リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「GEONET観測網による北海道東部における地殻ひずみの時空間変化」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

GEONET観測網による北海道東部における地殻ひずみの時空間変化

大園, 真子 北海道大学

2020.03.19

概要

The crustal deformation field in eastern Hokkaido is affected by a little complex tectonic system, such as the interplate coupling between the Pacific plate and the Okhotsk plate, deformable volcanic front, local volcanism, and inland seismic activity. In order to confirm spatiotemporal change of the crustal strain distribution in this area, GNSS daily coordinates obtained from GEONET are analyzed. The 41 of data sets made by three-years daily coordinate time series shifting 0.5 years since 1996.5 are prepared after elimination of coseismic steps induced by several large earthquakes. Then, velocity and strain tensors are calculated. It is clear that the 2003 Tokachi-oki earthquake and the 2011 Tohoku-oki earthquake generated temporary strain disturbances at this study area. However, most of strain fields indicate NW-SE contractional maximum strain through all period. This contractional direction corresponds to the Pacific plate convergence or orthogonal direction with respect to the Kurile Trench axis. It is thought that the plate convergence effect is working in this area even though disturbances receives, such as large earthquakes. The high strain rate field around volcanic front exists through the whole period. The strain field calculated from simulated interseismic velocity data provided by Itoh et al. (2019), which assumes thinner elastic layer with lower rigidity in the volcanic front region than forearc and backarc regions, also reproduces high strain rate field at this area. Around each volcano, the crustal deformation field is probably composed of this regional heterogeneous structure effect and local volcanic activities.

参考文献

壇原毅・友田好文 , 1969.測地・地球物理 , 地球科学講座 5, 共立出版 , pp.294

Fujiwara, S., M. Murakami, T. Nishimura, M. Tobita, H. Yarai, T. Kobayashi, 2017. Volcanic deformation of Atosanupuri volcanic complex in the Kussharo caldera, Japan, from 1993 to 2016 revealed by JERS-1, ALOS, and ALOS-2 radar interferometry, Earth Planet. Space, 69:78, doi:10.1186/s40623-017-0662-y

Hasegawa, A., J. Nakajima, N. Umino, S. Miura, 2005. Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity, Tectonophysics, 403, 59-75, doi:10.1016/j. tecto.2005.03.018

Hashimoto, C., A. Noda, T. Sagiya, M. Matsu’ura, 2009. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion, Nature Geoscience, 2, 141-144, doi:10.1038/NGEO421

Heki, K., Y. Mitsui, 2013. Accelerated pacific plate subduction following interplate thrust earthquakes at the Japan trench, Earth Planet. Sci. Lett., 363, 44-49, doi:10.1016/j.epsl.2012.12.031

本多亮・山谷祐介・市原寛・長谷英彰・茂木透・山下晴之・大山倫敦・上嶋誠・中川光弘 , 2011. 屈斜路カルデラ周辺における MT 法による比抵抗探査 , 北大地物報告 , 74,45-55, doi:10.14943/gbhu.74.45

Itoh, Y., K. Wang, T. Nishimura, J. He, 2019. Compliant volcanic arc and backarc crust in southern Kurile suggested by interseismic geodetic deformation, Geophys. Res. Lett., 46, 11790-11798, doi:10.1029/2019GL084656

木村久夫・宮原伐折羅 , 2013, GEONET が捉えた地震に伴う地殻変動カタログの整備 , 地理院時報 , 124, 57-63

気象庁 2019, 第 140 回火山噴火予知連絡会資料 , https://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/kaisetsu/CCPVE/shiryo/140/140_02-2.pdf

Kita, S., J. Nakajima, A. Hasegawa, T. Okada, K. Katsumata, Y. Asano, T. Kimura, 2014. Detailed seismic attenuation structure beneath Hokkaido, northeastern Japan: Arc‐arc collision process, arc magmatism, and seismotectonics, J. Geophys. Res. 119, 6486-6511, doi.org/10.1002/2014JB011099

国土地理院 , 2019a. 1. 北海道地方の地殻ひずみ , https://www.gsi.go.jp/cais/HIZUMI-hizumi1.html

国土地理院 , 2019b. GEONET により地殻変動を観測した地震一覧 , https://mekira.gsi.go.jp/catalogue/index.html

Kreemer, C., G. Blewitt, E.C. Klein, 2014. A geodetic plate motion and Global Strain Rate Model, Geochem. Geophys. Geosystem., 15, 3849-3889, doi.org/10.1002/2014GC005407

Loveless, J. P., B. J. Meade, 2010. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan, J. Geophys. Res., 115, B02410, doi:10.1029/2008JB006248

Matsubata, M., H. Sato, K. Uehira, M. Mochizuki, T. Kanazawa, N. Takahashi, K. Suzuki, S. Kamiya, 2019. Seismic velocity structure in and around the Japanese Island arc derived from seismic tomography including NIED MOWLAS Hi-net and S-net data, IntechOpen, 1-19, doi:10.5772/intechopen.86936

湊 , 2016. 有限要素シミュレーションによる不均質地殻構造が歪集中に与える影響の分析:屈斜路カルデラ周辺を対象として,北海道大学理学研究院修士論文,pp. 76

中川弘之・豊福隆史・小谷京湖・宮原伐折羅・岩下知真子・川元智司・畑中雄樹・宗包浩志・石本正芳・湯通堂亨・石倉信広・菅原安宏 , 2009. GPS 連続観測システム(GEONET)の新しい解析戦略(第 4 版)によるルーチン解析システムの構築について , 地理院時報 , 118, 1-112

Shen, Z-K, D. D. Jackson, B. X. Ge, 1996. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements, J. Geophys. Res., 101(B12), 27957-27980, doi:10.1029/96JB02544

Yamasaki, T., T. Kobayashi, T. J. Wright, Y. Fukahata, 2018. Viscoelastic crustal deformation by magmatic intrusion: A case study in the Kutcharo caldera, eastern Hokkaido, Japan, V. Volcano. Geotherm. Res., 349, 128-145, doi:10.1016/j.volgeores.2017.10.011

Wessel, P., W. H. F. Smith, R. Scharroo, J. F. Luis, F. Wobbe, 2013. Generic Mapping Tools: Improved version released, EOS Trans. AGU, 94, 409-410, doi:10.1002/2013EO450001

札幌管区気象台 , 1985. 地震津波防災資料 (1), pp. 292

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る