リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Application of boron doped diamond electrodes to electrochemical gas sensors (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Application of boron doped diamond electrodes to electrochemical gas sensors (本文)

Triana, Yunita 慶應義塾大学

2022.03.23

概要

1. Development of Gas Sensor
 A device, module or machine that detects events or changes and relays the information to other electronics is called sensor. A sensor reads physical phenomena and converts into a measurable digital signal, which can then be displayed, read, or processed further[1]. There is a range of sources, including light, temperature, movements, and pressure etc. Sensors are embedded in everything we come into contact with in our everyday lives. Subsequent subsections show some of the critical sensors used in our daily life are level, temperature, proximity, pressure, chemical, infra-red, and many other sensors[2].
 Among them, there is gas sensor which similar to chemical sensors, except that they monitor air quality and detect various gases. Gas sensor provides a vital way to monitor gas concentration and gives safety information. Gas sensor technologies have improved the everyday life of human beings through their applications in almost all fields[3]. They are used for air quality monitoring, toxic or combustible gas detection, hazardous gas monitoring and medical application.

1.1 Application of Gas Sensor to Improve Environmental Monitoring
 Biotic and abiotic factors are the composition of our atmosphere. In fact, abiotic factor is quite essential for life on the planet. The abiotic factors are such as gases, moisture, humidity, and temperature. The hazardous gases should not increase beyond a critical level shoud be maintained to keep oxygen in an adequate level. Atmospheric pollution can create a high level of health and life loss within the short span of time. Environmental pollution, urbanization, use of automobiles, fuel burning, and industrial wastes are the main source for the increasing of hazardous gas concentration in the air. Six pollutants have been identified as the main source of air pollution. The particulate matter consists of lead and gases like oxides of carbon and oxides of nitrogen[4]. There are several diseases which result from pollution and threaten human health. Seven million deaths take place due to pollution[5]. This is because respiratory organ diseases are mainly ascribed to poor air quality. The major diseases resulting from air pollution are stroke, ischemic heart diseases, lower respiratory infections and lung cancer[6]. For the environmental effect may cause acid rain. Air quality control is the main aspect in the field of environmental monitoring. Gas sensing devices are used to protect plants and personnel from inflammable and toxic gases. They can cause hazard to human and their belongings due to its toxic nature such as hydrogen sulfide and nitrogen dioxide.

a. Hydrogen Sulfide (H2S)
 Today the rapid expansion of industries gives contribution as a serious problem to the environment and human health safety. Especially, waste gas such as hydrogen sulfide (H2S) attracts much interest due to the dangerous characteristics. Hydrogen sulfide (H2S) is known to be a corrosive, poisonous, and gaseous compound. Hydrogen sulfide is basically a gas state chemical that also found in the dissolved form[7].
 It is widely found in several water pollutant resources such as sewage treatment plants, electric power waste, coal processing plants, sulfur production processes, commercial hydrogen sulfide production, and other resources[8]. At concentrations greater than 500 parts per million, inhalation of hydrogen sulfide can lead to immediate collapse and unconsciousness. Unconsciousness and death have occurred in situations of prolonged exposure to hydrogen sulfide at concentrations of 50 ppm. The estimated global release of hydrogen sulfide from saline marshes into the atmosphere is 8.3 × 105 ton per year. The Occupational Safety and Health Administration (OSHA) define Permissible Exposure Limits (PELs) to H2S gas: 20 ppm for ceiling industry, 50 ppm (up to 10 minutes if no other exposure during shift) for general industry, 10 ppm for construction and shipyard[9].
 The strict implementation of industrial gas waste regulations is required the highly reliable and accurate gas sensors devices. High-performance liquid chromatography[10,11] and gas chromatography[12,13] are used to detect H2S. There are some weaknesses of the methods such as long incubation times due to the process in the column and these instruments are expensive.
 Recently, electrochemical sensor has been growing interest to detect H2S due to the sensitivity, selectivity, real-time detection and low detection limit[14]. By electrochemical method, there are potentiometric[15] and amperometric[16] techniques to detect H2S. However, the main problem is durability of the working electrode (eg. glassy carbon and platinum electrodes) due to sulfur (S0) layer as an oxidation product via 2 electrons can degrade the analytical performance. Therefore, a redox mediator is needed to prevent sulfur deposited on the surface of working electrodes such as room temperature ionic liquids (RTILs), hydroxyl- functionalized ionic liquids, phenol, phenylenediamine, and eugenol. However, organic solutions are expensive and harmful for the environment. Therefore, researches on high sensitivity, selectivity and high durability material for electrochemical H2S sensor have become a hot issue.

b. Nitrogen Dioxide (NO2)
 Nowadays, road traffic and automobiles activities are sources of pollution released into the atmosphere since the beginning of the twentieth century. Our urban and rural areas are currently subject to pollution peaks such as ozone, nitrogen dioxide, and carbon monoxide. One of six criteria air pollutants designated by the United States Environmental Protection Agency (USEPA) is nitrogen dioxide (NO2). It is formed in the atmosphere from nitrogen monoxide (NO), which is mainly released during the combustion of fossil fuels[17].
 NO2 is a reddish-brown flammable gas with a characteristic odor. At low concentrations of NO2, medical consequences include difficulty in breathing, chest pain and chronic respiratory problems. This gas is extremely toxic at high concentrations above 360 ppb. From an environmental point of view, nitrogen dioxide is converted into nitric acid in the presence of water molecules and contributes to form as acid rain. Therefore, the monitoring of air quality and gaseous pollutants is the goal of several researchers around the world. The most difficult pollutants to control is NO2[18].
 Maximum 30-minute or 1-hour average and maximum 24-hour average outdoor nitrogen dioxide concentrations of up to 0.5 ppm and 0.21 ppm, respectively. In Japan, the short-term exposure limit for NO2 gas is 500 ppb, and the environmental standard value is 40 to 60 ppb[19].
 It leads to urgent needs for sensitive, selective, and responsive NO2 sensors. High performance liquid chromatography (HPLC)[20] and gas chromatography[21] are used for NO2 detection. However, it caused cost ineffectiveness, insufficient sensitivity for detection, and time consuming sample incubation. Chemiluminescence[22,23] combined with HPLC and gas chromatography is also widely used but the response time is limited.
 In the last decades, electrochemical sensors have presented a promising way forward for the detection of NO2 gas, since they offer real time measurement, simplicity with a low limit of detection (LOD) and good selectivity[24,25]. By electrochemical technique, metal electrodes such as Pt (platinum) and gold (Au) are modified with nafion[26], yttria-stabilized zirconia (YSZ)[27], and teflon[25] to increase the performance. However, surface modification is difficult and many optimizations to prepare. In other hand, carbon based electrodes such as glassy carbon[28], graphite[29], and carbon nanotubes[30] have disadvantages of limited sensitivity, poor precision and lack of durability. Further investigation of good performance material for electrochemical NO2 sensor attracts much attention recently.

1.2 Application of Gas Sensor in Biomedical Diagnostic
 The intake of oxygen (O2) and the release of carbon dioxide (CO2) are the most important activities for human health. Respiration provides a constant flow of O2 molecules to our brain, organs and tissues while providing a way to remove the waste CO2 molecules that are created in the cells[31]. Without respiration, our bodies will shut down within seconds. Therefore, regardless of the procedure, wound, disease or illness, one of the first priorities of a physician is to insure continuous respiration. For this reason, gas sensor is critical instruments in medical applications. In order to measure respiration, physicians and health care workers use several O2 and CO2 gas sensors. These gases are measured in 2 areas: the breath and the blood.
 Blood O2 monitoring can play as an essential role of disease biomarker such as hypoxemia, COVID-19 infection, heart failure, cancers and other diseases related to O2 concentration in human body[32]. Oxygen is measured 3 ways, as partial pressure of oxygen (PaO2), as oxygen saturation (O2 Sat) and for oxygen content (O2CT) in the blood. Normal O2 concentration in human body is around 40 – 100 mmHg[33].
 Optical detection is commonly used for O2 concentration in daily life for example oximeter[34] and diffuse optical tomography[35]. These instruments show O2 concentration in saturated O2 in percentage (% SpO2). However, oximeter has lack of sensitivity due to its limitations of the arterial pulse strength, body movement, lipids and bilirubin, color of the skin, and other physical factors[36] from the patients. So, it cannot show the real condition of the patients. Resonance[37] methods also can detect O2 but expensive and difficult to calibrate.
  Electrochemical sensors have been attracted much attention due the real-time measurement and sensitivity. By electrochemical methods, there are polarographic[38] and conductometry[39]. However, the techniques are difficult to be applied due to ineffectiveness and lack of accuracy. Therefore, developing of design material for electrochemical O2 gas sensor is challenging and increasing in biomedical application.

この論文で使われている画像

参考文献

[1] M. Javaid, A. Haleem, S. Rab, R. Pratap Singh, R. Suman, Sens. Intl. 2021, 2, 100121.

[2] H. Seok Jo, S. An, H. J. Kwon, A. L. Yarin, S. S. Yoon, Sci. Rep. 2020, 10, 1–12.

[3] U. Yaqoob, M. I. Younis, Sensors 2021, 21, 1–40.

[4] C. Monn, Atmos. Environ. 2001, 35, 1–32.

[5] R. A. Rohde, R. A. Muller, PLoS One 2015, 10, 1–14.

[6] A. J. Cohen, M. Brauer, R. Burnett, H. R. Anderson, J. Frostad, K. Estep, K. Balakrishnan, B. Brunekreef, L. Dandona, R. Dandona, V. Feigin, G. Freedman, B. Hubbell, A. Jobling, H. Kan, L. Knibbs, Y. Liu, R. Martin, L. Morawska, C. A. Pope, H. Shin, K. Straif, G. Shaddick, M. Thomas, R. van Dingenen, A. van Donkelaar, T. Vos, C. J. L. Murray, M. H. Forouzanfar, Lancet 2017, 389, 1907–1918.

[7] R. J. Reiffenstein, W. C. Hulbert, S. H. Roth, Annu. Rev. Pharmacol. Toxicol. 1992, 32, 109–134.

[8] R. O. Beauchamp, J. S. Bus, J. A. Popp, C. J. Boreiko, D. A. Andjelkovich, P. Leber, Crit. Rev. Toxicol. 1984, 13, 25–97.

[9] D. C. Dorman, M. L. Foster, Hydrogen Sulfide, 2016.

[10] Y. Ogasawara, K. Ishii, T. Togawa, S. Tanabet, 1991, 116, 1359–1363.

[11] C. Gru, P. M. Sarradin, H. Legoff, S. Narcon, J. C. Caprais, F. H. Lallier, Analyst 1998, 123, 1289–1293.

[12] T. Ramstad, A. H. Bates, T. J. Yellig, S. J. Borchert, K. A. Mills, Analyst 1995, 120, 2775–2780.

[13] P. R. Bérubé, P. D. Parkinson, E. R. Hall, J. Chromatogr. A 1999, 830, 485–489.

[14] Z. Mao, A. Anani, R. E. White, S. Srinivasan, A. J. Appleby, J. Electrochem. Soc. 1991, 138, 1299–1303.

[15] Y. Yan, N. Miura, N. Yamazoe, Chem. Lett. 1994, 1753–1756.

[16] J. A. Bennett, J. E. P. Iii, M. A. Neiswonger, J. Electroanal. Chem. 2011, 654, 1–7.

[17] K. Stemmler, M. Ammann, C. Donders, J. Kleffmann, C. George, Nature 2006, 440, 195–198.

[18] N. M. Elsayed, Toxicology 1994, 89, 161–174.

[19] S. Tanaka, T. Esaka, Mater. Res. Bull. 2000, 35, 2491–2502.

[20] K. Kikugawa, T. Kato, Y. Okamoto, Free Radical Biol. Med. 1994, 16, 373–382.

[21] R. R. Reston, E. S. Kolesar, Journal of Microelectromechanical Systems 1994, 3, 134– 146.

[22] A. M. Winer, J. W. Peters, J. P. Smith, J. N. Pitts, Environ. Sci. Technol. 1974, 8, 1118–1121.

[23] E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. R. Yillegas, C. E. Kolb, L. T. Molina, M. J. Molina, Atmos. Chem. Phys. 2007, 7, 2691–2704.

[24] S. ‐ C Chang, J. R. Stetter, Electroanalysis 1990, 2, 359–365.

[25] J. M. Sedlak, K. F. Blurton, Talanta 1976, 23, 811–814.

[26] J. S. Do, W. B. Chang, Sens. Actuators, B 2001, 72, 101–107.

[27] Z. Duan, Y. Zhang, Y. Tong, H. Zou, J. Peng, X. Zheng, J. Electron. Mater. 2017, 46, 6895–6900.

[28] N. Spãtaru, T. N. Rao, D. A. Tryk, A. Fujishima, J. Electrochem. Soc. 2001, 148, E112.

[29] C. E. Banks, A. Goodwin, C. G. R. Heald, R. G. Compton, Analyst 2005, 130, 280– 282.

[30] R. Zhu, M. Desroches, B. Yoon, T. M. Swager, ACS Sensors 2017, 2, 1044–1050.

[31] M. Erecińska, I. A. Silver, Respir. Physiol. 2001, 128, 263–276.

[32] D. S. Martin, M. P. W. Grocott, Crit. Care Med. 2013, 41, 423–432.

[33] M. Morgante, M. Gianesella, S. Casella, L. Ravarotto, C. Stelletta, E. Giudice, Comp. Clin. Pathol. 2009, 18, 229–232.

[34] P. Leonard, N. R. Grubb, P. S. Addison, D. Clifton, J. N. Watson, Journal of Clinical Monitoring and Computing 2004, 18, 309–312.

[35] T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Österberg, K. D. Paulsen, Appl. Opt. 1999, 38, 5480.

[36] G. Mardirossian, R. E. Schneider, Anesth.Prog. 1992, 39, 194–196.

[37] M. Elas, K. H. Ahn, A. Parasca, E. D. Barth, D. Lee, C. Haney, H. J. Halpern, Clin. Cancer. Res. 2006, 12, 4209–4217.

[38] D. R. Collingridge, J. M. Piepmeier, S. Rockwell, J. P. S. Knisely, Radiother. Oncol. 1999, 53, 127–131.

[39] W. L. Markus, P. A. Bruttel, J. Am. Oil Chem. Soc. 2014, 792–795.

[40] J. H. T. Luong, K. B. Male, J. D. Glennon, Analyst 2009, 134, 1965–1979.

[41] R. G. Compton, J. S. Foord, F. Marken, Electroanalysis 2003, 15, 1349–1363.

[42] J. V Macpherson, Phys.Chem.Chem.Phys. 2015, 17, 2935–2949.

[43] G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, H. Hibino, Nat. Biomed. Eng. 2017, 1, 654–666.

[44] A. Hanawa, K. Asai, G. Ogata, H. Hibino, Y. Einaga, Electrochim. Acta 2018, 271, 35–40.

[45] T. Watanabe, Y. Honda, K. Kanda, Y. Einaga, Phys. Status Solidi. A 2014, 211, 2709– 2717.

[46] Z. J. Ayres, A. J. Borrill, J. C. Newland, M. E. Newton, J. V. Macpherson, Anal. Chem. 2016, 88, 974–980.

[47] I. Duo, A. Fujishima, C. Comninellis, Electrochem. Commun. 2003, 5, 695–700.

[48] S. C. B. Oliveira, A. M. Oliveira-Brett, Electrochim. Acta 2010, 55, 4599–4605.

[49] C. A. Rossi Salamanca-Neto, F. A. Yoshida, E. R. Sartori, J. Tobias Moraes, Anal. Methods 2018, 10, 3347–3352.

[50] H. Notsu, I. Yagi, T. Tatsuma, D. A. Tryk, A. Fujishima, J. Electroanal. Chem 2000, 492, 31–37.

[51] M. Murata, T. A. Ivandini, M. Shibata, S. Nomura, A. Fujishima, Y. Einaga, J. Electroanal. Chem. 2008, 612, 29–36.

[52] A. Suzuki, T. A. Ivandini, A. Kamiya, S. Nomura, M. Yamanuki, K. Matsumoto, A. Fujishima, Y. Einaga, Sens. Actuators, B 2007, 120, 500–507.

[53] M. Chiku, T. A. Ivandini, A. Kamiya, A. Fujishima, Y. Einaga, J. Electroanal. Chem. 2008, 612, 201–207.

[54] A. Preechaworapun, T. A. Ivandini, A. Suzuki, A. Fujishima, O. Chailapakul, Y. Einaga, Anal. Chem. 2008, 80, 2077–2083.

[55] Y. Einaga, J. Appl. Electrochem. 2010, 40, 1807–1816.

[56] Z. Wang, P. Lin, G. A. Baker, J. Stetter, X. Zeng, 2011, 7066–7073.

[57] S. Ernst, L. Aldous, R. G. Compton, J. Electroanal. Chem 2011, 663, 108–112.

[58] C. A. Martínez-Huitle, N. Suely Fernandes, S. Ferro, A. De Battisti, M. A. Quiroz, Diamond and Related Materials 2010, 19, 1188–1193.

[59] M. Rycewicz, M. Ficek, K. Gajewski, S. Kunuku, J. Karczewski, T. Gotszalk, I. Wlasny, A. Wysmołek, R. Bogdanowicz, Carbon 2021, 173, 832–841.

[60] T. A. Ivandini, D. Yamada, T. Watanabe, H. Matsuura, N. Nakano, A. Fujishima, Y. Einaga, J. Electroanal. Chem 2010, 645, 58–63.

[61] Y. Triana, M. Tomisaki, Y. Einaga, J. Electroanal. Chem 2020, 873, 114411.

[62] Y. Triana, * Irkham, Y. Einaga, Electroanalysis 2021, 1–10.

[63] M. Wang, N. Simon, C. Decorse-Pascanut, M. Bouttemy, A. Etcheberry, M. Li, R. Boukherroub, S. Szunerits, Electrochim. Acta 2009, 54, 5818–5824.

[64] B. P. Chaplin, D. K. Hubler, J. Farrell, Electrochim. Acta 2013, 89, 122–131.

[65] L. A. Hutton, J. G. Iacobini, E. Bitziou, R. B. Channon, M. E. Newton, J. V. Macpherson, Anal. Chem. 2013, 85, 7230–7240.

[66] S. Ghodbane, D. Ballutaud, A. Deneuville, C. Baron, Phys. Stat. Sol. 2006, 203, 3147– 3151.

[67] R. Boukherroub, X. Wallart, S. Szunerits, B. Marcus, P. Bouvier, M. Mermoux, Electrochem. Commun. 2005, 7, 937–940.

[68] G. R. Salazar-Banda, L. S. Andrade, P. A. P. Nascente, P. S. Pizani, R. C. Rocha-Filho, L. A. Avaca, Electrochim. Acta 2006, 51, 4612–4619.

[69] S. Kasahara, K. Natsui, T. Watanabe, Y. Yokota, Y. Kim, S. Iizuka, Y. Tateyama, Y. Einaga, Anal. Chem. 2017, 89, 11341–11347.

[70] R. Hoffmann, A. Kriele, H. Obloh, J. Hees, M. Wolfer, W. Smirnov, N. Yang, C. E. Nebel, Appl. Phys. Lett. 2010, 97, 1–4.

[71] C. Yamaguchi, K. Natsui, S. Iizuka, Y. Tateyama, Y. Einaga, Phys. Chem. Chem. Phys. 2019, 21, 13788–13794.

[72] T. A. Ivandini, Y. Einaga, Bull. Chem. Soc. Jpn. 2021, 94, 2838–2847.

[73] K. Maebashi, K. Iwadate, K. Sakai, A. Takatsu, K. Fukui, M. Aoyagi, E. Ochiai, T. Nagai, Forensic Sci. Int. 2011, 207, 91–95.

[74] S. L. Malone Rubright, L. L. Pearce, J. Peterson, Nitric Oxide 2017, 71, 1–13.

[75] A. F. L. Godoi, A. M. Grasel, G. Polezer, A. Brown, S. Potgieter-Vermaak, D. C. Scremim, C. I. Yamamoto, R. H. M. Godoi, Sci. Total Environ. 2018, 610–611, 583– 590.

[76] M. Maasikmets, E. Teinemaa, A. Kaasik, V. Kimmel, Biosyst. Eng. 2015, 139, 48–59.

[77] T. Xu, N. Scafa, L. P. Xu, S. Zhou, K. Abdullah Al-Ghanem, S. Mahboob, B. Fugetsu, X. Zhang, Analyst 2016, 141, 1185–1195.

[78] V. Stanić, T. H. Etsell, A. C. Pierre, R. J. Mikula, Electrochim. Acta 1998, 43, 2639– 2647.

[79] P. Jeroschewski, K. Haase, A. Trommer, P. Gründler, Electroanalysis 1994, 6, 769–772.

[80] G. Schiavon, G. Zotti, R. Toniolo, G. Bontempelli, Anal. Chem. 1995, 67, 318–323.

[81] N. S. Lawrence, J. Davis, L. Jiang, T. G. J. Jones, S. N. Davies, R. G. Compton, Electroanalysis 2000, 12, 1453–1460.

[82] A. N. Buckley, I. C. Hamilton, R. Woods, J. Electroanal. Chem 1987, 216, 213–227.

[83] P. G. Komorowski, Electrochim. Acta 1994, 39, 2285–2289.

[84] J. E. Doeller, T. S. Isbell, G. Benavides, J. Koenitzer, H. Patel, R. P. Patel, J. R. Lancaster, V. M. Darley-Usmar, D. W. Kraus, Anal. Biochem. 2005, 341, 40–51.

[85] A. M. O’Mahony, D. S. Silvester, L. Aldous, C. Hardacre, R. G. Compton, J. Phys. Chem. C 2008, 112, 7725–7730.

[86] Q. Huang, W. Li, T. Wu, X. Ma, K. Jiang, X. Jin, Electrochem. Commun. 2018, 88, 93–96.

[87] M. D. Brown, J. R. Hall, M. H. Schoenfisch, Anal. Chim. Acta 2019, 1045, 67–76.

[88] S. J. Cobb, Z. J. Ayres, J. V. Macpherson, Annu. Rev. Anal. Chem. 2018, 11, 463–484.

[89] K. Asai, T. A. Ivandini, Y. Einaga, Scientific Reports 2016, 6, 1–10.

[90] T. A. Ivandini, B. V. Sarada, C. Terashima, T. N. Rao, D. A. Tryk, H. Ishiguro, Y. Kubota, A. Fujishima, J. Electroanal. Chem 2002, 521, 117–126.

[91] S. Falina, S. Kawai, N. Oi, H. Yamano, T. Kageura, E. Suaebah, M. Inaba, Y. Shintani, M. Syamsul, H. Kawarada, Sensors 2018, 18, 1–10.

[92] K. Waterston, D. Bejan, N. J. Bunce, J. Appl. Electrochem. 2007, 37, 367–373.

[93] E. Bitziou, M. B. Joseph, T. L. Read, N. Palmer, T. Mollart, M. E. Newton, J. V. Macpherson, Anal. Chem. 2014, 86, 10834–10840.

[94] S. J. Broderius, L. L. Smith, Anal. Chem. 1977, 49, 424–428.

[95] Z. Pawlak, A. S. Pawlak, Talanta 1999, 48, 347–353.

[96] K. Park, H. Lee, S. Phelan, S. Liyanaarachchi, N. Marleni, D. Navaratna, V. Jegatheesan, L. Shu, Int. Biodeterior. Biodegrad. 2014, 95, 251–261.

[97] P. C. Caliari, M. J. Pacheco, L. F. Ciríaco, A. M. C. Lopes, J. Braz. Chem. Soc. 2017, 28, 557–566.

[98] J. Xu, K. Natsui, S. Naoi, K. Nakata, Y. Einaga, Diamond Relat. Mater. 2018, 86, 167–172.

[99] Irkham, T. Watanabe, Y. Einaga, Anal. Chem. 2017, 89, 7139–7144.

[100] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001.

[101] P. Zanello, Inorganic Electrochemistry: Theory, Practice, and Application, The Royal Society Of Chemistry, Cambridge, UK, 2003.

[102] N. S. Lawrence, M. Thompson, C. Prado, L. Jiang, T. G. J. Jones, R. G. Compton, Electroanalysis 2002, 14, 499–504.

[103] G. H. Kelsall, I. Thompson, J. Appl. Electrochem. 1993, 23, 427–434.

[104] A. V. Kroll, V. Smorchkov, A. Y. Nazarenko, Sens. Actuators B 1994, 21, 97–100.

[105] H. Zanin, P. W. May, D. J. Fermin, D. Plana, S. M. C. Vieira, W. I. Milne, E. J. Corat, ACS Appl. Mater. Interfaces 2014, 6, 990–995.

[106] P. J. Vandeberg, J. L. Kowagoe, D. C. Johnson, Anal. Chim. Acta 1992, 260, 1–11.

[107] J. Szynkarczuk, P. G. Komorowski, J. C. Donini, Electrochim. Acta 1995, 40, 487–494.

[108] Ramasubramanian N., J. Electroanal. Chem 1975, 64, 21–37.

[109] A. Ahnood, H. Meffin, D. J. Garrett, K. Fox, K. Ganesan, A. Stacey, N. V. Apollo, Y. T. Wong, S. G. Lichter, W. Kentler, O. Kavehei, U. Greferath, K. A. Vessey, M. R. Ibbotson, E. L. Fletcher, A. N. Burkitt, S. Prawer, Adv. Biosys. 2017, 1, 1–10.

[110] A. Shrivastava, V. Gupta, Chronicles of Young Scientists 2011, 2, 21.

[111] N. S. Lawrence, R. P. Deo, J. Wang, 2004, 517, 131–137.

[112] P. K. Jiwanti, Y. Einaga, Phys. Chem. Chem. Phys. 2019, 21, 15297–15301.

[113] W. E. Luttrell, J. Chem. Health Saf. 2014, 21, 28–30.

[114] D. Brannegan, M. Ashraf-Khorassani, L. T. Taylor, J. Chromatogr. Sci. 2001, 39, 217–221.

[115] N. A. Marley, J. S. Gaffney, R. V. White, L. Rodriguez-Cuadra, S. E. Herndon, E. Dunlea, R. M. Volkamer, L. T. Molina, M. J. Molina, Rev. Sci. Instrum. 2004, 75, 4595–4605.

[116] F. M. Black, J. E. Sigsby, J. Environ. Sci. Technol. 1974, 8, 149–152.

[117] J. E. Sigsby, F. M. Black, T. A. Bollar, D. L. Klosterman, J. Environ. Sci. Technol. 1973, 7, 51–54.

[118] B. G. Snider, D. C. Johnson, Anal. Chim. Acta 1979, 105, 9–23.

[119] K. Wang, H. Yan, J. Liu, X. Sun, E. Wang, Electroanalysis 2004, 16, 1318–1323.

[120] K. C. Ho, W. T. Hung, Sens. Actuators B 2001, 79, 11–16.

[121] C. Y. Lin, W. T. Hung, C. T. Wu, K. C. Ho, Sens. Actuators, B 2009, 136, 32–38.

[122] N. Miura, G. Lu, N. Yamazoe, Sens. Actuators, B 1998, 52, 169–178.

[123] J. M. Sedlak, K. F. Blurton, J. Electrochem. Soc. 1976.

[124] K. Y. Lee, C. Amatore, J. K. Kochi, J. Phys. Chem. C 1991, 95, 1285–1294.

[125] R. Zhang, X. Liu, T. Zhou, L. Wang, T. Zhang, J. Colloid Interface Sci. 2018, 524, 76–83.

[126] B. Liu, X. Liu, Z. Yuan, Y. Jiang, Y. Su, J. Ma, H. Tai, Sens. Actuators, B 2019, 295, 86–92.

[127] Y. Einaga, Bull. Chem. Soc. Jpn 2018, 91, 1752–1762.

[128] Y. Honda, T. A. Ivandini, T. Watanabe, K. Murata, Y. Einaga, Diamond Relat. Mater. 2013, 40, 7–11.

[129] N. Badiadka, S. Kenchaiah, Eurasian J. Anal. Chem. 1976, 21, 302–305.

[130] N. Kamoshida, S. Kasahara, N. Ikemiya, N. Hoshi, M. Nakamura, Y. Einaga, Diamond Relat. Mater. 2019, 93, 50–53.

[131] E. Riordan, N. Minogue, D. Healy, P. O’Driscoll, J. R. Sodeau, J. Phys. Chem. A 2005, 109, 779–786.

[132] J. Wang, G. M. Swain, J. Electrochem. Soc. 2003, 150, E24.

[133] D. O’Sullivan, J. R. Sodeau, J. Phys. Chem. A 2010, 114, 12208–12215.

[134] K. Kim, H. Y. Chung, J. Ju, J. Kim, Sci. Total Environ. 2017, 590–591, 107–113.

[135] D. A. Armstrong, R. E. Huie, W. H. Koppenol, S. V. Lymar, G. Merényi, P. Neta, B. Ruscic, D. M. Stanbury, S. Steenken, P. Wardman, Chem. Intl. 2016, 38, 1–294.

[136] Y. Kameoka, R. L. Pigford, Ind. Eng. Chem., Fundam. 1977, 16, 163–169.

[137] C. Zou, B. Yang, D. Bin, J. Wang, S. Li, P. Yang, C. Wang, Y. Shiraishi, Y. Du, J. Colloid Interface Sci. 2017, 488, 135–141.

[138] M. Y. Mihaylov, V. R. Zdravkova, E. Z. Ivanova, H. A. Aleksandrov, P. S. Petkov, G. N. Vayssilov, K. I. Hadjiivanov, J. Catal. 2020, 1–14.

[139] D. J. Goebbert, E. Garand, T. Wende, R. Bergmann, G. Meijer, K. R. Asmis, D. M. Neumark, J. Phys. Chem. A 2009, 113, 7584–7592.

[140] O. Husson, Plant Soil 2013, 362, 389–417.

[141] B. R. Kozub, N. V. Rees, R. G. Compton, Sens. Actuators, B 2010, 143, 539–546.

[142] F. Opekar, Electroanalysis 1992, 4, 133–138.

[143] A. V. Kalinkin, M. Y. Smirnov, V. I. Bukhtiyarov, Kinetics and Catalysis 2016, 57, 826–830.

[144] R. Ewald, Arch. Intern. Med. 1971, 128, 7–9.

[145] C. R. Taylor, E. R. Weibel, Respir. Physiol. 1981, 44, 1–10.

[146] R. L. Hoiland, A. R. Bain, M. G. Rieger, D. M. Bailey, P. N. Ainslie, Am. J. Physiol: Regul., Integr. Comp. Physiol. 2016, 310, 398–413.

[147] M. J. Tobin, F. Laghi, A. Jubran, Am. J. Respir. Crit. Care. Med. 2020, 202, 356–360.

[148] M. Coen, G. Allali, D. Adler, J. Serratrice, J. Med. Virol. 2020, 92, 1705–1706.

[149] S. Dhont, E. Derom, E. Van Braeckel, P. Depuydt, B. N. Lambrecht, Respir. Res. 2020, 21, 1–9.

[150] K. Haryalchi, A. Heidarzadeh, M. Abedinzade, S. Olangian-tehrani, S. G. Tehran, Reg. Anesth. Pain Med. 2021, 11, 19–21.

[151] R. M. Bersin, M. Kwasman, D. Lau, C. Klinski, K. Tanaka, P. Khorrami, T. Demarco, C. Wolfe, K. Chatterjee, Heart 1993, 70, 443–447.

[152] S. M. Cohn, A. B. Nathens, F. A. Moore, J. C. Puyana, E. E. Moore, G. J. Beilman, T. Investigators, J. Trauma 2007, 62, 44.

[153] D. A. Benaron, B. E. Rubinsky, D. M. Otten, C. J. Levinson, A. L. Murphy, J. W. Price, J. P. Weersing, J. L. Duckworth, U. B. Hörchner, E. L. Kermit, J. Biomed. Opt. 2015, 10, 1–9.

[154] K. Cai, A. Shore, A. Singh, M. Haris, T. Hiraki, NMR Biomed. 2012, 25, 1125–1132.

[155] N. J. Crane, Z. D. Schultz, I. R. A. W. Levin, J. Trauma 2007, 61, 797–803.

[156] H. Matsumoto, N. Yoshimura, Anesth. Analg. 1996, 83, 513–518.

[157] M. Nitzan, I. Nitzan, Med. Hypotheses 2013, 81, 293–296.

[158] R. Ahmad, P. Kuppusamy, Chem. Rev. 2010, 110, 3212–3236.

[159] Steven J. Barker, Kevin K. Tremper, Int. Anesthesiol. Clin. 1987, 25, 155–175.

[160] N. K. Pandya, S. Sharma, Capnography And Pulse Oximetry, 2020.

[161] R. G. Buckley, S. E. Aks, J. L. Eshom, R. Rydman, J. Schaider, P. Shayne, Ann. Emerg. Med. 1994, 24, 252–255.

[162] N. B. Hampson, Chest 1998, 114, 1036–1041.

[163] J. W. Severinghaus, S. O. Koh, J. Clin. Monit. 1990, 6, 85–88.

[164] B. J. Tromberg, Med. Phys. 2008, 35, 2443–2451.

[165] D. J. Faber, E. G. Mik, Opt. Lett. 2005, 30, 1015–1017.

[166] G. Mees, R. Dierckx, C. Vangestel, Eur. J. Nucl. Med. Mol. Imaging. 2009, 36, 1674– 1686.

[167] K. A. Krohn, J. M. Link, R. P. Mason, J. Nucl. Med. 2008, 49, 129–148.

[168] J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, S. Fox, Anesth. Analg. 2007, 104, 51–58.

[169] S. Ramaswamy, S. Chang, V. Mehta, Anaesthesia 2015, 70, 518–522.

[170] S. Shaefi, P. Shankar, A. L. Mueller, B. P. O’Gara, K. Spear, K. R. Khabbaz, A. Bagchi, L. M. Chu, V. Banner-Goodspeed, D. E. Leaf, D. S. Talmor, E. R. Marcantonio, B. Subramaniam, Anesthesiology 2021, 134, 189–201.

[171] C. Clark, C. Leland, G. Misrahy, R. P. F. Chroni-, J. Appl. Physiol 2021.

[172] L. Nei, ECS Trans. 2007, 2, 33–38.

[173] C. Clark, Y. Springs, S. Public, J. Appl. Physiol 1953.

[174] Donald G. Buerk, Measuring Tissue PO2 with Microelectrodes, 2004.

[175] V. Brinzari, M. Ivanov, B. K. Cho, M. Kamei, G. Korotcenkov, Sens. Actuators, B 2010, 148, 427–438.

[176] L. Rivas, S. Dulay, S. Miserere, L. Pla, S. B. Marin, J. Parra, E. Eixarch, E. Gratacós, M. Illa, M. Mir, J. Samitier, Biosens. Bioelectron. 2020, 153, 112028.

[177] N. Holmstrom, P. Nilsson, J. Carlsten, Biosens. Bioelectron. 1998, 13, 1287–1295.

[178] M. S. El-deab, T. Ohsaka, Electrochem. Commun. 2003, 5, 214–219.

[179] F. B. Bolger, S. B. Mchugh, R. Bennett, J. Li, K. Ishiwari, J. Francois, M. W. Conway, G. Gilmour, D. M. Bannerman, M. Fillenz, M. Tricklebank, J. P. Lowry, J. Neurosci. Methods 2011, 195, 135–142.

[180] F. B. Bolger, R. Bennett, J. P. Lowry, Analyst 2011, 136, 4028–4035.

[181] B. J. Venton, D. J. Michael, R. M. Wightman, J. Neurochem. 2003, 373–381.

[182] G. Bazzu, G. G. M. Puggioni, S. Dedola, G. Calia, G. Rocchitta, R. Migheli, M. S. Desole, J. P. Lowry, R. D. O. Neill, P. A. Serra, Anal. Chem. 2009, 81, 2235–2241.

[183] D. A. Tryk, K. Hashimoto, A. Fujishima, J. Electrochem. Soc. 1998, 145, 1870–1876.

[184] Y. Zhang, V. Suryanarayanan, I. Nakazawa, S. Yoshihara, T. Shirakashi, Electrochim. Acta 2004, 49, 5235–5240.

[185] Y. Zhang, S. Asahina, S. Yoshihara, T. Shirakashi, Electrochim. Acta 2003, 48, 741– 747.

[186] T. A. Ivandini, E. Saepudin, H. Wardah, Harmesa, N. Dewangga, Y. Einaga, Anal. Chem. 2012, 84, 9825–9832.

[187] L. Hutton, M. E. Newton, P. R. Unwin, J. V. Macpherson, Anal. Chem. 2009, 81, 1023–1032.

[188] T. A. Ivandini, M. S. P. Luhur, M. Khalil, Y. Einaga, Analyst 2021.

[189] T. L. Read, S. J. Cobb, J. V Macpherson, ACS Sens. 2019, 4, 756–763.

[190] J. Zhang, M. Oyama, Microchem. J. 2004, 78, 217–222.

[191] N. Marina, I. N. Christie, A. Korsak, M. Doronin, A. Brazhe, P. S. Hosford, J. A. Wells, S. Sheikhbahaei, I. Humoud, J. F. R. Paton, M. F. Lythgoe, A. Semyanov, S. Kasparov, A. V. Gourine, Nat. Commun. 2020, 11, 1–9.

[192] M. Gehrung, S. E. Bohndiek, J. Brunker, J. Biomed. Opt. 2019, 24, 1.

[193] K. Nishi, K. Yamasaki, M. Otagiri, Serum Albumin, Lipid and Drug Binding, 2020.

[194] S. Sakthinathan, A. K. Keyan, R. Rajakumaran, S. M. Chen, T. W. Chiu, C. Dong, S. Vinothini, Catalysts 2021, 11, 1–21.

[195] D. Moitra, C. Anand, B. K. Ghosh, M. Chandel, N. N. Ghosh, ACS Appl. Energy Mater. 2018, 1, 464–474.

[196] P. R. Solanki, S. Srivastava, M. A. Ali, R. K. Srivastava, A. Srivastava, B. D. Malhotra, RSC Advances 2014, 4, 60386–60396.

[197] T. Pavon, Sustain. Environ. Res. 2013, 23(4), 259–266.

[198] Y. F. Huang, M. T. M. Koper, Journal of Physical Chemistry Letters 2017, 8, 1152– 1156.

[199] J. Xu, M. C. Granger, Q. Chen, J. W. Strojek, T. E. Lister, G. M. Swain, Anal. Chem. 1997, 69, 591A-597A.

[200] T. Nagaoka, T. Yoshino, Anal. Chem. 1986, 58, 1037–1042.

[201] A. M. Feltham, M. Spiro, Chem. Rev. 1971, 71, 177–193.

[202] A. Shrivastava, V. Gupta, Chron. Young Sci. 2011, 2, 21.

[203] I. jr Tinoco, O. C. Uhlenbeck, M. D. Levine, Nature 1971, 230, 362–367.

[204] R. T. Duarte, M. C. Carvalho Simões, V. C. Sgarbieri, J. Agric. Food Chem. 1999, 47, 231–236.

[205] O. Nekrassova, N. S. Lawrence, R. G. Compton, Analyst 2004, 129, 804–805.

[206] Kevin M. Tenny, J. S. Cooper, Ideal Gas Behavior, 2017.

[207] E. A. Lakota, C. B. Landersdorfer, R. L. Nation, J. Li, K. S. Kaye, G. G. Rao, A. Forrest, Antimicrob. Agents Chemother. 2018, 62, 307–310.

[208] John. B West, Respiratory Physiology, Lippincot Williams And Wilkins, California, 2004.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る