リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Functional analysis of P450 monooxygenases responsible for production of highly functional secondary metabolites in Actinomycetes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Functional analysis of P450 monooxygenases responsible for production of highly functional secondary metabolites in Actinomycetes

手島 愛子 広島大学

2021.03.23

概要

Secondary metabolites including antibiotics are assembled by multiple enzymes that
coordinate their unique structures with a variety of biological activities. The cytochrome
P450 enzymes (P450s) form a superfamily of heme-containing enzymes that are
responsible for oxidation of secondary metabolites (Figure 1) [1]. They are widely spread
in all Kingdom including animals, fungi, bacteria, and plants. ...

この論文で使われている画像

参考文献

[1] Lewis D. F. V. “Cytochromes P450-Structure, Function and Mechanism.” Taylor and

Francis Ltd., 79-113 (1996).

[2] Ōmura T., Ishimura Y. and Fujii Y. “Molecular Biology of P450.” Kodansha scientific,

(2003) (in Japanese).

[3] Lamb D. C., Zhao B., Guengerich F. P., Kelly S. L. and Waterman M. R. “Genomics

of Streptomyces cytochrome P450. In Streptomyces Molecular Biology and

Biotechnology” (P. Dyson, Ed.), Caister Academic Press, Norfolk, UK, 233-253 (2011).

[4] Rudolf J. D., Chang C. Y., Ma M. and Shen B. “Cytochromes P450 for natural product

biosynthesis in Streptomyces: sequence, structure, and function.” Nat. Prod. Rep., 34,

1141-1172 (2017).

[5] Hussain H. A. and Ward J. M. “Enhanced heterologous expression of two

Streptomyces griseolus cytochrome P450s and Streptomyces coelicolor ferredoxin

reductase as potentially efficient hydroxylation catalysts.” Appl. Environ. Microbiol., 69,

373–382 (2003).

[6] Matsuoka T., Miyakoshi S., Tanzawa K., Nakahara K., Hosobuchi M. and Serizawa

N. “Purification and characterization of cytochrome P450sca from Streptomyces

carbophilus. ML-236B (compactin) induces P450sca in Streptomyces carbophilus that

hydroxylates ML-236B to pravastatin sodium (CS-514), a tissue-selective inhibitor of 3hydroxy-3-methylglutaril coenzyme-A reductase.” Eur. J. Biochem., 184, 707–713

(1989).

[7] Sasaki J., Miyazaki A., Saito M., Adachi T., Mizoue K., Hanada K. and Ōmura S.

“Transformation of vitamin D3 to 1α,25-dihydroxyvitamin D3 via 25-hydroxyvitamin D3

using Amycolata sp. strains.” Appl. Microbiol. Biotechnol., 38, 152-157 (1992).

[8] Takeda K., Asou T., Matsuda A., Kimura K., Okamura K., Okamoto R., Sasaki J.,

Adachi T. and Ōmura S. “Application of cyclodextrin to microbial transformation of

vitamin D3 to 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3.” J. Ferment.

Bioeng., 78, 380-382 (1994).

102

[9] Kinashi H., Mori E., Hatani A. and Nimi O. "Isolation and characterization of linear

plasmids from lankacidin-producing Streptomyces species." J. Antibiot., 47, 1447-1455

(1994).

[10] Mochizuki S, Hiratsu K, Suwa M., Ishii T., Sugino F., Yamada K. and Kinashi H.

“The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed

gene organization for secondary metabolism.” Mol. Microbiol., 48, 1501-1510 (2003).

[11] Arakawa K., Mochizuki S., Yamada K., Noma T. and Kinashi H. “γ-Butyrolactone

autoregulator-receptor system involved in lankacidin and lankamycin production and

morphological differentiation in Streptomyces rochei.” Microbiology, 153, 1817-1827

(2007).

[12] Yamamoto S., He Y., Arakawa K. and Kinashi H. “Gamma-Butyrolactonedependent expression of the SARP gene srrY plays a central role in the regulatory cascade

leading to lankacidin and lankamycin production in Streptomyces rochei.” J. Bacteriol.,

190, 1308–1316 (2008).

[13] Nindita Y., Cao Z., Fauzi A.A., Teshima A., Misaki Y., Muslimin R., Yang Y.,

Shiwa Y., Yoshikawa H., Tagami M., Lezhava A., Ishikawa J., Kuroda M., Sekizuka T.,

Inada K., Kinashi H. and Arakawa K. “The genome sequence of Streptomyces rochei

7434AN4, which carries a linear chromosome and three characteristic linear plasmids.”

Sci. Rep., 9, 10973 (2019)

[14] Senate L. M., Tjatji M. P., Pillay K., Chen W., Zondo N. M., Syed P. R., Mnguni F.

C., Chiliza Z. E., Bamal H. D., Karpoormath R., Khoza T., Mashele S. S., Blackburn J.

M., Yu J., Nelson D. R. and Syed K. “Similarities, variations, and evolution of

cytochrome P450s in Streptomyces versus Mycobacterium.” Sci. Rep., 9, 3962 (2019).

[15] Kieser T., Bibb M. J., Buttner M. J., Chater K. F. and Hopwood D. A. “Practical

Streptomyces Genetics” The John Innes Foundation, Norwich, UK (2000).

[16] Zhang H., Shinkawa H., Ishikawa J., Kinashi H. and Nimi O. “Improvement of

transformation system in Streptomyces using a modified regeneration medium.” J.

Ferment. Bioeng., 83, 217–221 (1997).

103

[17] Sambrook J., Fritsch E. F. and Maniatis T. “Molecular Cloning, A laboratory manual.”

Cold Spring Harbor Laboratory Press, New York, USA (2001).

[18] Suwa M., Sugino H., Sasaoka A., Mori E., Fujii S., Shinkawa H., Nimi O. and

Kinashi H. "Identification of two polyketide synthase gene clusters on the linear plasmid

pSLA2-L in Streptomyces rochei." Gene., 246, 123-131 (2000).

[19] Hopwood D. A., Wright H. M., Bibb M. J. and Cohen S. N. “Genetic recombination

through protoplast fusion in Streptomyces.” Nature, 268, 171–174 (1977).

[20] Sambrook J., Fritsch E. F. and Maniatis T. “Molecular Cloning: A Laboratory

Manual” Cold Spring Harbor Laboratory Press, New York, USA (1989).

[21] Bibb M. J. “Regulation of secondary metabolism in streptomycetes.” Curr. Opin.

Microbiol., 8, 208–215 (2005).

[22] Horinouchi S. and Beppu T. “Hormonal control by A-factor of morphological

development and secondary metabolism in Streptomyces.” Proc. Jpn. Acad. Ser. B, 83,

277–295 (2007).

[23] Takano E. “Gamma-butyrolactones: Streptomyces signalling molecules regulating

antibiotic production and differentiation.” Curr. Opin. Microbiol. 9, 287–294 (2006).

[24] Niu G., Chater K. F., Tian Y., Zhang J. and Tan H. “Specialized metabolites

regulating antibiotic biosynthesis in Streptomyces spp.” FEMS Microbiol. Rev., 40, 554–

573 (2016).

[25] Arakawa K. “Manipulation of metabolic pathway controlled by signaling molecules,

inducers of antibiotic production, for genome mining in Streptomyces spp.” Antonie Van

Leeuwen., 111, 743–751 (2018).

[26] Kong D., Wang X., Nie J. and Niu G. “Regulation of antibiotic production by

signaling molecules in Streptomyces.” Front. Microbiol., 10, 2927 (2019).

[27] Hara O. and Beppu T. “Mutants blocked in streptomycin production in Streptomyces

griseus–the role of A-factor.” J. Antibiot., 35, 349–358 (1982).

104

[28] Kato J., Funa N., Watanabe H., Ohnishi Y. and Horinouchi S. “Biosynthesis of

gamma-butyrolactone autoregulators that switch on secondary metabolism and

morphological development in Streptomyces.” Proc. Natl. Acad. Sci. USA, 104, 2378–

2383 (2007).

[29] Corre C., Song L., O’Rourke S., Chater K. F. and Challis G.L. “2-Alkyl-4hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by

Streptomyces coelicolor genome mining.” Proc. Natl. Acad. Sci. USA, 105, 17510–17515

(2008).

[30] Kitani S., Miyamoto K. T., Takamatsu S., Herawati E., Iguchi H., Nishitomi K.,

Uchida M., Nagamitsu T., Ōmura S., Ikeda, H. and Nihira T. “Avenolide, a Streptomyces

hormone controlling antibiotic production in Streptomyces avermitilis.” Proc. Natl. Acad.

Sci. USA, 108, 16410–16415 (2011).

[31] Arakawa K., Tsuda N., Taniguchi A. and Kinashi H. “The butenolide signaling

molecules SRB1 and SRB2 induce lankacidin and lankamycin production in

Streptomyces rochei.” Chem. Bio. Chem., 13, 1447–1457 (2012).

[32] Rodriguez A. M., Olano C., Méndez C., Hutchinson C. R. and Salas J. A. “A

cytochrome P450-like gene possibly involved in oleandomycin biosynthesis by

Streptomyces antibioticus.” FEMS Microbiol. Lett., 127, 117–120 (1995).

[33] Misaki Y., Yamamoto S., Suzuki T., Iwakuni M., Sasaki H., Takahashi Y., Inada K.,

Kinashi H. and Arakawa K. “SrrB, a pseudo-receptor protein, acts as a negative regulator

for lankacidin and lankamycin production in Streptomyces rochei.” Front. Microbiol., 11,

1089 (2020).

[34] Arakawa K., Kodama K., Tatsuno S., Ide S. and Kinashi H. “Analysis of the loading

and hydroxylation steps in lankamycin biosynthesis in Streptomyces rochei.” Antimicrob.

Agents Chemother., 50, 1946–1952 (2006).

[35] Suzuki T., Mochizuki S., Yamamoto S., Arakawa K. and Kinashi H. “Regulation of

lankamycin biosynthesis in Streptomyces rochei by two SARP genes, srrY and srrZ.”

Biosci. Biotechnol. Biochem., 74, 819–827 (2010).

105

[36] Ishikawa J., Niino Y. and Hotta K. “Construction of pRES18 and pRES19,

Streptomyces-Escherichia coli shuttle vectors carrying multiple cloning sites.” FEMS

Microbiol. Lett., 145, 113–116 (1996).

[37] Arakawa K., Sugino F., Kodama K., Ishii T. and Kinashi H. “Cyclization mechanism

for the synthesis of macrocyclic antibiotic lankacidin in Streptomyces rochei.” Chem.

Biol., 12, 249–256 (2005)

[38] Bourguignon J. J. and Wermuth C.G. “Lactone chemistry. Synthesis of β-substituted,

γ-functionalized butanolides and butenolides and succinaldehydic acids from glyoxylic

Acid.” J. Org. Chem. 46, 4889–4894 (1981).

[39] Feringa B.L., de Lange B. and de Jong J.C. “Synthesis of enantiomerically pure γ(menthyloxy) butenolides and (R)- and (S)-2-methyl-1,4-butanediol.” J. Org. Chem., 54,

2471–2475 (1989).

[40] Ohtani I., Kusumi T., Kashman Y. and Kakisawa H. “High-field FT NMR

application of Mosher’s method. The absolute configurations of marine terpenoids.” J.

Am. Chem. Soc., 113, 4092–4096 (1991).

[41] Yamauchi Y., Nindita Y., Hara K., Umeshiro A., Yabuuchi Y., Suzuki T., Kinashi

H. and Arakawa K. “Quinoprotein dehydrogenase functions at the final oxidation step of

lankacidin biosynthesis in Streptomyces rochei 7434AN4.” J. Biosci. Bioeng., 126, 145–

152 (2018).

[42] Tamura M. and Kochi J. “Coupling of Grignard reagents with organic halides.”

Synthesis, 3, 303–305 (1971).

[43] Arakawa K., Eguchi T. and Kakinuma K. “Specific deuterium labeling of archaeal

36-membered macrocyclic diether lipid.” Bull. Chem. Soc. Jpn., 71, 2419–2426 (1998).

[44] Sakuda S., Higashi A., Tanaka S., Nihira T. and Yamada Y. “Biosynthesis of

virginiae butanolide, a butyrolactone autoregulator from Streptomyces.” J. Am. Chem.

Soc., 114, 663–668 (1992).

106

[45] Niehs S. P., Kumpfmuüller J., Dose B., Little R. F., Ishida K., Florez L. V.,

Kaltenpoth M. and Hertweck C. “Insect-associated bacteria assemble the antifungal

butenolide gladiofungin by non-canonical polyketide chain termination.” Angew. Chem.

Int. Ed. Engl., 59, 23122-23126 (2020).

[46] Nakou I. T., Jenner M., Dashti Y., Romero-Canelón I., Masschelein J.,

Mahenthiralingam E., and Challis G. L. “Genomics-driven discovery of a novel

glutarimide antibiotic from Burkholderia gladioli reveals an unusual polyketide synthase

chain release mechanism.” Angew.Chem. Int. Ed., 59, 23145–23153 (2020).

[47] Ōmura S. “Macrolide Antibiotics: Chemistry, Biology, and Practice.” Academic

Press, New York, USA (2002).

[48] Trefzer A., Salas J. A., and Bechthold A. “Genes and enzymes of deoxy-sugar

biosynthesis.” Nat. Prod. Rep., 16, 283-99 (1999).

[49] Gäumann E, Hütter R, Keller-Schierlein W., Neipp L., Prelog V. and Zähner H.

“Lankamycin und lankacidin.” Helv. Chim. Acta, 43, 601-606 (1960).

[50] Harada S., Higashide E., Fugono T. and Kishi T. “Isolation and structures of T-2636

antibiotics.” Tetrahedron Lett., 10, 2239-2244 (1969).

[51] Ayoub A. T., El-Magd R. M. A., Xiao J., Lewis C. W., Tilli T. M., Arakawa K.,

Nindita Y., Chan G., Sun L., Glover M., Klobukowski M. and Tuszynski J. “Antitumor

activity of lankacidin antibiotics is due to microtubule stabilization via a paclitaxel-like

mechanism.” J. Med. Chem., 59, 9532–9540 (2016).

[52] Ayoub A. T., Elrefaiy M. A. and Arakawa K. “Computational prediction of the mode

of binding of antitumor lankacidin C to tubulin.” ACS Omega., 4, 4461–4471 (2019).

[53] Auerbach T., Mermershtain I., Davidovich C., Bashan A., Belousoff M., Wekselman

I., Zimmerman E., Xiong L., Klepacki D., Arakawa K., Kinashi H., Mankin A. S. and

Yonath A. “The structure of ribosome-lankacidin complex reveals ribosomal sites for

synergistic antibiotics.” Proc. Natl. Acad. Sci. USA, 107, 1983–1988 (2010).

107

[54] Belousoff M. J., Shapira T., Bashan A., Zimmerman E., Rozenberg H., Arakawa K.,

Kinashi H. and Yonath A. “Crystal structure of the synergistic antibiotic pair, lankamycin

and lankacidin, in complex with the large ribosomal subunit.” Proc. Natl. Acad. Sci. USA,

108, 2717–2722 (2011).

[55] Arakawa K., Suzuki T. and Kinashi H. “Gene disruption analysis of two

glycosylation steps in lankamycin biosynthesis in Streptomyces rochei.” Actinomycetol,

22, 35-41 (2008).

[56] Arakawa K. “Genetic and biochemical analysis of the antibiotic biosynthetic gene

clusters on the Streptomyces linear plasmid.” Biosci. Biotechnol. Biochem., 78, 183–189

(2014).

[57] Agematu H., Matsumoto N., Fujii Y., Kabumoto H., Doi S., Machida K., Ishikawa

j. and Arisawa A. “Hydroxylation of testosterone by bacterial cytochromes P450 using

the Escherichia coli expression system.” Biosci. Biotechnol. Biochem., 70, 307-311

(2006).

[58] Teshima A., Hadae N., Tsuda N. and Arakawa K. “Functional analysis of P450

monooxygenase SrrO in the biosynthesis of butenolide-type signaling molecules in

Streptomyces rochei.” Biomolecules, 10, 1237 (2020).

[59] Arakawa K., Cao Z., Suzuki N. and Kinashi H. “Isolation, structural elucidation, and

biosynthesis of 15-norlankamycin derivatives produced by a type-II thioesterase

disruptant of Streptomyces rochei.” Tetrahedron, 67, 5199-5205 (2011).

[60] Andersen J.F. and Hutchinson C.R. “Characterization of Saccharopolyspora

erythraea cytochrome P-450 genes and enzymes, including 6-deoxyerythronolide B

hydroxylase.” J. Bacteriol., 174, 725-735 (1992).

[61] Haydock S. F., Dowson J. A., Dhillon N. Roberts G. A., Cortes J. and Leadlay P. F.

“Cloning and sequence analysis of genes involved in erythromycin biosynthesis in

Saccharopolyspora erythraea: sequence similarities between EryG and a family of Sadenosylmethionine-dependent methyltransferases.” Mol. Gen. Genet., 230, 120-128

(1991).

108

[62] Weber J. M., Leung J.O., Swanson S. J., Idler K. B. and McAlpine J. B. “An

erythromycin derivative produced by targeted gene disruption in Saccharopolyspora

erythraea.” Science, 252, 114-117 (1991).

[63] Guengerich F. P. “Common and uncommon cytochrome P450 reactions related to

metabolism and chemical toxicity.” Chem. Res. Toxicol., 14, 611-650 (2001).

[64] Ortiz de Montellano P. R. “Cytochrome P450: Structure, Mechanism and

Biochemistry, 3rd ed.” Kluwer Academic Press/Plenum, New York, USA (2005).

[65] Liu G., Chater K. F., Chandra G., Niu G. and Tan H. “Molecular regulation of

antibiotic biosynthesis in Streptomyces.” Microbiol. Mol. Biol. Rev., 77, 112–143 (2013).

[66] Martín J. F. and Liras P. “Harnessing microbiota interactions to produce bioactive

metabolites: Communication signals and receptor proteins.” Curr. Opin. Pharmacol., 48,

8–16 (2019).

[67] Thao N. B., Kitani S., Nitta H., Tomioka T. and Nihira T. “Discovering potential

Streptomyces hormone producers by using disruptants of essential biosynthetic genes as

indicator strains.” J. Antibiot., 70, 1004-1008 (2017).

[68] Li S., Chaulagain M. R., Knauff A. R., Podust L. M.,Montgomery J. and Sherman

D. H. “Selective oxidation of carbolide C–H bonds by an engineered macrolide P450

mono-oxygenase.” Proc. Natl. Acad. Sci. USA, 106, 18463-18468 (2009).

109

公表論⽂

(1) Functional analysis of P450 monooxygenase SrrO in the biosynthesis of butanolidetype signaling molecules in Streptomyces rochei

Aiko Teshima, Nozomi Hadae, Naoto Tsuda, and Kenji Arakawa

Biomolecules, 10(9), 1237 (2020).

DOI : 10.3390/biom10091237

(2) Substrate specificity of two cytochrome P450 monooxygenases involved in

lankamycin biosynthesis

Aiko Teshima, Hisashi Kondo, Yu Tanaka, Yosi Nindita, Yuya Misaki, Yuji Konaka,

Yasuhiro Itakura, Tsugumi Tonokawa, Haruyasu Kinashi, and Kenji Arakawa

Bioscience, Biotechnology, and Biochemistry, 85(1), 115-125 (2021).

DOI : 10.1093/bbb/zbaa063

参考論⽂

(1) The genome sequence of Streptomyces rochei 7434AN4, which carries a linear

chromosome and three characteristic linear plasmids.

Yosi Nindita, Zhisheng Cao, Amirudin Akhmad Fauzi, Aiko Teshima, Yuya

Misaki, Rukman Muslimin, Yingjie Yang, Yuh Shiwa, Hirofumi Yoshikawa,

Michihira Tagami, Alexander Lezhava, Jun Ishikawa, Makoto Kuroda, Tsuyoshi

Sekizuka, Kuninobu Inada, Haruyasu Kinashi, and Kenji Arakawa

Scientific Reports, 9, 10973 (2019).

DOI : 10.1038/s41598-019-47406-y

...

参考文献をもっと見る