リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Search for gluinos in final states with jets and missing transverse momentum in pp collisions at √s = 13 TeV」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Search for gluinos in final states with jets and missing transverse momentum in pp collisions at √s = 13 TeV

宇野, 健太 東京大学 DOI:10.15083/0002004678

2022.06.22

概要

Standard Model (SM) provides a successful description in the current particle physics and it is consistent with almost all experiment results. However, the SM is not a perfect theory because there are unknown problems, which the SM cannot explain: the hierarchy problem and the existence of the dark matter. In order to explain these problems, the extension of the SM is needed.

 One of the promising solution of these problems is SUSY, which is a symmetry between fermions and bosons. When SUSY is considered, partners of all the SM particles (super-partners) are introduced. These undiscovered particles have been searched at several experiments. This thesis presents a search for gluino, which is the super- partner of gluon, using pp collision at √s =13 TeV with the LHC ATLAS detector. The data is collected in 2015-2018 corresponding to the integrated luminosity of 139 fb−1. Since the LHC is proton-proton collider, the cross section of gluino production is relatively large due to strong interaction. Therefore, the gluino search is one of most important physics programmes at the LHC. In order to search for gluinos, two pro- cesses are considered as the target signals. One is the process, which decays to the lightest neutralino χ˜01 through g˜ → qqχ˜01 decay (gluino direct decay). This is the most simplest process in all the gluino processes and the broad search for gluinos can be per- formed. The other is the process, which decays to χ˜0₁ through g˜ →qq′χ˜±0 or g˜ →qqχ˜02 decay (gluino one-step decay). For this process, the final states without leptons have the highest sensitivity in a region where the gluino is heavy.

 The search for higher gluino mass becomes more difficult because the cross section of gluino pair production is smaller as the gluino mass is higher. In order to improve the sensitivities of the target signals with higher gluino mass, a machine learning approach is introduced. It can improve the separation between signals and SM backgrounds using correlations of variables. Since the correlations are not considered explicitly in the previous result, which uses data collected in 2015-2016 corresponding to the integrated luminosity of 36 fb−1, it allows the sensitivities to be improved well.

 The analysis using the machine learning has mainly two difficulties. This research solves them as follows.

(i) The kinematics of signal processes depends on SUSY masses, so the determination of training samples considering kinematics is very crucial. In this analysis, eight training categories are prepared such that they can cover the signals with the mass difference between gluino and neutralino. By using these categories, the sensitivities of all signal mass points are improved.
(ii) The estimation of background is more complicated than the conventional approach because the machine learning utilizes correlations. The background estimation considering the correlations is developed to apply the machine learning to data. By this research, it has been proved that the outputs from the machine learning are the well-understood variables.

 No significant excess over the background prediction is observed as shown in Figure 1. The exclusion limits for the signal models at 95% confidence level are set. The gluino mass with the direct decay is excluded up to 2.15 TeV for massless neutralino as shown in Figure 2. Compared to the previous results, it is extended by 100 (200-300) GeV in heavier gluino (neutralino) mass. The gluino mass with the one-step decay is excluded up to 2.2 TeV for massless neutralino 3. For gluino one-step with W boson process, it is extended by 200 (300-400) GeV in heavier gluino (neutralino) mass compared to the previous results. For gluino one-step with Z boson process, there is only exclusion limit in final states with two leptons (Z →ℓℓ). Compared to the result, it is extended by 500 (300-400) GeV in heavier gluino (neutralino) mass compared to the previous results. Using the machine learning in this analysis allows the heavier gluino which has not been looked into before to access.

 In this research, the framework using the machine learning has been established in gluino search. Based on the framework, the first preliminary result of the gluino search using the machine learning was published from ATLAS. The constraints of gluino mass are the best in the world. It has been proved that the machine learning technique is applicable to SUSY search.

この論文で使われている画像

参考文献

[1] M. K. Gaillard, P. D. Grannis, and F. J. Sciulli, The standard model of particle physics, Reviews of Modern Physics 71 (1999) S96, Issn: 1539-0756, URL: http://dx.doi.org/ 10.1103/RevModPhys.71.S96 (cit. on p. 9).

[2] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 (cit. on pp. 9, 10).

[3] Particle Physics Standard Model Elementary Particle, URL: https://favpng.com/ png _ view / field - particle - physics - standard - model - elementary - particle-higgs-boson-png/JwgQnwMF (cit. on p. 9).

[4] G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Physics Letters B 716 (2012) 1, Issn: 0370-2693, URL: http://dx.doi.org/10.1016/j.physletb.2012.08.020 (cit. on p. 9).

[5] S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Physics Letters B 716 (2012) 30, Issn: 0370-2693, URL: http://dx.doi.org/10.1016/j.physletb.2012.08.021 (cit. on p. 9).

[6] C.-N. Yang and R. L. Mills, Isotopic spin conservation and a generalized gauge invariance, (1954) (cit. on p. 10).

[7] R. Ball, Chiral gauge theory, Physics Reports 182 (1989) 1, Issn: 0370-1573, URL: http://www.sciencedirect.com/science/article/pii/0370157389900276(cit. on p. 10).

[8] S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (4 1976) 974, URL: https://link.aps.org/doi/10.1103/PhysRevD.13.974 (cit. on p. 10).

[9] E. Corbelli and P. Salucci, The extended rotation curve and the dark matter halo of M33, Monthly Notices of the Royal Astronomical Society 311 (2000) 441, Issn: 1365-2966, URL: http://dx.doi.org/10.1046/j.1365-8711.2000.03075.x (cit. on pp. 10, 11).

[10] V. N. Aseev et al., Upper limit on the electron antineutrino mass from the Troitsk experiment, Physical Review D 84 (2011), Issn: 1550-2368, URL: http://dx.doi.org/10.1103/ PhysRevD.84.112003 (cit. on p. 11).

[11] P. Serra, F. Zalamea, A. Cooray, G. Mangano, and A. Melchiorri, Constraints on neutrino – dark matter interactions from cosmic microwave background and large scale structure data, 2009, arXiv: 0911.4411 [astro-ph.CO] (cit. on p. 11).

[12] Y. A. Golfand and E. P. Likhtman, Extension of the Algebra of Poincare Group Generators and Violation of p Invariance, JETP Lett. 13 (1971) 323, Pisma Zh. Eksp. Teor. Fiz.13,452(1971) (cit. on p. 11).

[13] D. Volkov and V. Akulov, Is the neutrino a goldstone particle?, Physics Letters B 46 (1973) 109, Issn: 0370-2693, URL: http://www.sciencedirect.com/science/article/ pii/0370269373904905 (cit. on p. 11).

[14] J. Wess and B. Zumino, Supergauge transformations in four dimensions, Nuclear Physics B 70 (1974) 39, Issn: 0550-3213, URL: http://www.sciencedirect.com/science/ article/pii/0550321374903551 (cit. on p. 11).

[15] J. Wess and B. Zumino, Supergauge invariant extension of quantum electrodynamics, Nuclear Physics B 78 (1974) 1, Issn: 0550-3213, URL: http://www.sciencedirect.com/ science/article/pii/0550321374901126 (cit. on p. 11).

[16] S. Ferrara and B. Zumino, Supergauge invariant Yang-Mills theories, Nuclear Physics B 79 (1974) 413, Issn: 0550-3213, URL: http://www.sciencedirect.com/science/ article/pii/0550321374905598 (cit. on p. 11).

[17] A. Salam and J. Strathdee, Super-symmetry and non-Abelian gauges, Physics Letters B 51 (1974) 353, Issn: 0370-2693, URL: http://www.sciencedirect.com/science/ article/pii/0370269374902263 (cit. on p. 11).

[18] P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Physics Letters B 64 (1976) 159, Issn: 0370-2693, URL: http://www.sciencedirect.com/science/article/pii/0370269376903191 (cit. on pp. 11, 13).

[19] P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Physics Letters B 69 (1977) 489, Issn: 0370-2693, URL: http : / / www . sciencedirect. com/ science/ article/ pii/ 0370269377908528 (cit. on pp. 11, 13).

[20] W. d. Boer, Perspectives on the detection of supersymmetric Dark Matter, EPJ Web of Conferences 182 (2018) 02034, ed. by Y. Aharonov, L. Bravina, and S. Kabana, Issn: 2100-014X, URL: http:// dx. doi. org/ 10 . 1051 / epjconf/ 201818202034 (cit. on p. 12).

[21] L. Girardello and M. T. Grisaru, Soft Breaking of Supersymmetry, Nucl. Phys. B194 (1982) 65 (cit. on p. 12).

[22] G. R. Farrar and P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry, Physics Letters B 76 (1978) 575, Issn: 0370-2693, URL: http://www.sciencedirect.com/science/article/pii/ 0370269378908584 (cit. on p. 13).

[23] K. Abe et al., Search for proton decay via p e+π0 and p µ+π0 in 0.31 megaton years exposure of the Super-Kamiokande water Cherenkov detector, Phys. Rev. D 95 (1 2017) 012004, URL: https://link.aps.org/doi/10.1103/PhysRevD.95.012004 (cit. on p. 13).

[24] L. J. Hall, D. Pinner, and J. T. Ruderman, A natural SUSY Higgs near 125 GeV, Journal of High Energy Physics 2012 (2012), Issn: 1029-8479, URL: http://dx.doi.org/10. 1007/JHEP04(2012)131 (cit. on pp. 13, 14).

[25] A. Djouadi, J.-L. Kneur, and G. Moultaka, SuSpect: A Fortran code for the Supersymmetric and Higgs particle spectrum in the MSSM, Computer Physics Communications 176 (2007) 426, Issn: 0010-4655, URL: http://dx.doi.org/10.1016/j.cpc.2006.11.009 (cit. on p. 14).

[26] M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, Journal of High Energy Physics 2007 (2007) 047, Issn: 1029-8479, URL: http://dx.doi.org/10.1088/1126- 6708/2007/02/047 (cit. on p. 14).

[27] S. P. MARTIN, A SUPERSYMMETRY PRIMER, Advanced Series on Directions in High Energy Physics (1998) 1, Issn: 1793-1339, URL: http://dx.doi.org/10.1142/ 9789812839657_0001 (cit. on p. 14).

[28] M. Ciuchini et al., Delta MK and epsilonK in SUSY at the next-to-leading order, Journal of High Energy Physics 1998 (1998) 008, Issn: 1029-8479, URL: http://dx.doi.org/10. 1088/1126-6708/1998/10/008 (cit. on p. 14).

[29] C. Beskidt et al., Constraints on Supersymmetry from relic density compared with future Higgs searches at the LHC, Physics Letters B 695 (2011) 143, Issn: 0370-2693, URL: http://dx.doi.org/10.1016/j.physletb.2010.10.048 (cit. on p. 15).

[30] N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, 2018, arXiv: 1807. 06209 [astro-ph.CO] (cit. on p. 15).

[31] G. Aad et al., Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 — interpreted in the phenomenological MSSM, Journal of High Energy Physics 2015 (2015), Issn: 1029-8479, URL: http://dx.doi.org/10.1007/JHEP10(2015)134 (cit. on pp. 15, 16).

[32] A. Djouadi et al., The Minimal supersymmetric standard model: Group summary report, 1998, arXiv: hep-ph/9901246 (cit. on p. 16).

[33] C. F. Berger, J. S. Gainer, J. L. Hewett, and T. G. Rizzo, Supersymmetry Without Prejudice, JHEP 02 (2009) 023, arXiv: 0812.0980 [hep-ph] (cit. on p. 16).

[34] M. Aaboud, G. Aad, B. Abbott, and et.all, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36fb−1 of √s =13 TeV pp collision data with the ATLAS detector, Phys. Rev. D 97 (11 2018) 112001, URL: https://link.aps.org/doi/10.1103/PhysRevD.97.112001 (cit. on pp. 16, 17, 20, 35, 67, 69, 126–131).

[35] M. Aaboud et al., Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at √s =13 TeV with the ATLAS detector, Journal of High Energy Physics 2017 (2017) 85, Issn: 1029-8479, URL: https://doi.org/10.1007/JHEP12(2017) 085 (cit. on pp. 16, 17).

[36] M. Aaboud et al., Search for electroweak production of supersymmetric particles in final states with two or three leptons at √s =13 TeV with the ATLAS detector, The European Physical Journal C 78 (2018) 995, Issn: 1434-6052, URL: https://doi.org/10.1140/epjc/s10052-018-6423-7 (cit. on pp. 16, 17).

[37] LHC SUSY Cross Section Working Group, URL: ttps://twiki.cern.ch/twiki/ bin/view/LHCPhysics/SUSYCrossSections (cit. on pp. 19, 114).

[38] L. Evans and P. Bryant, LHC Machine, Journal of Instrumentation 3 (2008) S08001 (cit. on p. 21).

[39] T. A. Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, Journal of Instrumentation 3 (2008) S08003 (cit. on pp. 21, 23, 24).

[40] S. Chatrchyan et al., The CMS experiment at the CERN LHC, Journal of Instrumentation 3 (2008) S08004 (cit. on p. 21).

[41] A. A. Alves Jr. et al., The LHCb Detector at the LHC, Journal of Instrumentation 3 (2008) S08005 (cit. on p. 21).

[42] K. Aamodt et al., The ALICE experiment at the CERN LHC, Journal of Instrumentation 3 (2008) S08002 (cit. on p. 21).

[43] E. Mobs, The CERN accelerator complex - August 2018., (2018), General Photo, URL: https://cds.cern.ch/record/2636343 (cit. on p. 21).

[44] G. Aad et al., ATLAS data quality operations and performance for 2015-2018 data-taking, 2019, arXiv: 1911.04632 [physics.ins-det] (cit. on pp. 22, 23, 31).

[45] G. Avoni et al., The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS, JINST 13 (2018) P07017 (cit. on pp. 23, 31, 110).

[46] CERN Archive Photo, URL: https://mediaarchive.cern.ch/MediaArchive/ Photo / Public / 2008 / 0803014 / 0803014 _ 01 / 0803014 _ 01 - A5 - at - 72 - dpi.jpg (cit. on p. 25).

[47] ATLAS Insertable B-Layer Technical Design Report Addendum, tech. rep. CERN-LHCC-2012-009. ATLAS-TDR-19-ADD-1, Addendum to CERN-LHCC-2010-013, ATLAS-TDR-019, 2012, URL: https://cds.cern.ch/record/1451888 (cit. on p. 24).

[48] B. Abbott et al., Production and integration of the ATLAS Insertable B-Layer, Journal of Instrumentation 13 (2018) T05008, Issn: 1748-0221, URL: http://dx.doi.org/10. 1088/1748-0221/13/05/T05008 (cit. on p. 24).

[49] E. Abat et al., The ATLAS TRT Barrel Detector, Journal of Instrumentation 3 (2008) P02014, URL: https://doi.org/10.1088%2F1748-0221%2F3%2F02%2Fp02014 (cit. on p. 25).

[50] ATLAS liquid-argon calorimeter: Technical Design Report, Technical Design Report ATLAS, CERN, 1996, URL: https://cds.cern.ch/record/331061 (cit. on pp. 26, 27).

[51] 2015 start-up trigger menu and initial performance assessment of the ATLAS trigger using Run-2 data, 2016, URL: https://cds.cern.ch/record/2136007 (cit. on pp. 28, 29, 31).

[52] Trigger Menu in 2016, 2017, URL: https://cds.cern.ch/record/2242069 (cit. on pp. 28, 31).

[53] Trigger Menu in 2017, 2018, URL: https://cds.cern.ch/record/2625986 (cit. on pp. 28, 31).

[54] Trigger menu in 2018, 2019, URL: https://cds.cern.ch/record/2693402 (cit. on pp. 28, 31).

[55] Luminosity determination in pp collisions at √s = 13 TeV using the ATLAS detector at the LHC, 2019, URL: https://cds.cern.ch/record/2677054 (cit. on pp. 31, 110).

[56] E. Bothmann et al., Event generation with Sherpa 2.2, SciPost Physics 7 (2019), Issn: 2542-4653, URL: http:// dx. doi. org/ 10 . 21468 / SciPostPhys. 7 . 3 . 034 (cit. on pp. 33, 34).

[57] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388, arXiv: 1011.3540 [hep-ph] (cit. on p. 33).

[58] R. D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040, arXiv: 1410.8849 [hep-ph] (cit. on pp. 33, 34).

[59] T. Gleisberg and S. Höche, Comix, a new matrix element generator, Journal of High Energy Physics 2008 (2008) 039, Issn: 1029-8479, URL: http://dx.doi.org/10.1088/ 1126-6708/2008/12/039 (cit. on p. 33).

[60] F. Cascioli, P. Maierhöfer, and S. Pozzorini, Scattering Amplitudes with Open Loops, Physical Review Letters 108 (2012), Issn: 1079-7114, URL: http://dx.doi.org/10.1103/ PhysRevLett.108.111601 (cit. on p. 33).

[61] A. Denner, S. Dittmaier, and L. Hofer, Collier: A fortran-based complex one-loop library in extended regularizations, Computer Physics Communications 212 (2017) 220, Issn: 0010-4655, URL: http://dx.doi.org/10.1016/j.cpc.2016.10.013 (cit. on p. 33).

[62] S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, Journal of High Energy Physics 2008 (2008) 038, Issn: 1029-8479, URL: http://dx.doi.org/10.1088/1126-6708/2008/03/038 (cit. on pp. 33, 34).

[63] S. Höche, F. Krauss, M. Schönherr, and F. Siegert, A critical appraisal of NLO+PS matching methods, Journal of High Energy Physics 2012 (2012), Issn: 1029-8479, URL: http ://dx.doi.org/10.1007/JHEP09(2012)049 (cit. on p. 33).

[64] S. Höche, F. Krauss, M. Schönherr, and F. Siegert, QCD matrix elements + parton showers. The NLO case, Journal of High Energy Physics 2013 (2013), Issn: 1029-8479, URL: http: //dx.doi.org/10.1007/JHEP04(2013)027 (cit. on p. 33).

[65] S. Catani, F. Krauss, B. R. Webber, and R. Kuhn, QCD Matrix Elements + Parton Showers, Journal of High Energy Physics 2001 (2001) 063, Issn: 1029-8479, URL: http://dx.doi. org/10.1088/1126-6708/2001/11/063 (cit. on pp. 33, 111).

[66] S. Frixione, P. Nason, and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126, arXiv: 0707.3088 [hep-ph] (cit. on p. 34).

[67] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040, arXiv: hep-ph/0409146 (cit. on p. 34).

[68] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070, arXiv: 0709.2092 [hep-ph] (cit. on p. 34).

[69] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043, arXiv: 1002.2581 [hep-ph] (cit. on p. 34).

[70] Studies on top-quark Monte Carlo modelling for Top2016, 2016, URL: http://cds.cern. ch/record/2216168 (cit. on p. 34).

[71] Studies on top-quark Monte Carlo modelling with Sherpa and MG5 aMC@NLO, 2017, URL: http://cds.cern.ch/record/2261938 (cit. on p. 34).

[72] T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159, arXiv: 1410.3012 [hep-ph] (cit. on p. 34).

[73] ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data, ATL-PHYS-PUB-2014-021, 2014, URL: https://cds.cern.ch/record/1966419 (cit. on p. 34).

[74] M. Beneke, P. Falgari, S. Klein, and C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation, Nucl. Phys. B 855 (2012) 695, arXiv: 1109.1536 [hep-ph] (cit. on p. 34).

[75] M. Cacciari, M. Czakon, M. Mangano, A. Mitov, and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612, arXiv: 1111.5869 [hep-ph] (cit. on p. 34).

[76] P. Bärnreuther, M. Czakon, and A. Mitov, Percent-Level-Precision Physics at the Tevatron: Next-to-Next-to-Leading Order QCD Corrections to qq¯ → tt¯ + X, Phys. Rev. Lett. 109 (2012) 132001, arXiv: 1204.5201 [hep-ph] (cit. on p. 34).

[77] M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054, arXiv: 1207.0236 [hep-ph] (cit. on p. 34).

[78] M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080, arXiv: 1210.6832 [hep-ph] (cit. on p. 34).

[79] M. Czakon, P. Fiedler, and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(α4), Phys. Rev. Lett. 110 (2013) 252004, arXiv: 1303.6254 [hep-ph] (cit. on p. 34).

[80] M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930, arXiv: 1112 . 5675 [hep-ph] (cit. on p. 34).

[81] R. Frederix, E. Re, and P. Torrielli, Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO, Journal of High Energy Physics 2012 (2012), Issn: 1029-8479, URL: http://dx.doi.org/10.1007/JHEP09(2012)130 (cit. on p. 34).

[82] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, arXiv: 1405.0301 [hep-ph] (cit. on pp. 34, 35, 113).

[83] S. Frixione, E. Laenen, P. Motylinski, and B. R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP 04 (2007) 081, arXiv: hep-ph/0702198 (cit. on p. 34).

[84] P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, Journal of High Energy Physics 2013 (2013), Issn: 1029-8479, URL: http://dx.doi.org/10.1007/JHEP03(2013)015 (cit. on p. 34).

[85] D. J. Lange, The EvtGen particle decay simulation package, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 462 (2001) 152, BEAUTY2000, Proceedings of the 7th Int. Conf. on B-Physics at Hadron Machines, Issn: 0168-9002, URL: http://www.sciencedirect.com/ science/article/pii/S0168900201000894 (cit. on p. 34).

[86] J. Alwall, M.-P. Le, M. Lisanti, and J. G. Wacker, Searching for directly decaying gluinos at the Tevatron, Physics Letters B 666 (2008) 34, Issn: 0370-2693, URL: http://dx.doi. org/10.1016/j.physletb.2008.06.065 (cit. on p. 35).

[87] J. Alwall, P. C. Schuster, and N. Toro, Simplified models for a first characterization of new physics at the LHC, Physical Review D 79 (2009), Issn: 1550-2368, URL: http : //dx.doi.org/10.1103/PhysRevD.79.075020 (cit. on p. 35).

[88] D. Alves et al., Simplified models for LHC new physics searches, Journal of Physics G: Nuclear and Particle Physics 39 (2012) 105005, Issn: 1361-6471, URL: http://dx.doi.org/10. 1088/0954-3899/39/10/105005 (cit. on p. 35).

[89] K. Hamaguchi and K. Ishikawa, Prospects for Higgs- andZ-resonant neutralino dark matter, Physical Review D 93 (2016), Issn: 2470-0029, URL: http://dx.doi.org/10.1103/ PhysRevD.93.055009 (cit. on pp. 35, 126).

[90] G. Aad et al., The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823, arXiv: 1005.4568 [physics.ins-det] (cit. on p. 36).

[91] S. Agostinelli et al., GEANT4: A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 (cit. on p. 36).

[92] The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim, 2010, URL: http://cds.cern.ch/record/1300517 (cit. on p. 36).

[93] A. Rosenfeld and J. L. Pfaltz, Sequential Operations in Digital Picture Processing, J. ACM 13 (1966) 471 (cit. on p. 39).

[94] R. Fruhwirth, Application of Kalman filtering to track and vertex fitting, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 262 (1987) 444, Issn: 0168-9002, URL: http : / / www . sciencedirect. com/ science/ article/ pii/ 0168900287908874 (cit. on p. 39).

[95] M. Aaboud et al., Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2, The European Physical Journal C 77 (2017), Issn: 1434-6052, URL: http://dx.doi.org/10.1140/epjc/s10052-017-5225-7 (cit. on p. 39).

[96] M. Aaboud et al., Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC, The European Physical Journal C 77 (2017), Issn: 1434-6052, URL: http://dx.doi.org/10.1140/epjc/s10052-017-4887-5 (cit. on p. 39).

[97] G. Aad et al., Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, The European Physical Journal C 77 (2017), Issn: 1434-6052, URL: http: //dx.doi.org/10.1140/epjc/s10052-017-5004-5 (cit. on p. 39).

[98] Matteo Cacciari and Gavin P Salam and Gregory Soyez, The anti-ktjet clustering algorithm, Journal of High Energy Physics 2008 (2008) 063 (cit. on pp. 39, 40).

[99] Cacciari, Matteo and Salam, Gavin P. and Soyez, Gregory, FastJet user manual, The European Physical Journal C 72 (2012) 1896, Issn: 1434-6052, URL: https:// doi. org/ 10 . 1140/epjc/s10052-012-1896-2 (cit. on p. 39).

[100] M. Aaboud et al., Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at √s = 13TeV with the ATLAS detector, Phys. Rev. D 96 (7 2017) 072002, URL: https://link.aps.org/doi/10.1103/PhysRevD.96. 072002 (cit. on pp. 40–43, 110).

[101] G. P. Salam, Towards jetography, The European Physical Journal C 67 (2010) 637, Issn: 1434-6052, URL: http://dx.doi.org/10.1140/epjc/s10052-010-1314-6 (cit. on p. 41).

[102] Jet energy scale and uncertainties in 2015-2017 data and simulation, URL: https:// atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM- 2018- 006/ (cit. on p. 43).

[103] Tagging and suppression of pileup jets with the ATLAS detector, tech. rep. ATLAS-CONF-2014-018, CERN, 2014, URL: https:// cds. cern. ch/ record/ 1700870 (cit. on pp. 44, 45).

[104] Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run, tech. rep. ATL-PHYS-PUB-2016-012, CERN, 2016, URL: https://cds.cern.ch/record/ 2160731 (cit. on pp. 45, 46, 110).

[105] Performance ofb-jet identification in the ATLAS experiment, Journal of Instrumentation 11 (2016) P04008, Issn: 1748-0221, URL: http://dx.doi.org/10.1088/1748-0221/11/04/P04008 (cit. on pp. 45, 46, 110).

[106] M. Aaboud et al., Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at √s = 13 TeV, 2019, arXiv: 1902.04655 [physics.ins-det] (cit. on pp. 47, 48, 110).

[107] M. Aaboud et al., Electron eflciency measurements with the ATLAS detector using 2012 LHC proton–proton collision data, The European Physical Journal C 77 (2017), Issn: 1434-6052, URL: http://dx.doi.org/10.1140/epjc/s10052-017-4756-2 (cit. on pp. 47, 48, 110).

[108] G. Aad et al., Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √s=13 TeV, The European Physical Journal C 76 (2016), Issn: 1434-6052, URL: http://dx.doi.org/10.1140/epjc/s10052-016-4120-y (cit. on pp. 48, 49, 110).

[109] M. Aaboud, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at √s =13 TeV, The European Physical Journal C 78 (2018) 903, Issn: 1434-6052, URL: https://doi.org/10.1140/epjc/s10052-018-6288-9 (cit. on pp. 49, 50, 110).

[110] Selection of jets produced in 13TeV proton-proton collisions with the ATLAS detector, tech. rep. ATLAS-CONF-2015-029, CERN, 2015, URL: http://cds.cern.ch/record/ 2037702 (cit. on p. 53).

[111] J. D. Bjorken and S. J. Brodsky, Statistical Model for Electron-Positron Annihilation into Hadrons, Phys. Rev. D 1 (5 1970) 1416, URL: https://link.aps.org/doi/10. 1103/PhysRevD.1.1416 (cit. on p. 60).

[112] P. Speckmayer, A. Hocker, J. Stelzer, and H. Voss, The Toolkit for Multivariate Data Analysis, TMVA 4, Journal of Physics: Conference Series, v.219, 3, 1-11 (2010) 219 (2010) (cit. on p. 63).

[113] A. Hoecker et al., TMVA - Toolkit for Multivariate Data Analysis, 2007, arXiv: physics/ 0703039 [physics.data-an] (cit. on pp. 63, 64, 97).

[114] Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb−1 of √s =13 TeV pp collision data with the ATLAS detector, tech. rep. ATLAS-CONF-2019-040, CERN, 2019, URL: https:// cds. cern. ch/ record/ 2686254 (cit. on p. 65).

[115] R. D. Cousins, J. T. Linnemann, and J. Tucker, Evaluation of three methods for calculating statistical significance when incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 595 (2008) 480, Issn: 0168-9002, URL: http://www.sciencedirect.com/science/ article/pii/S0168900208010255 (cit. on p. 69).

[116] M. Czakon et al., Top-pair production at the LHC through NNLO QCD and NLO EW, Journal of High Energy Physics 2017 (2017), Issn: 1029-8479, URL: http://dx.doi.org/10. 1007/JHEP10(2017)186 (cit. on pp. 92, 113).

[117] M. Baak et al., HistFitter software framework for statistical data analysis, The European Physical Journal C 75 (2015), Issn: 1434-6052, URL: http://dx.doi.org/10.1140/ epjc/s10052-015-3327-7 (cit. on p. 107).

[118] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, The European Physical Journal C 71 (2011), Issn: 1434-6052, URL: http://dx.doi.org/10.1140/epjc/s10052- 011- 1554- 0 (cit. on pp. 108, 109).

[119] A. L. Read, Presentation of search results: theCLstechnique, Journal of Physics G: Nuclear and Particle Physics 28 (2002) 2693 (cit. on p. 109).

[120] A. Buckley et al., General-purpose event generators for LHC physics, Physics Reports 504 (2011) 145, Issn: 0370-1573, URL: http://dx.doi.org/10.1016/j.physrep. 2011.03.005 (cit. on pp. 110, 111).

[121] P. Skands, QCD for Collider Physics, 2011, arXiv: 1104.2863 [hep-ph] (cit. on p. 110).

[122] J. C. Collins, D. E. Soper, and G. Sterman, Factorization of Hard Processes in QCD, 2004, arXiv: hep-ph/0409313 [hep-ph] (cit. on p. 111).

[123] J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, The European Physical Journal C 76 (2016), Issn: 1434-6052, URL: http://dx.doi.org/10.1140/epjc/s10052- 016-4018-8 (cit. on p. 113).

[124] M. Aaboud et al., Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in √s =13 TeV pp collisions with the ATLAS detector, Eur. Phys. J. C78 (2018) 625, arXiv: 1805.11381 [hep-ex] (cit. on pp. 126, 127).

[125] Search for supersymmetry in final states with missing transverse momentum and multiple b-jets in proton-proton collisions at √s = 13 TeV with the ATLAS detector, tech. rep. ATLAS-CONF-2018-041, CERN, 2018, URL: https:// cds. cern. ch/ record/ 2632347 (cit. on p. 127).

[126] A. M. Sirunyan et al., Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum, Journal of High Energy Physics 2019 (2019), Issn: 1029-8479, URL: http://dx.doi.org/10.1007/JHEP10(2019)244 (cit. on pp. 131, 132).

[127] L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nuclear Physics B 557 (1999) 79, Issn: 0550-3213, URL: http://www.sciencedirect.com/science/ article/pii/S0550321399003594 (cit. on p. 132).

[128] H. Nilles, Supersymmetry, supergravity and particle physics, Physics Reports 110 (1984) 1, Issn: 0370-1573, URL: http://www.sciencedirect.com/science/article/ pii/0370157384900085 (cit. on p. 132).

[129] H. Haber and G. Kane, The search for supersymmetry: Probing physics beyond the standard model, Physics Reports 117 (1985) 75, Issn: 0370-1573, URL: http://www. sciencedirect. com/ science/ article/ pii/ 0370157385900511 (cit. on p. 132).

[130] M. Carena, J. Espinosa, M. Quirós, and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Physics Letters B 355 (1995) 209, Issn: 0370-2693, URL: http://dx.doi.org/10.1016/0370-2693(95)00694-G (cit. on p. 132).

[131] M. Papucci, J. T. Ruderman, and A. Weiler, Natural SUSY endures, Journal of High Energy Physics 2012 (2012), Issn: 1029-8479, URL: http : / / dx . doi . org / 10 . 1007 / JHEP09(2012)035 (cit. on p. 132).

[132] K. Uno, Firmware Development for the first level trigger of ATLAS LAr Calorimeter, PoS KMI2017 (2017) 64 (cit. on p. 145).

[133] K. Uno, The Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid Argon Calorimeters, PoS TWEPP2018 (2019) 128 (cit. on p. 145).

[134] ATLAS Liquid Argon Calorimeter Phase-I Upgrade Technical Design Report, tech. rep. CERN-LHCC-2013-017. ATLAS-TDR-022, Final version presented to December 2013 LHCC., 2013, URL: https://cds.cern.ch/record/1602230 (cit. on pp. 145, 146).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る