リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Temporal and Spatial Variations of Total Electron Content Enhancements During a Geomagnetic Storm on 27 and 28 September 2017」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Temporal and Spatial Variations of Total Electron Content Enhancements During a Geomagnetic Storm on 27 and 28 September 2017

Shinbori, Atsuki Otsuka, Yuichi Sori, Takuya Tsugawa, Takuya Nishioka, Michi 名古屋大学

2020.07

概要

Temporal and spatial evolutions of total electron content (TEC) and electron density in the ionosphere during a geomagnetic storm that occurred on 27 and 28 September 2017 have been investigated using global TEC data obtained from many Global Navigation Satellite System stations together with the ionosonde, geomagnetic field, Jicamarca incoherent scatter and Super Dual Auroral Radar Network (SuperDARN) radar data. Our analysis results show that a clear enhancement of the ratio of the TEC difference (rTEC) first occurs from noon to afternoon at high latitudes within 1 hr after a sudden increase and expansion of the high‐latitude convection and prompt penetration of the electric field to the equator associated with the southward excursion of the interplanetary magnetic field. Approximately 1–2 hr after the onset of the hmF2 increase in the midlatitude and low‐latitude regions associated with the high‐latitude convection enhancement, the rTEC and foF2 values begin to increase and the enhanced rTEC region expands to low latitudes within 1–2 hr. This signature suggests that the ionospheric plasmas in the F2 region move at a higher altitude due to local electric field drift, where the recombination rate is smaller, and that the electron density increases due to additional production at the lower altitude in the sunlit region. Later, another rTEC enhancement related to the equatorial ionization anomaly appears in the equatorial region approximately 1 hr after the prompt penetration of the electric field to the equator and expands to higher latitudes within 3–4 hr.

この論文で使われている画像

関連論文

参考文献

Aa, E., Zou, S., Ridley, A., Zhang, S., Coster, A. J., Erickson, P. J., et al. (2019). Merging of storm time midlatitude traveling ionospheric

disturbances and equatorial plasma bubbles. Space Weather, 17, 285–298. https://doi.org/10.1029/2018SW002101

Abdu, M. A., Maruyama, T., Batista, I. S., Saito, S., & Nakamura, M. (2007). Ionospheric responses to the October 2003 superstorm:

Longitude/local time effects over equatorial low and middle latitudes. Journal of Geophysical Research, 112, A10306. https://doi.org/

10.1029/2006JA012228

Anderson, D. N. (1976). Modeling the midlatitude F‐region ionospheric storm using east‐west drift and a meridional wind. Planetary and

Space Science, 24(1), 69–77. https://doi.org/10.1016/0032-0633(76)90063-5

Angelopoulos, V., Cruce, P., Drozdov, A., Grimes, E. W., Hatzigeorgiu, N., King, D. A., et al. (2019). The Space Physics Environment Data

Analysis System (SPEDAS). Space Science Reviews, 215(1), 9. https://doi.org/10.1007/s11214-018-0576-4

Astafyeva, E., Zakharenkova, I., & Alken, P. (2016). Prompt penetration electric fields and the extreme topside ionosphere response to the

June 22–23, 2015, geomagnetic storms as seen by the swarm constellation. Earth, Planets and Space, 68(1), 152. https://doi.org/10.1186/

s023-016-0526-x

Balan, N., Alleyne, H., Otsuka, Y., Vijaya, L. D., Fejer, B. G., & McCrea, I. (2009). Relative effects of electric and neutral wind on positive

ionospheric storms. Earth Planets, Space, 61(4), 439–445. https://doi.org/10.1186/BF03353160

Balan, N., & Iyer, K. N. (1983). Equatorial anomaly in ionospheric electron content and its relation to dynamo currents. Journal of

Geophysical Research, 88(A12), 10,259–10,262. https://doi.org/10.1029/JA088iA12p10259

Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., et al. (2010). A physical mechanism of positive

ionospheric storms at low latitudes and midlatitudes. Journal of Geophysical Research, 115, A02304. https://doi.org/10.1029/

2009JA014515

Blanc, M., & Richmond, A. (1980). The ionospheric disturbance dynamo. Journal of Geophysical Research, 85, 1669–1686. https://doi.org/

10.1029/JA085iA04p01669

18 of 21

Journal of Geophysical Research: Space Physics

us), SWEPOS (ftp://ftp-sweposdata.lm.

se), EUREF (ftp://www.epncb.oma.be),

IGG (ftp://ftp.glonass-iac.ru), SUGAUR

(ftp://eos.ntu.edu.sg), NMA (ftp://ftp.

statkart.no), NERC (ftp://

128.243.138.204), RAMSAC (ftp://ramsac.ign.gob.ar), and ERGNSS (ftp://ftp.

geodesia.ign.es). The SuperDARN electric potential map data and analysis

software were provided by Virginia

Tech (http://vt.superdarn.org/tikiindex.php?page=ASCIIData).

SuperDARN is a collection of radars

funded by the national scientific funding agencies of Australia, Canada,

China, France, Italy, Japan, Norway,

South Africa, the United Kingdom, and

the United States of America. The ion

drift velocity data obtained from the

Jicamarca IS radar are provided by the

Madrigal Database (http://jro-db.igp.

gob.pe/madrigal/). The Jicamarca

Radio Observatory is a facility of the

Instituto Geofisico del Peru operated

with support from NSF AGS‐1433968

through Cornell University. We used

the 1‐min geomagnetic field data collected at Huancayo and Kourou. We

thank Instituto Geofisico del Perú and

Institut de Physique du Globe de Paris

for supporting its operation and

INTERMAGNET for promoting high

standards of magnetic observatory

practice (www.intermagnet.org). We

also analyzed ionogram data obtained

from four ionosonde stations (Austin,

Boulder, Juliusruh, and Rome). These

ionogram data were provided by Lowell

GIRO Data Center (LGDC) (https://

ulcar.uml.edu/DIDBase/). The

Juliusruh ionosonde has been operated

by the Leibniz Institute of Atmospheric

Physics Kuehlungsborn.

SHINBORI ET AL.

10.1029/2019JA026873

Bruinsma, S. L., & Forbes, J. M. (2007). Global observation of traveling atmospheric disturbances (TADs) in the thermosphere. Geophysical

Research Letters, 34, L14103. https://doi.org/10.1029/2007GL030243

Buonsanto, M. J. (1995a). Millstone Hill incoherent scatter F region observations during the disturbances of June 1991. Journal of

Geophysical Research, 100(A4), 5743–5755. https://doi.org/10.1029/94JA03316

Buonsanto, M. J. (1995b). A case study of the ionospheric storm dusk effect. Journal of Geophysical Research, 100(A12), 23,857–23,869.

https://doi.org/10.1029/95JA02697

Buonsanto, M. J. (1999). Ionospheric storms: A review. Space Science Reviews, 88(3/4), 563–601. https://doi.org/10.1023/A:1005107532631

Coster, A. J., Colerico, M. J., Foster, J. C., Rideout, W., & Rich, F. (2007). Longitude sector comparisons of storm enhanced density.

Geophysical Research Letters, 34, L18105. https://doi.org/10.1029/2007GL030682

Coster, A. J., Erickson, P. J., Foster, J. C., Thomas, E. G., Ruohoniemi, J. M., & Baker, J. (2017). Solar cycle 24 observations of

storm‐enhanced density and the tongue of ionization. In T. Fuller‐Rowell, E. Yizengaw, P. H. Doherty, & S. Basu (Eds.), Ionospheric

space weather: Longitude and hemispheric dependences and lower atmosphere forcing, Geophysical Monograph, 220, (pp. 71–83).

Washington, DC: American Geophysical Union.

Coster, A. J., Foster, J. C., & Ericknon, P. J. (2003). Monitoring the ionosphere with GPS. GPS world, 14, 40.

Cousins, E. D. P., Matsuo, T., & Richmond, A. D. (2013). SuperDARN assimilative mapping. Journal of Geophysical Research: Space Physics,

118, 7895–7904. https://doi.org/10.1002/2013JA019319

Dashora, N., Sharma, S., Dabas, R. S., Alex, S., & Pandey, R. (2009). Large enhancements in low latitude total electron content during 15

May 2005 geomagnetic storm in Indian zone. Annales de Geophysique, 27(1803–1820), 2009.

Dashora, N., Suresh, S., & Niranjan, K. (2019). Interhemispheric asymmetry in response of low‐latitude ionosphere to perturbation electric

fields in the main phase of geomagnetic storms. Journal of Geophysical Research: Space Physics, 124, 7256–7282. https://doi.org/10.1029/

2019JA026671

David, M., Sojka, J. J., Schunk, R. W., Liemohn, M. W., & Coster, A. J. (2011). Dayside midlatitude ionospheric response to storm time

electric fields: A case study for 7 September 2002. Journal of Geophysical Research, 116, A12302. https://doi.org/10.1029/2011JA016988

Ebihara, Y., Tanaka, T., & Kikuchi, T. (2014). Counter equatorial electrojet and overshielding after substorm onset: Global MHD simulation study. Journal of Geophysical Research: Space Physics, 119, 7281–7296. https://doi.org/10.1002/2014JA020065

Evans, J. V. (1973). The causes of storm‐time increases of the F‐layer at mid‐latitudes. Journal of Atmospheric and Solar ‐ Terrestrial Physics,

35(4), 593–616. https://doi.org/10.1016/0021-9169(73)90191-8

Fejer, B. G. (1991). Low latitude electrodynamic plasma drifts: A review. Journal of Atmospheric and Terrestrial Physics, 53(8), 677–693.

https://doi.org/10.1016/0021-9169(91)90121-M

Ferdousi, B., Nishimura, Y., Maruyama, N., & Lyons, L. R. (2019). Subauroral neutral wind driving and its feedback to SAPS during the

17 March 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 124, 2323–2337. https://doi.org/10.1029/

2018JA026193

Foster, J. C. (1993). Storm‐time plasma transport at middle and high latitudes. Journal of Geophysical Research, 98(A2), 1675–1689. https://

doi.org/10.1029/92JA02032

Foster, J. C., & Burke, W. J. (2002). SAPS: A new characterization for sub‐auroral electric fields. Eos, Transactions, American Geophysical

Union, 83(36), 393–394. https://doi.org/10.1029/2002EO000289

Foster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., et al. (2005). Multiradar observations of the polar tongue of

ionization. Journal of Geophysical Research, 110, A09S31. https://doi.org/10.1029/2004JA010928

Foster, J. C., Rideout, W., Sandel, B., Forrester, W. T., & Rich, F. J. (2007). On the relationship of SAPS to storm enhanced density. Journal of

Atmospheric and Solar‐Terrestrial Physics, 69(3), 303–313. https://doi.org/10.1016/j.jastp.2006.07.021

Friis‐Christensen, E. A., Kamide, Y., Richmond, A. D., & Matsushita, S. (1985). Interplanetary magnetic field control of high latitude

electric fields and currents determined from Greenland magnetometer data. Journal of Geophysical Research, 90(A2), 1325–1338. https://

doi.org/10.1029/JA090iA02p01325

Galav, P., Rao, S. S., Sharma, S., Gordiyenko, G., & Pandey, R. (2014). Ionospheric response to the geomagnetic storm of 15 May 2005 over

midlatitudes in the day and night sectors simultaneously. Journal of Geophysical Research: Space Physics, 119, 5020–5031. https://doi.

org/10.1002/2013JA019679

Heelis, R. A. (2017). Longitude and hemispheric dependencies in storm‐enhanced density. In T. Fuller‐Rowell, E. Yizengaw, P. H. Doherty,

& S. Basu (Eds.), Ionospheric space weather: Longitude and hemispheric dependences and lower atmosphere forcing, Geophysical

Monograph, 220 (pp. 61–70). Washington, DC: American Geophysical Union.

Heelis, R. A., & Coley, W. R. (2007). Variations in the low‐ and middle‐latitude topside ion concentration observed by DMSP during

superstorm events. Journal of Geophysical Research, 112, A08310. https://doi.org/10.1029/2007JA012326

Heelis, R. A., Sojka, J. J., David, M., & Schunk, R. W. (2009). Storm time density enhancements in the middle‐latitude dayside ionosphere.

Journal of Geophysical Research, 114, A03315. https://doi.org/10.1029/2008JA013690

Huang, C. S. (2008). Global characteristics of ionospheric electric fields and disturbances during the first hours of magnetic storms.

Advances in Space Research, 41, 527–538. https://doi.org/10.1016/j.asr.2007.08.026

Immel, T. J., & Mannucci, A. J. (2013). Ionospheric redistribution during geomagnetic storms. Journal of Geophysical Research: Space

Physics, 118, 7928–7939. https://doi.org/10.1002/2013JA018919

Iyemori, T. (1990). Storm‐time magnetospheric currents inferred from mid‐latitude geomagnetic field variations. Journal of Geomagnetism

and Geoelectricity, 42(11), 1249–1265. https://doi.org/10.5636/jgg.42.1249

Iyemori, T., & Rao, D. R. K. (1996). Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to

storm‐substorm relation. Annales de Geophysique, 14(6), 608–618. https://doi.org/10.1007/s00585-996-0608-3

Jakowski, N., Sardon, E., Engler, E., Jungstand, A., & Klahn, D. (1996). Relationships between GPS‐signal propagation errors and EISCAT

observations. Annales de Geophysique, 14(12), 1429–1436. https://www.ann-geophys.net/14/1429/1996/angeo-14-1429-1996, https://

doi.org/10.1007/s00585-996-1429-0

Kelley, M. C., Vlasov, M. N., Foster, J. C., & Coster, A. J. (2004). A quantitative explanation for the phenomenon known as storm‐enhanced

density. Geophysical Research Letters, 31, L19809. https://doi.org/10.1029/2004GL020875

Kikuchi, T. (2014). Transmission line model for the near‐instantaneous transmission of the ionospheric electric field and currents to the

equator. Journal of Geophysical Research: Space Physics, 119, 1131–1156. https://doi.org/10.1002/2013JA019515

Kikuchi, T., & Hashimoto, K. K. (2016). Transmission of the electric fields to the low latitude ionosphere in the magnetosphere‐ionosphere

current circuit. Geoscience Letters, 41(9), 927–936. https://doi.org/10.1016/0021-9169(79)90094-1

Kikuchi, T., Hashimoto, K. K., Kitamura, T.‐I., Tachihara, H., & Fejer, B. (2003). Equatorial counterelectrojets during substorms. Journal of

Geophysical Research, 108(A11), 1406. https://doi.org/10.1029/2003JA009915

19 of 21

Journal of Geophysical Research: Space Physics

10.1029/2019JA026873

Kikuchi, T., Hashimoto, K. K., & Nozaki, K. (2008). Penetration of the electric fields to the equator during a geomagnetic storm. Journal of

Geophysical Research, 113, A06214. https://doi.org/10.1029/2007JA012628

Kikuchi, T., Luhr, H., Kitamura, T., Saka, O., & Schlegel, K. (1996). Direct penetration of the polar electric field to the equator during a DP 2

event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. Journal of Geophysical Research, 101(A8),

17,161–17,173. https://doi.org/10.1029/96JA01299

Liu, J., Wang, W., Burns, A., Solomon, S. C., Zhang, S., Zhang, Y., & Huang, C. (2016). Relative importance of horizontal and vertical

transports to the formation of ionospheric storm‐enhanced density and polar tongue of ionization. Journal of Geophysical Research:

Space Physics, 121, 8121–8133. https://doi.org/10.1002/2016JA022882

Liu, J., Wang, W., Burns, A., Yue, X., Zhang, S., Zhang, Y., & Huang, C. (2016). Profiles of ionospheric storm‐enhanced density during the

17 March 2015 great storm. Journal of Geophysical Research: Space Physics, 121, 727–744. https://doi.org/10.1002/2015JA021832

Maruyama, T. (2006). Extreme enhancement in total electron content after sunset 8 November 2004 and its connection with storm

enhanced density. Geophysical Research Letters, 33, L20111. https://doi.org/10.1029/2006GL027367

Maruyama, T., Ma, G., & Nakamura, M. (2004). Signature of TEC storm on 6 November 2001 derived from dense GPS receiver network and

ionosonde chain over Japan. Journal of Geophysical Research, 109, A10302. https://doi.org/10.1029/2004JA010451

Maruyama, T., Ma, G., & Tsugawa, T. (2013). Storm‐induced plasma stream in the low‐latitude to midlatitude ionosphere. Journal of

Geophysical Research: Space Physics, 118(9), 5931–5941. https://doi.org/10.1002/jgra.50541

Mendillo, M., Papagiannis, M. D., & Klobuchar, J. A. (1972). Average behavior of the midlatitude F‐region parameters NT, Nmax and t

during geomagnetic storms. Journal of Geophysical Research, 77(25), 4891–4895. https://doi.org/10.1029/JA077i025p04891

Moldwin, M. B., Zou, S., & Heine, T. (2016). The story of plumes: The development of a new conceptual framework for understanding

magnetosphere and ionosphere coupling. Annales de Geophysique, 34(12), 1243–1253. https://doi.org/10.5194/angeo-34-1243-2016

Nakamizo, A., Hiraki, Y., Ebihara, Y., Kikuchi, T., Seki, K., Hori, T., et al. (2012). Effect of R2‐FAC development on the ionospheric electric

field pattern deduced by a global ionospheric potential solver. Journal of Geophysical Research, 117, A09231. https://doi.org/10.1029/

2012JA017669

Nakamizo, A., & Yoshikawa, Y. (2019). Deformation of ionospheric potential pattern by ionospheric hall polarization. Journal of

Geophysical Research: Space Physics, 124, 7553–7580. https://doi.org/10.1029/2018JA026013

Nishida, A. (1968). Coherence of geomagnetic DP 2 magnetic fluctuations with interplanetary magnetic variations. Journal of Geophysical

Research, 73(17), 5549–5559. https://doi.org/10.1029/JA073i017p05549

Nishitani, N., Ruohoniemi, J. M., Lester, M., Baker, J. B. H., Koustov, A. V., Shepherd, S. G., et al. (2019). Review of the accomplishments of

mid‐latitude Super Dual Auroral Radar Network (SuperDARN) HF radars (2019). Progress in Earth and Planetary Science,

6(27). https://doi.org/10.1186/s40645-019-0270-5

Nose, M., Iyemori, T., Sugiura, M., & Kamei, T. (2015). World Data Center for Geomagnetism, Kyoto Geomagnetic AE index. https://doi.org/

10.17593/15031-54800

Otsuka, Y., Ogawa, T., Saito, A., Tsugawa, T., Fukao, S., & Miyazaki, S. (2002). A new technique for mapping of total electron content using

GPS network in Japan. Earth, Planets and Space, 54(1), 63–70. https://doi.org/10.1186/BF03352422

Papagiannis, M. D., Mendillo, M., & Klobuchar, J. A. (1971). Simultaneous storm‐time increases of the ionospheric total electron content

and the geomagnetic field in the dusk sector. Planetary and Space Science, 19(5), 503–511. https://doi.org/10.1016/0032-0633(71)90166-8

Piñón, D. A., Gómez, D. D., Smalley, R., Cimbaro, S. R., Lauría, E. A., & Bevis, M. G. (2018). The history, state, and future of the argentine

continuous satellite monitoring network and its contributions to geodesy in Latin America. Seismological Research Letters, 89(2A),

475–482. https://doi.org/10.1785/0220170162

Prölss, G. W. (1997). Magnetic storm associated perturbations of the upper atmosphere. In B. T. Tsurutani, W. D. Gonzales, Y. Kamide, & J.

K. Arballo (Eds.), Magnetic storms, Geophysical Monograph 98 (pp. 183–202). Washington, DC: American Geophysical Union.

Rastogi, R. G., & Klobouchar, J. A. (1990). Ionospheric electron content within the equatorial F2 layer anomaly belt. Journal of Geophysical

Research, 95(A11), 19,045–19,052. https://doi.org/10.1029/JA095iA11p19045

Reinisch, B. W., & Galkin, I. A. (2011). Global Ionospheric Radio Observatory (GIRO), Earth, Planets. Spaceflight, 63(4), 377–381. https://

doi.org/10.5047/eps.2011.03.001

Rishbeth, H., Heelis, R. A., Makela, J. J., & Basu, S. (2010). Storming the Bastille: The effect of electric fields on the ionospheric F‐layer.

Annales de Geophysique, 28(4), 977–981. https://doi.org/10.5194/angeo-28-977-2010

Shepherd, S. G. (2014). Altitude‐adjusted corrected geomagnetic coordinates: Definition and functional approximations. Journal of

Geophysical Research: Space Physics, 119, 7501–7521. https://doi.org/10.1002/2014JA020264

Shinbori, A., Otsuka, Y., Tsugawa, T., Nishioka, M., Kumamoto, A., Tsuchiya, F., et al. (2018). Temporal and spatial variations of storm

time midlatitude ionospheric trough based on global GNSS‐TEC and Arase satellite observations. Geophysical Research Letters, 45,

7362–7370. https://doi.org/10.1029/2018GL078723

Sori, T., Shinbori, A., Otsuka, Y., Tsugawa, T., & Nishioka, M. (2019). Characteristics of GNSS total electron content enhancements over the

midlatitudes during a geomagnetic storm on 7 and 8 November 2004. Journal of Geophysical Research: Space Physics, 124(12),

10,376–10,394. https://doi.org/10.1029/2019JA026713

Tanaka, T. (1995). Generation mechanisms for magnetosphere‐ionosphere current systems deduced from a three‐dimensional MHD

simulation of the solar wind‐magnetosphere‐ionosphere coupling processes. Journal of Geophysical Research, 100(A7), 12,057–12,074.

https://doi.org/10.1029/95JA00419

Tanaka, T., Watanabe, M., Den, M., Fujita, S., Ebihara, Y., Kikuchi, T., et al. (2016). Generation of field‐aligned current (FAC) and convection through the formation of pressure regimes: Correction for the concept of Dungey's convection. Journal of Geophysical Research:

Space Physics, 121, 8695–8711. https://doi.org/10.1002/2016JA022822

Tanaka, Y., Shinbori, A., Hori, T., Koyama, Y., Abe, S., Umemura, N., et al. (2013). Analysis software for upper atmospheric data developed

by the IUGONET project and its application to polar science. Advances in Polar Science, 24(4), 231–240. https://doi.org/10.3724/SP.

J.1085.2013.00231

Thomas, E. G., Baker, J. B. H., Ruohoniemi, J. M., Clausen, L. B. N., Coster, A. J., Foster, J. C., & Erickson, P. J. (2013). Direct observations

of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. Journal of

Geophysical Research: Space Physics, 118, 1180–1189. https://doi.org/10.1002/jgra.50116

Tsugawa, T., Kotake, N., Otsuka, Y., & Saito, A. (2007). Medium‐scale traveling ionospheric disturbances observed by GPS receiver network

in Japan: A short review. GPS Solutions, 11(2), 139–144. https://doi.org/10.1007/s10291-006-0045-5

Tsugawa, T., Nishioka, M., Ishii, M., Hozumi, K., Saito, S., Shinbori, A., et al. (2018). Total electron content observations by dense

regional and worldwide international networks of GNSS. Journal of Disaster Research, 13(3), 535–545. https://doi.org/10.20965/jdr.2018.

p0535

SHINBORI ET AL.

20 of 21

Journal of Geophysical Research: Space Physics

10.1029/2019JA026873

Tsuji, Y., Shinbori, A., Kikuchi, T., & Nagatsuma, T. (2012). Magnetic latitude and local time distributions of ionospheric currents during a

geomagnetic storm. Journal of Geophysical Research, 117, A07318. https://doi.org/10.1029/2012JA017566

Tsurutani, B., Mannucci, A., Iijima, B., Abdu, M. A., Sobral, J. H. A., Gonzalez, W., et al. (2004). Global dayside ionospheric uplift and

enhancement associated with interplanetary electric fields. Journal of Geophysical Research, 109, A08302. https://doi.org/10.1029/

2003JA010342

Yang, N., Le, H., & Liu, L. (2015). Statistical analysis of ionospheric mid‐latitude trough over the northern hemisphere derived from GPS

total electron content data. Earth, Planets and Space, 67(1), 196. https://doi.org/10.1186/s40623-015-0365-1

Yang, N., Le, H., & Liu, L. (2016). Statistical analysis of the mid‐latitude trough position during different categories of magnetic storms and

different storm intensities. Earth, Planets and Space, 68(1), 171. https://doi.org/10.1186/s40623-016-0554-6

Yizengaw, E., Moldwin, M. B., & Galvan, D. A. (2006). Ionospheric signatures of a plasmaspheric plume over Europe. Geophysical Research

Letters, 33, L17103. https://doi.org/10.1029/2006GL026597

Zhao, B., Wan, W., & Liu, L. (2005). Responses of equatorial anomaly to the October–November 2003 superstorms. Annales de Geophysique,

23(3), 693–706. https://doi.org/10.5194/angeo-23-693-2005

Zou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. (2014). On the generation/decay of

the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow: Generation and decay of SED plumes.

Journal of Geophysical Research: Space Physics, 119(10), 8543–8559. https://doi.org/10.1002/2014JA020408

Zou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. (2013). Multi‐instrument observations

of SED during 24–25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 118,

7798–7809. https://doi.org/10.1002/2013JA018860

SHINBORI ET AL.

21 of 21

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る