リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ナノ構造設計に基づくプラズモンセンサの高感度・高機能化」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ナノ構造設計に基づくプラズモンセンサの高感度・高機能化

山田 大空 大阪府立大学 DOI:info:doi/10.24729/00017766

2022.07.21

概要

金属をナノメートルスケールまで微細化した金属ナノ構造は、光学をはじめとした多 くの研究分野で基礎研究・応用研究が進められている。金属ナノ構造が持つ特有の色彩 は、古くはステンドグラスの着色材として利用されていた古代ヨーロッパから利用され てきた。それ以降、1857 年にステンドグラスの着色における金微粒子の関与の発見を 経て、Mie らによる金微粒子の光散乱現象に関する研究、金微粒子の化学合成をはじめ とした様々な研究が多くの研究者によって行われてきた。2021 年現在でも年間 2000 報 近くの金属ナノ構造関連研究が報告され、また金属ナノ構造の光学現象の原理に纏わる 分野である「プラズモニクス」についても年 2700 件以上の報告があるなど、活発に研 究されている分野である。その中でも応用分野は多岐に渡り、光学素子、エネルギー変 換素子に加えて、本研究で取り扱う光学センサもその一領域である。
本章では、金属ナノ構造に纏わる光学現象の理解に欠かせない「プラズモン」、金属 ナノ構造の形状による効果、金属ナノ構造のセンサ応用について述べた後、本研究の位 置づけを明らかにする。

この論文で使われている画像

参考文献

参考文献1

[1] D.F. Dubois, Annals of Physics 7 (1959) 174–237.

[2] D.F. Dubois, Annals of Physics 8 (1959) 24–77.

[3] E. Ozbay, Science 311 (2006) 189-193

[4] J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Physical Review Letters 76 (1996) 4773-4776.

[5] A. v. Zayats, I.I. Smolyaninov, A.A. Maradudin, Physics Reports 408 (2005) 131–314.

[6] J. Lin, J.P.B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, F. Capasso, Science 346 (2013) 331-334.

[7] A.W. Sanders, D.A. Routenberg, B.J. Wiley, Y. Xia, E.R. Dufresne, M.A. Reed, Nano Letters 6 (2006) 1822–1826.

[8] S. Gong, M. Hu, R. Zhong, X. Chen, P. Zhang, T. Zhao, S. Liu, Optics Express 22 (2014) 19252– 19261.

[9] M. Fleischmann, P.J. Hendra, A.J. Mcquillan, Chemical Physics Letters 26 (1974) 163–166.

[10] Q. Wang, Y. Zheng, C. Yu, X. Chen, E. Wang, S. Long, H. Zhu, S. Gao, J. Cao, Plasmonics 15 (2020) 1639-1644.

[11] B.O. Liedberg, C. Nylander, I. Lundstrom, Sensors and Actuators, 4 (1983) 299-304.

[12] J. Homola, I. Koudela, S.S. Yee, Sensors and Actuators B, 54 (1999) 16-24.

[13] S.S. Yee, G. nter Gauglitz, Sensors and Actuators B, 54 (1999) 3-15.

[14] A.K. Mishra, S.K. Mishra, B.D. Gupta, Optics Communications 344 (2015) 86–91.

[15] J. Homola, Analytical and Bioanalytical Chemistry 377 (2003) 528–539.

[16] K. Hegnerová, M. Bocková, H. Vaisocherová, Z. Krištofiková, J. Říčný, D. Řípová, J. Homola, Sensors and Actuators, B: Chemical 139 (2009) 69–73.

[17] H. Oka, Y. Ohdaira, Scientific Reports 8 (2018) 2463.

[18] K.E. Fong, L.Y.L. Yung, Nanoscale 5 (2013) 12043–12071.

[19] K.A. Willets, R.P. van Duyne, Annual Review of Physical Chemistry 58 (2007) 267–297.

[20] C. Gong, M.S. Leite, ACS Photonics 3 (2016) 507–513.

[21] H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir 24 (2008) 5233–5237.

[22] C. Noguez, Journal of Physical Chemistry C 111 (2007) 3606–3619.

[23] K. Sakai, K. Nomura, Y. Tanaka, K. Sasaki, Journal of Applied Physics 114 (2013) 1–5.

[24] E. Elliott, C. Dennison, Analytical Biochemistry 186 (1990) 53-59.

[25] G.S. Métraux, C.A. Mirkin, Advanced Materials 17 (2005) 412–415.

[26] S.S. Aćimović, M.P. Kreuzer, M.U. González, R. Quidant, ACS Nano 3 (2009) 1231–1237.

[27] S.J. Tan, L. Zhang, D. Zhu, X.M. Goh, Y.M. Wang, K. Kumar, C.W. Qiu, J.K.W. Yang, Nano Letters 14 (2014) 4023–4029.

[28] A.I. Henry, J.M. Bingham, E. Ringe, L.D. Marks, G.C. Schatz, R.P. van Duyne, Journal of Physical Chemistry C 115 (2011) 9291–9305.

[29] H. Akherat Doost, M.H. Majles Ara, E. Koshki, International Journal of Nanoscience and Nanotechnology 14 (2018) 153-158.

[30] S. Link, M.A. El-Sayed, Journal of Physical Chemistry B 103 (1999) 4212–4217.

[31] N.M. Yunos, T. Khairi, A. Khairuddin, S. Shafie, T. Ahmad, W. Lionheart, Malaysian Journal of Fundamental and Applied Sciences 15 (2019) 784-789.

[32] S. Link, M.B. Mohamed, M.A. El-Sayed, Journal of Physical Chemistry B 103 (1999) 3073–3077.

[33] Y. Ren, H. Qi, Q. Chen, S. Wang, L. Ruan, Journal of Quantitative Spectroscopy and Radiative Transfer 199 (2017) 45–51.

[34] J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F.J. de García Abajo, I. Pastoriza- Santos, L.M. Liz-Marzán, C. Colliex, Nano Letters 10 (2010) 902–907.

[35] A.I. Henry, J.M. Bingham, E. Ringe, L.D. Marks, G.C. Schatz, R.P. van Duyne, Journal of Physical Chemistry C 115 (2011) 9291–9305.

[36] B. Grześkiewicz, K. Ptaszyński, M. Kotkowiak, Plasmonics 9 (2014) 607–614.

[37] A.M. Funston, C. Novo, T.J. Davis, P. Mulvaney, Nano Letters 9 (2009) 1651–1658.

[38] D.A. Rosen, A.R. Tao, ACS Applied Materials and Interfaces 6 (2014) 4134–4142.

[39] P.K. Jain, M.A. El-Sayed, Chemical Physics Letters 487 (2010) 153–164.

[40] C. Qin, Y. Guo, J. Seo, Y. Shuai, J. Lee, B.J. Lee, Optics Express 28 (2020) 15731.

[41] A. Horrer, K. Krieg, K. Freudenberger, S. Rau, L. Leidner, G. Gauglitz, D.P. Kern, M. Fleischer, Analytical and Bioanalytical Chemistry 407 (2015) 8225-8231.

[42] T. Endo, S. Yamamura, K. Kerman, E. Tamiya, Analytica Chimica Acta 614 (2008) 182–189.

[43] W. Sun, S. Yuan, H. Huang, N. Liu, Y. Tan, Journal of Microbiological Methods 142 (2017) 41– 45.

[44] T. Zhang, G. Lu, H. Shen, P. Perriat, M. Martini, O. Tillement, Q. Gong, Science China: Physics, Mechanics and Astronomy 57 (2014) 1038–1045.

[45] R.-Y. He, K.-C. Cho, N.-S. Chang, Y.-D. Su, S.-J. Chen, Optics Express17 (2009) 5987-5997.

[46] W.R. Premasiri, D.T. Moir, M.S. Klempner, N. Krieger, G. Jones, L.D. Ziegler, Journal of Physical Chemistry B 109 (2005) 312–320.

[47] N. Leopold, B. Lendl, The Journal of Physical Chemistry B 107 (2003) 5723–5727.

[48] A. Campion, P. Kambhampati, Chemical Society Reviews 27 (1998) 241-260.

[49] K. Ikeda, J. Sato, N. Fujimoto, N. Hayazawa, S. Kawata, K. Uosaki, Journal of Physical Chemistry C 113 (2009) 11816–11821.

参考文献2

[1] K.A. Willets, R.P. van Duyne, Annual Review of Physical Chemistry 58 (2007) 267–297.

[2] K.E. Fong, L.Y.L. Yung, Nanoscale 5 (2013) 12043–12071.

[3] E. Petryayeva, U.J. Krull, Analytica Chimica Acta 706 (2011) 8–24.

[4] P.K. Jain, S. Eustis, M.A. El-Sayed, Journal of Physical Chemistry B 110 (2006) 18243–18253.

[5] H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir 24 (2008) 5233–5237.

[6] E.S. Kooij, W. Ahmed, H.J.W. Zandvliet, B. Poelsema, Journal of Physical Chemistry C 115 (2011) 10321–10332.

[7] T. Endo, S. Yamamura, K. Kerman, E. Tamiya, Analytica Chimica Acta 614 (2008) 182–189.

[8] W. Sun, S. Yuan, H. Huang, N. Liu, Y. Tan, Journal of Microbiological Methods 142 (2017) 41– 45.

[9] L. Zhou, H. Zhang, Y. Luan, S. Cheng, L.J. Fan, Nano-Micro Letters 6 (2014) 327–334.

[10] Z. Mei, L. Tang, Analytical Chemistry 89 (2017) 633–639.

[11] F. Peyskens, A. Dhakal, P. van Dorpe, N. le Thomas, R. Baets, ACS Photonics 3 (2016) 102–108.

[12] T. Lemma, A. Saliniemi, V. Hynninen, V.P. Hytönen, J.J. Toppari, Vibrational Spectroscopy 83 (2016) 36–45.

[13] N. Verellen, P. van Dorpe, C. Huang, K. Lodewijks, G.A.E. Vandenbosch, L. Lagae, V. v. Moshchalkov, Nano Letters 11 (2011) 391–397.

[14] Y. Liang, H. Zhang, W. Zhu, A. Agrawal, H. Lezec, L. Li, W. Peng, Y. Zou, Y. Lu, T. Xu, ACS Sensors 2 (2017) 1796–1804.

[15] G.S. Métraux, C.A. Mirkin, Advanced Materials 17 (2005) 412–415.

[16] E.M. Hicks, S. Zou, G.C. Schatz, K.G. Spears, R.P. van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, M. Käll, Nano Letters 5 (2005) 1065–1070.

[17] W. Yue, T. Gong, X. Long, V. Kravets, P. Gao, M. Pu, C. Wang, Sensors and Actuators, B: Chemical 322 (2020).

[18] J.F. Einsle, J.S. Bouillard, W. Dickson, A. v. Zayats, Nanoscale Research Letters 6 (2011) 1–5.

[19] T. Mori, T. Mori, Y. Tanaka, Y. Suzaki, K. Yamaguchi, Scientific Reports 7 (2017) 42859.

[20] L.J. Guo, Advanced Materials 19 (2007) 495–513.

[21] S.H. Ahn, L.J. Guo, Advanced Materials 20 (2008) 2044–2049.

[22] B.D. Lucas, J.S. Kim, C. Chin, L.J. Guo, Advanced Materials 20 (2008) 1129–1134.

[23] Y.Q. Fu, A. Colli, A. Fasoli, J.K. Luo, A.J. Flewitt, A.C. Ferrari, W.I. Milne, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27 (2009) 1520.

[24] F. Saffih, C. Con, A. Alshammari, M. Yavuz, B. Cui, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 32 (2014) 06FI04.

[25] P. Chen, N.T. Tran, X. Wen, Q. Xiong, B. Liedberg, ACS Sensors 2 (2017) 235–242.

[26] H. bin Jeon, P.V. Tsalu, J.W. Ha, Scientific Reports 9 (2019) 13635.

[27] K.R. Ryu, G.W. Kim, J.W. Ha, Scientific Reports 11 (2021) 12902.

[28] R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.M. Adam, T. Maurer, Scientific Reports 5 (2015) 14419.

[29] K. Kluczyk, W.A. Jacak, Acta Physica Polonica A 129 (2016) A83–A86.

[30] Y.C. Chang, S.M. Wang, H.C. Chung, C. bin Tseng, S.H. Chang, ACS Nano 6 (2012) 3390–3396.

[31] C. Qin, Y. Guo, J. Seo, Y. Shuai, J. Lee, B.J. Lee, Optics Express 28 (2020) 15731.

[32] A.E. Cetin, D. Etezadi, B.C. Galarreta, M.P. Busson, Y. Eksioglu, H. Altug, ACS Photonics 2 (2015) 1167–1174.

[33] C. Du, B. Wang, F. Sun, M. Huang, C. He, Y. Liu, X. Zhang, D. Shi, Sensors and Actuators, B: Chemical 215 (2015) 142–145.

[34] C.L. Du, S. Peng, W.C. Yang, D.N. Shi, Plasmonics 13 (2018) 1729–1734.

[35] K. Robbie, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16 (1998) 1115.

[36] D. Eschimese, F. Vaurette, D. Troadec, G. Leveque, T. Melin, S. Arscott, Scientific Reports 9 (2019) 7682.

参考文献3

[1] K.A. Willets, R.P. van Duyne, Annual Review of Physical Chemistry 58 (2007) 267–297.

[2] K.E. Fong, L.Y.L. Yung, Nanoscale 5 (2013) 12043–12071.

[3] H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir 24 (2008) 5233–5237.

[4] E.S. Kooij, W. Ahmed, H.J.W. Zandvliet, B. Poelsema, Journal of Physical Chemistry C 115 (2011) 10321–10332.

[5] S. Zhu, H. Li, M. Yang, S.W. Pang, Nanotechnology 27 (2016) 295101.

[6] A.E. Cetin, S.N. Topkaya, O. Yalcin-Ozuysal, A. Khademhosseini, ACS Nano 15 (2021) 10710– 10721.

[7] D.K. Kim, K. Kerman, M. Saito, R.R. Sathuluri, T. Endo, S. Yamamura, Y.S. Kwon, E. Tamiya, Analytical Chemistry 79 (2007) 1855–1864.

[8] T. Lednický, A. Bonyár, ACS Applied Materials and Interfaces 12 (2020) 4804–4814.

[9] H.M. Hiep, T. Nakayama, M. Saito, S. Yamamura, Y. Takamura, E. Tamiya, Japanese Journal of Applied Physics 47 (2008) 1337–1341.

[10] H.H. Jeong, N. Erdene, J.H. Park, D.H. Jeong, H.Y. Lee, S.K. Lee, Biosensors and Bioelectronics 39 (2013) 346–351.

[11] S.J. Ha, J.H. Park, B. Lee, M.G. Kim, Toxins 11 (2019) 274.

[12] G. Qiu, S.P. Ng, X. Liang, N. Ding, X. Chen, C.M.L. Wu, Analytical Chemistry 89 (2017) 1985– 1993.

[13] M. Atapour, G. Amoabediny, M. Ahmadzadeh-Raji, RSC Advances 9 (2019) 8882–8893.

[14] J. Calderón, J. Álvarez, J. Martinez-Pastor, D. Hill, Plasmonics 10 (2015) 703–711.

[15] Z. Liu, G. Fu, Z. Huang, J. Chen, P. Pan, Y.X. Yang, Z.M. Liu, Materials Letters 194 (2017) 13– 15.

[16] H. Xu, L. Hu, Y. Lu, J. Xu, Y. Chen, Journal of Physical Chemistry C 123 (2019) 10028–10033.

[17] X. Huang, S. Neretina, M.A. El-Sayed, Advanced Materials 21 (2009) 4880–4910.

[18] A. Horrer, K. Krieg, K. Freudenberger, S. Rau, L. Leidner, G. Gauglitz, D.P. Kern, M. Fleischer, Analytical and Bioanalytical Chemistry 407 (2015) 8225-8231.

[19] C. Qin, Y. Guo, J. Seo, Y. Shuai, J. Lee, B.J. Lee, Optics Express 28 (2020) 15731.

[20] P.B. Barraclough, P.G. Hall, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 0 (1976) 610-681.

[21] J. Cen, F. Liang, D.L. Chen, L. Zhang, N. Yang, W. Zhu, Journal of Physical Chemistry C 124 (2020) 7853–7859.

[22] J. Lucas, F. Smektala, J. Luc Adam, J. Fluorine Chem. 114 (2002) 113.

[23] G. Kedawat, S. Srivastava, V.K. Jain, P. Kumar, V. Kataria, Y. Agrawal, B.K. Gupta, Y.K. Vijay, ACS Applied Materials and Interfaces 5 (2013) 4872–4877.

参考文献4

[1] B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, L.M. Liz-Marzán, Nano Today 4 (2009) 244–251.

[2] E. Prodan, P. Nordlander, Nano Letters 3 (2003) 543–547.

[3] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, Journal of Physical Chemistry B 107 (2003) 668–677.

[4] H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir 24 (2008) 5233–5237.

[5] H. Oka, Y. Ohdaira, Scientific Reports 8 (2018) 2643.

[6] T. Zhang, G. Lu, H. Shen, P. Perriat, M. Martini, O. Tillement, Q. Gong, Science China: Physics, Mechanics and Astronomy 57 (2014) 1038–1045.

[7] C. Noguez, Journal of Physical Chemistry C 111 (2007) 3606–3619.

[8] R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, S.-J. Chen, Optics Express 17 (2009) 5987-5997.

[9] X. Chen, L. Jensen, Journal of Optics, 18 (2016) 074009.

[10] A. Abumazwed, W. Kubo, T. Tanaka, A.G. Kirk, Scientific Reports 8 (2018) 6683.

[11] R. Griffith Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Science 17 (1995) 1629-1632.

[12] H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Physical Review Letters 83 (1999) 4357-4360.

[13] Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, C. Zhang, Optics Express 26 (2018) 21784.

[14] R. Morarescu, H. Shen, R.A.L. Vallée, B. Maes, B. Kolaric, P. Damman, Journal of Materials Chemistry 22 (2012) 11537–11542.

[15] W. Hermoso, T. v. Alves, C.C.S. de Oliveira, E.G. Moriya, F.R. Ornellas, P.H.C. Camargo, Chemical Physics 423 (2013) 142–150.

[16] W. Li, P.H.C. Camargo, X. Lu, Y. Xia, Nano Letters 9 (2009) 485–490.

[17] S.L. Kleinman, B. Sharma, M.G. Blaber, A.I. Henry, N. Valley, R.G. Freeman, M.J. Natan, G.C. Schatz, R.P. van Duyne, Journal of the American Chemical Society 135 (2013) 301–308.

[18] B. Grześkiewicz, K. Ptaszyński, M. Kotkowiak, Plasmonics 9 (2014) 607–614.

[19] L. Feng, R. Ma, Y. Wang, D. Xu, D. Xiao, L. Liu, N. Lu, Nano Research 8 (2015) 3715–3724.

[20] N. Leopold, B. Lendl, Journal of Physical Chemistry B 107 (2003) 5723–5727.

[21] W.R. Premasiri, D.T. Moir, M.S. Klempner, N. Krieger, G. Jones, L.D. Ziegler, Journal of Physical Chemistry B 109 (2005) 312–320.

[22] Q. Yu, P. Guan, D. Qin, G. Golden, P.M. Wallace, Nano Letters 8 (2008) 1923–1928.

[23] J.D. Caldwell, O. Glembocki, F.J. Bezares, N.D. Bassim, R.W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, C. Hosten, ACS Nano 5 (2011) 4046–4055.

[24] R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.M. Adam, T. Maurer, Scientific Reports 5 (2015) 14419.

[25] K. Kluczyk, W.A. Jacak, Acta Physica Polonica A 129 (2016) A83–A86.

[26] D.A. Rosen, A.R. Tao, ACS Applied Materials and Interfaces 6 (2014) 4134–4142.

[27] K. Xiong, G. Emilsson, A.B. Dahlin, Analyst 141 (2016) 3803–3810.

参考文献

[1] M.G. Blaber, A.I. Henry, J.M. Bingham, G.C. Schatz, R.P. van Duyne, Journal of Physical Chemistry C 116 (2012) 393–403.

[2] K.A. Willets, R.P. van Duyne, Annual Review of Physical Chemistry 58 (2007) 267–297.

[3] K.E. Fong, L.Y.L. Yung, Nanoscale 5 (2013) 12043–12071.

[4] S.W. Lee, K.S. Lee, J. Ahn, J.J. Lee, M.G. Kim, Y.B. Shin, ACS Nano 5 (2011) 897–904.

[5] K.M. Mayer, S. Lee, H. Liao, B.C. Rostro, A. Fuentes, P.T. Scully, C.L. Nehl, J.H. Hafner, ACS Nano 2 (2008) 687–692.

[6] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, Journal of Physical Chemistry B 107 (2003) 668–677.

[7] E. Prodan, P. Nordlander, Nano Letters 3 (2003) 543–547.

[8] A. Liebsch, Physical Review B 48 (1993) 11317–11328.

[9] R. Morarescu, H. Shen, R.A.L. Vallée, B. Maes, B. Kolaric, P. Damman, Journal of Materials Chemistry 22 (2012) 11537–11542.

[10] W. Hermoso, T. v. Alves, C.C.S. de Oliveira, E.G. Moriya, F.R. Ornellas, P.H.C. Camargo, Chemical Physics 423 (2013) 142–150.

[11] K. Sakai, K. Nomura, Y. Tanaka, K. Sasaki, Journal of Applied Physics 114 (2013) 1–5.

[12] K. Xiong, G. Emilsson, A.B. Dahlin, Analyst 141 (2016) 3803–3810.

[13] H.L. Wang, E.M. You, R. Panneerselvam, S.Y. Ding, Z.Q. Tian, Light: Science and Applications 10 (2021) 161.

[14] Y. Tsuboi, Nature Nanotechnology 11 (2016) 5–6.

[15] M. Toshimitsu, Y. Matsumura, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, A. Nobuhiro, Y. Mizumoto, H. Ishihara, Y. Tsuboi, Journal of Physical Chemistry C 116 (2012) 14610–14618.

[16] T. Shoji, D. Sugo, F. Nagasawa, K. Murakoshi, N. Kitamura, Y. Tsuboi, Analytical Chemistry 89 (2017) 532–537.

参考文献5

[1] A. Ghobadi, H. Hajian, M. Gokbayrak, S.A. Dereshgi, A. Toprak, B. Butun, E. Ozbay, Optics Express 25 (2017) 27624.

[2] Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, J. Gao, Nanoscale 10 (2018) 19117– 19124.

[3] A. Lalisse, G. Tessier, J. Plain, G. Baffou, Journal of Physical Chemistry C 119 (2015) 25518– 25528.

[4] C. Gong, M.S. Leite, ACS Photonics 3 (2016) 507–513.

[5] Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J.M. Saiz, F. González, F. Moreno, Applied Sciences 8 (2018) 64.

[6] R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.M. Adam, T. Maurer, Scientific Reports 5 (2015) 14419.

[7] K. Kluczyk, W.A. Jacak, Acta Physica Polonica A 129 (2016) A83–A86.

[8] B. Kouchmeshky, O. Fanini, M. Nikitenko, Society of Petroleum Engineers - SPE Russian Petroleum Technology Conference and Exhibition 2016 (2016) 2713–2722.

[9] A.A. Zharov, A.A. Zharv, I. v. Shadrivov, N.A. Zharova, Physical Review A 93 (2016) 013814.

[10] H. Fischer, O. J. F. Martin, Optics Express 16 (2008) 9144-9154.

[11] D.A. Rosen, A.R. Tao, ACS Applied Materials and Interfaces 6 (2014) 4134–4142.

[12] A.M. Funston, C. Novo, T.J. Davis, P. Mulvaney, Nano Letters 9 (2009) 1651–1658.

[13] K.H. Kim, J. Lee, E.S.H. Kang, D.H. Kim, H.S. Lee, Current Applied Physics 31 (2021) 16–21.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る