SLAMS). Journal of Geophysical Research: Space Physics, 104(A8):17079–17090, 1999.

[115] P. Manz, M. Xu, S. C. Thakur, and G. R. Tynan. Nonlinear energy transfer during the transition to drift-interchange turbulence. Plasma Physics and Controlled Fusion, 53(9), 2011.

[116] Song Chai, Yuhong Xu, Zhe Gao, Wenhao Wang, Yangqing Liu, and Yi Tan. Experimental measurements of energy transfer and nonlin- ear interaction in turbulence at the sino-united spherical tokamak. Physics of Plasmas, 24(3):32503, 2017.

[117] F. M. Poli, M. Podestà, and A. Fasoli. Development of electrostatic turbulence from drift-interchange instabilities in a toroidal plasma. Physics of Plasmas, 14(5):052311, May 2007.

[118] Y. Lang, Z. B. Guo, X. G. Wang, and B. Li. Avalanches triggered by Kelvin-Helmholtz instability in a cylindrical plasma device. Physical Review E, 100(3):1–10, 2019.

[119] M. Sasaki, T. Kobayashi, R. O. Dendy, Y. Kawachi, H. Arakawa, and S. Inagaki. Evaluation of abrupt energy transfer among turbu- lent plasma structures using singular value decomposition. Plasma Physics and Controlled Fusion, 63(2):025004, December 2020.

[120] Makoto Sasaki, Naohiro Kasuya, Shinichiro Toda, Takuma Yamada, Yusuke Kosuga, Hiroyuki Arakawa, Tatsuya Kobayashi, Shigeru In- agaki, Akihide Fujisawa, Yoshihiko Nagashima, Kimitaka Itoh, and Sanae-I. Itoh. Multiple-Instabilities in Magnetized Plasmas with Den- sity Gradient and Velocity Shears. Plasma and Fusion Research, 12:1401042–1401042, 2017.

[121] K. J. Zhao, Y. Nagashima, P. H. Diamond, J. Q. Dong, K. Itoh, S.-I. Itoh, L. W. Yan, J. Cheng, A. Fujisawa, S. Inagaki, Y. Kosuga, M. Sasaki, Z. X. Wang, L. Wei, Z. H. Huang, D. L. Yu, W. Y. Hong, Q. Li, X. Q. Ji, X. M. Song, Y. Huang, Yi. Liu, Q. W. Yang, X. T. Ding, and X. R. Duan. Syn- chronization of Geodesic Acoustic Modes and Magnetic Fluctuations in Toroidal Plasmas. Physical Review Letters, 117(14):145002, Septem- ber 2016.

[122] J Adamek, J Horacek, J Seidl, HW Müller, R Schrittwieser, F Mehlmann, P Vondracek, S Ptak, COMPASS Team, ASDEX Upgrade Team, et al. Direct plasma potential measurements by ball-pen probe and self- emitting langmuir probe on COMPASS and ASDEX upgrade. Contri- butions to Plasma Physics, 54(3):279–284, 2014.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る