リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spatial Evolution of Wave‐Particle Interaction Region Deduced From Flash‐Type Auroras and Chorus‐Ray Tracing」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spatial Evolution of Wave‐Particle Interaction Region Deduced From Flash‐Type Auroras and Chorus‐Ray Tracing

Ozaki, Mitsunori Inoue, Tomohiro Tanaka, Yoshimasa Yagitani, Satoshi Kasahara, Yoshiya Shiokawa, Kazuo Miyoshi, Yoshizumi Imamura, Kousuke Hosokawa, Keisuke Oyama, Shin‐ichiro Kataoka, Ryuho Ebihara, Yusuke Ogawa, Yasunobu Kadokura, Akira 京都大学 DOI:10.1029/2021ja029254

2021.07

概要

In-situ observations of spatial variations of the wave-particle interaction region require a large number of satellite probes. As an alternative, flash-type auroras, a kind of pulsating aurora, driven by discrete chorus elements, can be used to investigate the interaction region with a high spatial resolution. We estimated the spatial extent of wave-particle interaction region from ground-based observations of flash aurora at Gakona (62.39°N, 214.78°E), Alaska at subauroral latitudes, and found that the auroral expansion was predominantly to the low-latitude side. The spatial displacement is thought to be caused by the propagation effects of chorus waves in the magnetosphere. Using ray tracing analysis to take into account chorus wave propagation, we reconstructed the spatiotemporal evolution of the volume emission rate and confirmed that the predominant expansion is toward the lower-latitude side in the ionosphere. This study shows that chorus wave propagation in the magnetosphere gives new insight for characterizing the transverse size (across the geomagnetic field line) of wave-particle interaction regions. The calculated spatial scale of the column auroral emission shows a correlation with the magnetic latitude of the resonance region at magnetic latitudes within 10° of the equatorial plane of the magnetosphere. Our results suggest that the spatial scale of a flash aurora is indirectly related to the chorus amplitude because the latitudinal range of the wave-particle interaction is important for the growth of wave amplitude.

この論文で使われている画像

参考文献

Agapitov, O., Blum, L. W., Mozer, F. S., Bonnell, J. W., & Wygant, J. (2017). Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements. Geophysical Research Letters, 44, 2634–2642. https://doi.org/10.1002/2017GL072701

Agapitov, O., Krasnoselskikh, V., Zaliznyak, Y., Angelopoulos, V., Le Contel, O., & Rolland, G. (2010). Chorus source region localization

in the Earth's outer magnetosphere using THEMIS measurements. Annales Geophysicae, 28(6), 1377–1386. https://doi.org/10.5194/

angeo-28-1377-2010

Albert, J. M. (2005). Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary density ratio.

Journal of Geophysical Research, 110, A03218. https://doi.org/10.1029/2004JA010844

Aryal, S., Finn, S. C., Hewawasam, K., Maguire, R., Geddes, G., Cook, T., et al. (2018). Derivation of the energy and flux morphology in an

aurora observed at midlatitude using multispectral imaging. Journal of Geophysical Research: Space Physics, 123, 4257–4271. https://

doi.org/10.1029/2018JA025229

Bingham, S. T., Mouikis, C. G., Kistler, L. M., Boyd, A. J., Paulson, K., Farrugia, C. J., et al. (2018). The outer radiation belt response to

the storm time development of seed electrons and chorus wave activity during CME and CIR driven storms. Journal of Geophysical

Research: Space Physics, 123, 10139–10157. https://doi.org/10.1029/2018JA025963

Bortnik, J., Inan, U. S., & Bell, T. F. (2006). Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR

whistler waves: 1. Methodology. Journal of Geophysical Research, 111, A02204. https://doi.org/10.1029/2005JA011182

Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., et al. (2017). Observations directly linking relativistic electron microbursts to whistler mode chorus: Van Allen Probes and FIREBIRD II. Geophysical Research Letters, 44, 11265–11272. https://

doi.org/10.1002/2017GL075001

Brown, N. B., Davis, T. N., Hallinan, T. J., & Stenbaek-Nielsen, H. C. (1976). Altitude of pulsating aurora determined by a new instrumental

technique. Geophysical Research Letters, 3, 403–404. https://doi.org/10.1029/GL003i007p00403

Burton, R. K., & Holzer, R. E. (1974). The origin and propagation of chorus in the outer magnetosphere. Journal of Geophysical Research,

79(7), 1014–1023. https://doi.org/10.1029/JA079i007p01014

Chamberlain, J. W. (1961). Physics of the aurora and airglow. New York. Academic Press.

Chen, L., Thorne, R. M., Li, W., & Bortnik, J. (2013). Modeling the wave normal distribution of chorus waves. Journal of Geophysical Research: Space Physics, 118, 1074–1088. https://doi.org/10.1029/2012JA018343

Chum, J., & Santolík, O. (2005). Propagation of whistler-mode chorus to low altitudes: Divergent ray trajectories and ground accessibility.

Annales Geophysicae, 23, 3727–3738. https://doi.org/10.5194/angeo-23-3727-2005

Coroniti, F. V., Scarf, F. L., Kennel, C. F., Kurth, W. S., & Gurnett, D. A. (1980). Detection of Jovian whistler mode chorus; Implications for

the Io torus aurora. Geophysical Research Letters, 7, 45–48. https://doi.org/10.1029/GL007i001p00045

Donovan, E. F., Mende, S., Jackel, B., Frey, H., Syrjäsuo, M., Voronkov, I., et al. (2006). The THEMIS all-sky imaging array—System design

and initial results from the prototype imager. Journal of Atmospheric and Terrestrial Physics, 68, 1472–1487. https://doi.org/10.1016/j.

jastp.2005.03.027

Foster, J. C., Erickson, P. J., Omura, Y., Baker, D. N., Kletzing, C. A., & Claudepierre, S. G. (2017). Van Allen Probes observations of prompt

MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus. Journal of Geophysical Research: Space Physics, 122,

324–339. https://doi.org/10.1002/2016JA023429

Gallagher, D. L., Craven, P. D., & Comfort, R. H. (2000). Global core plasma model. Journal of Geophysical Research, 105(A8), 18819–18833.

https://doi.org/10.1029/1999JA000241

Ginet, G. P., O'Brien, T. P., Huston, S. L., Johnston, W. R., Guild, T. B., Friedel, R., et al. (2013). AE9, AP9 and SPM: New models for

specifying the trapped energetic particle and space plasma environment. Space Science Reviews, 179(1–4), 579–615. https://doi.

org/10.1007/978-1-4899-7433-4_18

Grubbs, G., II, Michell, R., Samara, M., Hampton, D., & Jahn, J.-M. (2018). Predicting electron population characteristics in 2-D using

multispectral ground-based imaging. Geophysical Research Letters, 44, 15–20. https://doi.org/10.1002/2017GL075873

Hanna, P. B., & Anger, C. D. (1971). Auroral colour variations, Planetary and Space Science, 19, 399–411. https://doi.

org/10.1016/0032-0633(71)90046-8

Horne, R. B., Glauert, S. A., & Thorne, R. M. (2003). Resonant diffusion of radiation belt electrons by whistler-mode chorus. Geophysical

Research Letters, 30(9), 1493. https://doi.org/10.1029/2003GL016963

Jordanova, V. K., Tu, W., Chen, Y., Morley, S. K., Panaitescu, A.-D., Reeves, G. D., & Kletzing, C. A. (2016). RAM-SCB simulations of electron transport and plasma wave scattering during the October 2012 “double-dip” storm. Journal of Geophysical Research: Space Physics,

121, 8712–8727. https://doi.org/10.1002/2016JA022470

Kasahara, S., Miyoshi, Y., Kurita, S., Yokota, S., Keika, K., Hori, T., et al. (2019). Strong diffusion of energetic electrons by equatorial chorus

waves in the midnight-to-dawn sector. Geophysical Research Letters, 46, 12685–12692. https://doi.org/10.1029/2019GL085499

Kataoka, R., Miyoshi, Y., Hampton, D., Ishii, T., & Kozako, H. (2012). Pulsating aurora beyond the ultra-low-frequency range. Journal of

Geophysical Research, 117, A08336. https://doi.org/10.1029/2012JA017987

Kataoka, R., Miyoshi, Y., Shigematsu, K., Hampton, D., Mori, Y., Kubo, T., et al. (2013). Stereoscopic determination of all-sky altitude map of

aurora using two ground-based Nikon DSLR cameras. Annales Geophysicae, 31, 1543–1548. https://doi.org/10.5194/angeo-31-1543-2013

Katoh, Y., & Omura, Y. (2013). Effect of the background magnetic field inhomogeneity on generation processes of whistler-mode chorus

and broadband hiss-like emissions. Journal of Geophysical Research: Space Physics, 118, 4189–4198. https://doi.org/10.1002/jgra.50395

Kennel, C. F. (1969). Consequence of a magnetospheric plasma. Reviews of Geophysics, 7(1), 379. https://doi.org/10.1029/RG007i001p00379

Kennel, C. F., & Petschek, H. E. (1966). Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71(1), 1–28. https://doi.

org/10.1029/JZ071i001p00001

Kimura, I., Matsuo, T., Tsuda, M., & Yamauchi, K. (1985). Three dimensional ray tracing of whistler mode waves in a non-dipolar magnetosphere. Journal of Geomagnetism and Geoelectricity, 37, 945–956. https://doi.org/10.5636/jgg.37.945

Kurth, W. S., & Gurnett, D. A. (1991). Plasma waves in planetary magnetospheres. Journal of Geophysical Research, 96(S01), 18977–18991.

https://doi.org/10.1029/91JA01819

Li, W., Ni, B., Thorne, R. M., Bortnik, J., Green, J. C., Kletzing, C. A., et al. (2013). Constructing the global distribution of chorus wave

intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes. Geophysical Research Letters, 40,

4526–4532. https://doi.org/10.1002/grl.50920

Li, W., Thorne, R. M., Angelopoulos, V., Bortnik, J., Cully, C. M., Ni, B., et al. (2009). Global distribution of whistler-mode chorus waves

observed on the THEMIS spacecraft. Geophysical Research Letters, 36, L09104. https://doi.org/10.1029/2009GL037595

10 of 12

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of Geophysical Research: Space Physics

10.1029/2021JA029254

Li, W., Thorne, R. M., Ma, Q., Ni, B., Bortnik, J., Baker, D. N., et al. (2014). Radiation belt electron acceleration by chorus waves during the

17 March 2013 storm. Journal of Geophysical Research: Space Physics, 119, 4681–4693. https://doi.org/10.1002/2014JA019945

Lorentzen, K. R., Blake, J. B., Inan, U. S., & Bortnik, J. (2001). Observations of relativistic electron microbursts in association with VLF

chorus. Journal of Geophysical Research, 106(A4), 6017–6027. https://doi.org/10.1029/2000JA003018

Ma, Q., Li, W., Bortnik, J., Thorne, R. M., Chu, X., Ozeke, L. G., et al. (2018). Quantitative evaluation of radial diffusion and local acceleration processes during GEM challenge events. Journal of Geophysical Research: Space Physics, 123, 1938–1952. https://doi.

org/10.1002/2017JA025114

Malkov, M. A., Diamond, P. H., & Sagdeev, R. Z. (2011). Mechanism for spectral break in cosmic ray protonspectrum of supernova remnant

W44. Nature Communications, 2, 194. https://doi.org/10.1038/ncomms1195

Menietti, J. D., Schippers, P., Katoh, Y., Leisner, J. S., Hospodarsky, G. B., Gurnett, D. A., & Santolik, O. (2013). Saturn chorus intensity

variations. Journal of Geophysical Research: Space Physics, 118, 5592–5602. https://doi.org/10.1002/jgra.50529

Miyoshi, Y., Hori, T., Shoji, M., Teramoto, M., Chang, T. F., Segawa, T., et al. (2018). The ERG Science Center. Earth Planets and Space, 70,

96. https://doi.org/10.1186/s40623-018-0867-8

Miyoshi, Y., Kataoka, R., Kasahara, Y., Kumamoto, A., Nagai, T., & Thomsen, M. (2013). High-speed solar wind with southward interplanetary magnetic field causes relativistic electron flux enhancement of the outer radiation belt via enhanced condition of whistler waves.

Geophysical Research Letters, 40, 4520–4525. https://doi.org/10.1002/grl.50916

Miyoshi, Y., Katoh, Y., Nishiyama, T., Sakanoi, T., Asamura, K., & Hirahara, M. (2010). Time of flight analysis of pulsating aurora electrons,

considering wave-particle interactions with propagating whistler mode waves. Journal of Geophysical Research, 115, A10312. https://

doi.org/10.1029/2009JA015127

Miyoshi, Y., Morioka, A., Obara, T., Misawa, H., Nagai, T., & Kasahara, Y. (2003). Rebuilding process of the outer radiation belt during

the November 3, 1993, magnetic storm—NOAA and EXOS-D observations. Journal of Geophysical Research, 108(A1), 1004. https://doi.

org/10.1029/2001JA007542

Miyoshi, Y., Oyama, S., Saito, S., Fujiwara, H., Kataoka, R., Ebihara, Y., et al. (2015). Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 120, 2754–2766. https://doi.

org/10.1002/2014JA020690

Miyoshi, Y., Saito, S., Kurita, S., Asamura, K., Hosokawa, K., Sakanoi, T., et al. (2020). Relativistic electron microbursts as high-energy tail

of pulsating aurora electrons. Geophysical Research Letters, 47, e2020GL090360. https://doi.org/10.1029/2020GL090360

Miyoshi, Y., Saito, S., Seki, K., Nishiyama, T., Kataoka, R., Asamura, K., et al. (2015). Relation between energy spectra of pulsating aurora

electrons and frequency spectra of whistler-mode chorus waves. Journal of Geophysical Research: Space Physics, 120, 7728–7736. https://

doi.org/10.1002/2015JA021562

Mozer, F. S., Agapitov, O. V., Blake, J. B., & Vasko, I. Y. (2018). Simultaneous observations of lower band chorus emissions at the equator and

microburst precipitating electrons in the ionosphere. Geophysical Research Letters, 45, 511–516. https://doi.org/10.1002/2017GL076120

Ni, B., Thorne, R. M., Shprits, Y. Y., & Bortnik, J. (2008). Resonant scattering of plasma sheet electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation. Geophysical Research Letters, 35, L11106. https://doi.org/10.1029/2008GL034032

Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Chen, L., Lyons, L. R., et al. (2011). Multievent study of the correlation between pulsating aurora and whistler mode chorus emissions. Journal of Geophysical Research, 116, A11221. https://doi.org/10.1029/2011JA016876

Nishimura, Y., Lessard, M. R., Katoh, Y., Miyoshi, Y., Grono, E., Partamies, N., et al. (2020). Diffuse and pulsating aurora. Space Science

Reviews, 216, 4. https://doi.org/10.1007/s11214-019-0629-3

Ogawa, Y., Tanaka, Y., Kadokura, A., Hosokawa, K., Ebihara, Y., Motoba, T., et al. (2020). Development of low-cost multi-wavelength imager system for studies of aurora and airglow. Polar Science, 23, 100501. https://doi.org/10.1016/j.polar.2019.100501

Oguchi, T. (1978). Observations of rapid auroral fluctuations. Journal of Geomagnetism and Geoelectricity, 30(4), 299–314. https://doi.

org/10.5636/jgg.30.299

Omura, Y., Furuya, N., & Summers, D. (2007). Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in

a dipole magnetic field. Journal of Geophysical Research, 112, A06236. https://doi.org/10.1029/2006JA012243

Omura, Y., Miyashita, Y., Yoshikawa, M., Summers, D., Hikishima, M., Ebihara, Y., & Kubota, Y. (2015). Formation process of relativistic

electron flux through interaction with chorus emissions in the Earth's inner magnetosphere. Journal of Geophysical Research: Space

Physics, 120, 9545–9562. https://doi.org/10.1002/2015JA021563

Ono, T. (1993). Derivation of energy parameters of precipitating auroral electrons by using the intensity ratios of auroral emissions. Journal

of Geomagnetism and Geoelectricity, 45(6), 455–472. https://doi.org/10.5636/jgg.45.455

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1),

62–66. https://doi.org/10.1109/TSMC.1979.4310076

Ozaki, M., Miyoshi, Y., Shiokawa, K., Hosokawa, K., Oyama, S.-I., Kataoka, R., et al. (2019). Visualization of rapid electron precipitation via

chorus element wave–particle interactions. Nature Communications, 10, 257. https://doi.org/10.1038/s41467-018-07996-z

Ozaki, M., Shiokawa, K., Miyoshi, Y., Hosokawa, K., Oyama, S., Yagitani, S., et al. (2018). Microscopic observations of pulsating aurora

associated with chorus element structures: Coordinated Arase satellite-PWING observations. Geophysical Research Letters, 45, 12125–

12134. https://doi.org/10.1029/2018GL079812

Rosenberg, T. J., Siren, J. C., Matthews, D. L., Marthinsen, K., Holtet, J. A., Egeland, A., et al. (1981). Conjugacy of electron microbursts and

VLF chorus. Journal of Geophysical Research, 86(A7), 5819–5832. https://doi.org/10.1029/JA086iA07p05819

Royrvik, O., & Davis, T. N. (1977). Pulsating aurora: Local and global morphology. Journal of Geophysical Research, 82(29), 4720–4740.

https://doi.org/10.1029/JA082i029p04720

Sagdeev, R. Z., Shapiro, V. D., Shevchenko, V. I., & Szego, K. (1986). MHD turbulence in the solar wind-comet interaction region. Geophysical Research Letters, 13(2), 85–88. https://doi.org/10.1029/GL013i002p00085

Santolík, O., & Gurnett, D. A. (2003). Transverse dimensions of chorus in the source region. Geophysical Research Letters, 30(2), 1031.

https://doi.org/10.1029/2002GL016178

Santolík, O., Gurnett, D. A., Pickett, J. S., Parrot, M., & Cornilleau-Wehrlin, N. (2003). Spatio-temporal structure of storm-time chorus.

Journal of Geophysical Research, 108, 1278. https://doi.org/10.1029/2002JA009791

Seki, K., Miyoshi, Y., Ebihara, Y., Katoh, Y., Amano, T., Saito, S., et al. (2018). Theory, modeling, and integrated studies in the Arase (ERG)

project. Earth Planets and Space, 70, 17. https://doi.org/10.1186/s40623-018-0785-9

Shen, X.-C., Li, W., Ma, Q., Agapitov, O., & Nishimura, Y. (2019). Statistical analysis of transverse size of lower band chorus waves using

simultaneous multisatellite observations. Geophysical Research Letters, 46, 5725–5734. https://doi.org/10.1029/2019GL083118

OZAKI ET AL.

11 of 12

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of Geophysical Research: Space Physics

10.1029/2021JA029254

Shiokawa, K., Katoh, Y., Hamaguchi, Y., Yamamoto, Y., Adachi, T., Ozaki, M., et al. (2017). Ground-based instruments of the PWING

project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation

network. Earth Planets and Space, 69(1), 160. https://doi.org/10.1186/s40623-017-0745-9

Shiokawa, K., Katoh, Y., Satoh, M., Ejiri, M. K., Ogawa, T., Nakamura, T., et al. (1999). Development of optical mesosphere thermosphere

imagers (OMTI). Earth Planets and Space, 51, 887–896. https://doi.org/10.1186/bf03353247

Soria-Santacruz Pich, M., Jun, I., & Evans, R. (2017). Empirical radiation belt models: Comparison with in situ data and implications for

environment definition. Space Weather, 15, 1165–1176. https://doi.org/10.1002/2017SW001612

Summers, D., Omura, Y., Miyashita, Y., & Lee, D.-H. (2012). Nonlinear spatiotemporal evolution of whistler mode chorus waves in Earth's

inner magnetosphere. Journal of Geophysical Research, 117, A09206. https://doi.org/10.1029/2012JA017842

Summers, D., Thorne, R. M., & Xiao, F. (1998). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103(A9), 20487–20500. https://doi.org/10.1029/98JA01740

Tanaka, Y.-M., Aso, T., Gustavsson, B., Tanabe, K., Ogawa, Y., Kadokura, A., et al. (2011). Feasibility study on generalized-aurora computed

tomography. Annales Geophysicae, 29, 551–562. https://doi.org/10.5194/angeo-29-551-2011

Tao, X., Bortnik, J., Albert, J. M., & Thorne, R. M. (2012). Comparison of bounce-averaged quasi-linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations. Journal of Geophysical Research, 117, A10205. https://doi.

org/10.1029/2012JA017931

Teng, S., Tao, X., Xie, Y., Zonca, F., Chen, L., Fang, W. B., & Wang, S. (2017). Analysis of the duration of rising tone chorus elements. Geophysical Research Letters, 44, 12074–12082. https://doi.org/10.1002/2017GL075824

Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., et al. (2013). Rapid local acceleration of relativistic radiation belt electrons by

magnetospheric chorus. Nature, 504(7480), 411–414. https://doi.org/10.1038/nature12889

Thorne, R. M., Ni, B., Tao, X., Horne, R. B., & Meredith, N. P. (2010). Scattering by chorus waves as the dominant cause of diffuse auroral

precipitation. Nature, 467(7318), 943–946. https://doi.org/10.1038/nature09467

Treumann, R. A. (2006). The electron–cyclotron maser for astrophysical application. Astronomy and Astrophysics Review, 13(4), 229–315.

https://doi.org/10.1007/s00159-006-0001-y

Tsurutani, B. T., & Smith, E. J. (1974). Postmidnight chorus: A substorm phenomenon. Journal of Geophysical Research, 79(1), 118–127.

https://doi.org/10.1029/JA079i001p00118

Tsyganenko, N. A. (2002). A model of the near magnetosphere with a dawn-dusk asymmetry: 1. Mathematical structure. Journal of Geophysical Research, 107(A8), 1179. https://doi.org/10.1029/2001JA000219

Turner, D. L., Lee, J. H., Claudepierre, S. G., Fennell, J. F., Blake, J. B., Jaynes, A. N., et al. (2017). Examining coherency scales, substructure,

and propagation of whistler mode chorus elements with Magnetospheric Multiscale (MMS). Journal of Geophysical Research: Space

Physics, 122, 11201–11226. https://doi.org/10.1002/2017JA024474

Winske, D., & Leroy, M. M. (1984). Diffuse ions produced by electromagnetic ion beam instabilities. Journal of Geophysical Research,

89(A5), 2673–2688. https://doi.org/10.1029/JA089iA05p02673

OZAKI ET AL.

12 of 12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る