リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Modulation of Hepatitis B Virus Infection by Epidermal Growth Factor」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Modulation of Hepatitis B Virus Infection by Epidermal Growth Factor

陳, 欣蔚 東京大学 DOI:10.15083/0002006456

2023.03.24

概要

論文審査の結果の要旨
氏名

チェン



シン



ウェイ



CHEN SHIN-WEI
本論文は5つの章からなる。第一章での序論に続き、第二章では材料と方法、第三章では研
究結果、第四章では考察、第五章では結論が記述されている。

B 型肝炎ウイルス(HBV)は肝細胞に感染し、肝炎、肝硬変、さらに肝がんを引き起こす。世
界で4億人、日本で 100~140 万人が HBV に持続感染していると推定されており、大きな社会問
題になっている。HBV は DNA ウイルスであり、肝細胞に発現する Na 依存性胆汁酸トランスポ
ーター(NTCP)を介して細胞内に侵入し、核内にて環状二重鎖 cccDNA を形成、転写、細胞質
における翻訳、コア粒子形成、逆転写、ウイルス粒子の形成という複雑な生活環を示す。この複
雑な生活環は B 型肝炎治療法の開発を困難にしており、それを忠実に再現する in vitro の実験系
が必要とされている。HBV 感染実験系としては、一般に初代培養肝細胞や肝がん細胞株などが
使われているが、HBV には多数の遺伝子型があり、感染には宿主の遺伝背景が大きく影響する。
入手可能な初代培養肝細胞や肝がん細胞株には限りがあり、そうした課題への対応は困難であ
る。一方、iPS 細胞は不特定多数のドナーから作製可能であり、IPS 由来の肝細胞は、そうした
課題にも対応可能である。しかし、iPS 由来の肝細胞は一般に未成熟であり、HBV の感染効率
も低い。

本論文において、申請者はヒト iPS 由来肝細胞を使った HBV 感染系の樹立を目指して研究を
開始した。肝臓の発生過程では、肝細胞の分化成熟には肝非実質細胞である類洞内皮細胞(LSEC)
や星細胞(HSC)が関与することから、申請者は、iPS 由来肝細胞とこれらとの共培養系を構築
し、LSEC が HBV の感染を促進することを見出した。さらに、NTCP を過剰発現する肝癌細胞
株においても LSEC が HBV の感染を促進することを確認した。そこで、サイトカインアレーに
て LSEC の培養液を解析したところ、EGF が高発現しており、それが HBV の感染を促進するこ
とを明らかにした。すでに EGF 受容体(EGFR)は NTCP を介する HBV の細胞内への取り込
みの co-receptor であるとの報告はあったが、申請者の結果は 2 ng/ml EGF は HBV 感染を促進
したが、50 ng/ml EGF はむしろ HBV の感染を阻害するという興味深いものであり、申請者はこ
の現象を深く掘り下げて検討した。

1

EGF は細胞表面の EGFR の dimerization とチロシンリン酸化を誘導して、それにより EGFR
は細胞内へ取り込まれる。EGFR の internalization には clathrin-mediated endocytosis(CME)
と clathrin independent endocytosis(CIE)経路がある。さらに、この反応は EGF の濃度依存性
がある。低濃度の刺激では CME クラスリン依存性 endosome に取り込まれた EGFR は細胞膜
にリサイクルされる。一方、高濃度 EGF による刺激ではクラスリン非依存性経路で取り込まれ
た EGFR は endosome から lysosome に移行し分解される。そこで、EGF による HBV 感染制
御において、これらの経路の関与を解析した。CME の阻害剤により低濃度 EGF による HBV の
取り込み促進は阻害された。CIE 阻害剤は、低濃度 EGF による HBV の取り込み促進に影響を
与えなかったが、高濃度 EGF による HBV の取り込み抑制は解除された。さらに、lyososome の
阻害剤であるクロロキンにより高濃度 EGF による HBV の取り込み阻害が解除された。すなわ
ち、高濃度 EGF による HBV 感染阻害は CIE 経路により取り込まれた HBV が lysosome に送ら
れて分解されると考えられる。さらに HBV の細胞への結合を詳細に解析した結果、NTCP を過
剰発現してない HepG2 細胞にも HBV は EGFR と EGF に依存的に結合することを見出した。
すなわち、HBV は NTCP を介さずに EGFR を介して細胞内に取り込まれる新たな経路の存在
が示唆された。
LSEC は肝臓特有の血管壁である類洞壁を構成する細胞であり、血中の HBV は類洞壁を通過
して肝細胞に感染する。したがって、LSEC が EGF を分泌し、さらに EGF が HBV の肝細胞へ
の感染効率に影響するという in vitro での実験結果は、in vivo においても LSEC が HBV の肝細
胞への感染に関与するという新たな可能性を示唆するものである。

なお、本論文は、姫野美沙緒、木戸丈友、宮島篤、杉山真也、溝上雅史、西辻裕紀、下遠野邦
忠との共同研究であるが、申請者が主体となって実験および考察を行ったものであり、申請者の
寄与が十分であると判断する。したがって、博士(理学)の学位を授与出来ると認める。

2

この論文で使われている画像

参考文献

1.

Bakker, J., Spits, M., Neefjes, J. & Berlin, I. (2017). The EGFR odyssey - from activation to

destruction in space and time. J. Cell Sci. 130, 4087–4096.

2.

Björkelund, H., Gedda, L., Barta, P., Malmqvist, M., and Andersson, K. (2011). Gefitinib

induces epidermal growth factor receptor dimers which alters the interaction characteristics

with 125I-EGF. PLoS ONE 6.

3.

Björkelund, H., Gedda, L., Malmqvist, M., and Andersson, K. (2013). Resolving the EGF-

EGFR interaction characteristics through a multiple-temperature, multiple-inhibitor, real-

time interaction analysis approach. Molecular and Clinical Oncology 1, 343–352.

4.

Castillon, G.A., Adames, N.R., Rosello, C.H., Seidel, H.S., Longtine, M.S., Cooper, J.A.,

and Heil-Chapdelaine, R.A. (2003). Septins Have a Dual Role in Controlling Mitotic Exit in

Budding Yeast We assayed the spindle position checkpoint in these mutants with movies of

living cells progressing through mitosis. The cells expressed GFP-Tub1p, allowing us to.

Curr. Biol. 13, 654–658.

5.

Christianson, H.C., and Belting, M. (2014). Heparan sulfate proteoglycan as a cell-surface

endocytosis receptor. Matrix Biology 35, 51–55.

6.

Cooper, A., and Shaul, Y. (2006). Clathrin-mediated endocytosis and lysosomal cleavage of

36

hepatitis B virus capsid-like core particles. Journal of Biological Chemistry 281, 16563–

16569.

7.

Dane, D. S., Cameron, C. H., & Briggs, M. (1970). Virus-like particles in serum of patients

with Australia-antigen-associated hepatitis. Lancet (London, England), 1(7649), 695–698.

8.

Elkin, S.R., Oswald, N.W., Reed, D.K., Mettlen, M., MacMillan, J.B., and Schmid, S.L.

(2016). Ikarugamycin: A Natural Product Inhibitor of Clathrin-Mediated Endocytosis.

Traffic 17, 1139–1149.

9.

Huang, H.-C., Chen, C.-C., Chang, W.-C., Tao, M.-H., and Huang, C. (2012). Entry of

Hepatitis B Virus into Immortalized Human Primary Hepatocytes by Clathrin-Dependent

Endocytosis. Journal of Virology 86, 9443–9453.

10.

Iwamoto, M., Saso, W., Sugiyama, R., Ishii, K., Ohki, M., Nagamori, S., Suzuki, R., Aizaki,

H., Ryo, A., Yun, J.H., et al. (2019). Epidermal growth factor receptor is a host-entry

cofactor triggering hepatitis B virus internalization. Proceedings of the National Academy of

Sciences of the United States of America 116, 8487–8492.

11.

Kido, T., Koui, Y., Suzuki, K., Kobayashi, A., Tanaka, M., and Miyajima, A. (2015). CPM is

a useful cell surface markr to isolate expandable bi-potential liver progenitor cells derived

from human iPS cells. Stem Cell Reports 5, 508–515.

37

12.

Koui, Y., Kido, T., Ito, T., Oyama, H., Chen, S.-W., Katou, Y., Shirahige, K., and Miyajima,

A. (2017). An In Vitro Human Liver Model by iPSC-Derived Parenchymal and Non-

parenchymal Cells. Stem Cell Reports 9, 490–498.

13.

Ladner, S.K., Otto, M.J., Barker, C.S., Zaifert, K., Wang, G.H., Guo, J.U.T., Seeger, C., and

King, R.W. (1997). Inducible expression of human hepatitis B virus (HBV) in stably

transfected hepatoblastoma cells: A novel system for screening potential inhibitors of HBV

replication. Antimicrobial Agents and Chemotherapy 41, 1715–1720.

14.

Lin, Y., Wu, C., Wang, X., Kemper, T., Squire, A., Gunzer, M., Zhang, J., Chen, X., and Lu,

M. (2019). Hepatitis B virus is degraded by autophagosome-lysosome fusion mediated by

Rab7 and related components. Protein and Cell 10, 60–66.

15.

Locarnini SA, Roggendorf M. (2014) Other hepadnaviridae [Avihepadnaviridae (DHBV)

and Orthohepadnaviridae (WHV)]. In: Thomas HC, Lok ASF, Locarnini SA, Zuckerman AJ,

editors. Viral Hepatitis. 4th ed. Wiley-Blackwell: Oxford; p. 96–106

16.

Lu, C., Mi, L.Z., Schürpf, T., Walz, T., and Springer, T.A. (2012). Mechanisms for kinase-

mediated dimerization of the epidermal growth factor receptor. Journal of Biological

Chemistry 287, 38244–38253.

17.

Macovei, A., Radulescu, C., Lazar, C., Petrescu, S., Durantel, D., Dwek, R.A., Zitzmann, N.,

38

and Nichita, N.B. (2010). Hepatitis B Virus Requires Intact Caveolin-1 Function for

Productive Infection in HepaRG Cells. Journal of Virology 84, 243–253.

18.

Macovei, A., Petrareanu, C., Lazar, C., Florian, P., and Branza-Nichita, N. (2013).

Regulation of Hepatitis B Virus Infection by Rab5, Rab7, and the Endolysosomal

Compartment. Journal of Virology 87, 6415–6427.

19.

Meier, A., Mehrle, S., Weiss, T.S., Mier, W., and Urban, S. (2013). Myristoylated PreS1-

domain of the hepatitis B virus L-protein mediates specific binding to differentiated

hepatocytes. Hepatology 58, 31–42.

20.

Michailidis, E., Pabon, J., Xiang, K., Park, P., Ramanan, V., Hoffmann, H.H., Schneider,

W.M., Bhatia, S.N., de Jong, Y.P., Shlomai, A., et al. (2017). A robust cell culture system

supporting the complete life cycle of hepatitis B virus. Scientific Reports 7, 1–11.

21.

Nishitsuji, H., Ujino, S., Shimizu, Y., Harada, K., Zhang, J., and Sugiyama, M. (2015).

Novel reporter system to monitor early stages of the hepatitis B virus life cycle.

22.

Revill, P., Testoni, B., Locarnini, S., and Zoulim, F. (2016). Global strategies are required to

cure and eliminate HBV infection. Nature Reviews Gastroenterology and Hepatology 13, 1–

10.

23.

Robinson, W. S., Clayton, D. A., & Greenman, R. L. (1974). DNA of a human hepatitis B

39

virus candidate. Journal of virology, 14(2), 384–391.

24.

Schulze, A., Mills, K., Weiss, T.S., and Urban, S. (2012). Hepatocyte polarization is essential

for the productive entry of the hepatitis B virus. Hepatology 55, 373–383.

25.

Seeger, C., & Mason, W. S. (2000). Hepatitis B virus biology. Microbiology and molecular

biology reviews : MMBR, 64(1), 51–68.

26.

Sigismund, S., Argenzio, E., Tosoni, D., Cavallaro, E., Polo, S., and di Fiore, P.P. (2008).

Clathrin-Mediated Internalization Is Essential for Sustained EGFR Signaling but

Dispensable for Degradation. Developmental Cell 15, 209–219.

27.

Si-Tayeb, K., Noto, F.K., Nagaoka, M., Li, J., Battle, M.A., Duris, C., North, P.E., Dalton,

S., and Duncan, S.A. (2010). Highly efficient generation of human hepatocyte-like cells

from induced pluripotent stem cells. Hepatology 51, 297–305.

28.

Somiya, M., Liu, Q., Yoshimoto, N., Iijima, M., Tatematsu, K., Nakai, T., Okajima, T.,

Kuroki, K., Ueda, K., and Kuroda, S. (2016). Cellular uptake of hepatitis B virus envelope L

particles is independent of sodium taurocholate cotransporting polypeptide, but dependent

on heparan sulfate proteoglycan. Virology 497, 23–32.

29.

Tanaka, T., Zhou, Y., Ozawa, T., Okizono, R., Banba, A., Yamamura, T., Oga, E., Muraguchi,

A., and Sakurai, H. (2018). Ligand-activated epidermal growth factor receptor (EGFR)

40

signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical

phosphorylation. J. Biol. Chem. 293, 2288–2301.

30.

Takayama, N., Nishimura, S., Nakamura, S., Shimizu, T., Ohnishi, R., Endo, H.,

Yamaguchi, T., Otsu, M., Nishimura, K., Nakanishi, M., et al. (2010). Transient activation

of c-MYC expression is critical for efficient platelet generation from human induced

pluripotent stem cells. J. Exp. Med. 207, 2817–2830.

31.

Thomas, E., and Liang, T.J. (2016). Experimental models of hepatitis B and C-new insights

and progress. Nature Reviews Gastroenterology and Hepatology 13, 362–374.

32.

Tremblay, K.D., and Zaret, K.S. (2005). Distinct populations of endoderm cells converge to

generate the embryonic liver bud and ventral foregut tissues. Dev. Biol. 280, 87-99.

33.

Wang, X., Wang, P., Wang, W., Murray, J.W., and Wolkoff, A.W. (2016). The Na + -

Taurocholate Cotransporting Polypeptide Traffics with the Epidermal Growth Factor

Receptor. Traffic 17, 230–244.

34.

Yan, H., Zhong, G., Xu, G., He, W., Jing, Z., Gao, Z., Huang, Y., Qi, Y., Peng, B., Wang, H.,

et al. (2012). Sodium taurocholate cotransporting polypeptide is a functional receptor for

human hepatitis B and D virus. ELife 2012, 1–28.

41

Fig. 1. HBV infection and life cycle

In the liver, the circulating HBV passes through the fenestrae of LSECs and reaches the space of

Dissé; initiates the cell attachment with HSPG on the cell surface. NTCP, which is exclusively sorted

to the basolateral membrane, has an interaction with PreS1 domain of Large envelope protein on

HBV. EGFR, associates with NTCP, facilitates HBV internalization by EGF stimulation. After virus

entry, it establishes a nuclear pool of episomal DNA into the form of cccDNA, which is copied into

RNA that is transported to the cytoplasm where it reverse-transcribes into DNA and packed in a

virus particle. Exogenous PreS1 peptide can work as a competitive inhibitor and affect HBV

infection.

42

Fig. 2. The development of liver

Liver development begins at mouse embryonic day 9. The cells of the ventral foregut endoderm

are induced to the hepatoblast stage by FGF and BMP signaling from the heart and septum

transversum mesenchyme (STM). Following induction, hepatoblasts proliferate and migrate into

the STM to form the liver bud with non-parenchymal cells, such as endothelial progenitor cells

and hepatic mesenchymal cells. Finally, they differentiate into mature hepatocytes and

cholangiocytes through interactions with LSECs and HSCs. (Castillon et al., 2003).

43

TK

independent

TK

dependent

TK

dependent

Fig. 3. EGFR endocytosis depends on the dose of EGF

EGFR is one of the best-characterized receptor tyrosine kinases (RTKs) and activated by several

ligands, of which EGF is most extensively studied. In general, EGFR is present as the monomeric

inactive form in the absence of EGF and is activated by EGF to form the dimer form. A primary

mechanism of internalization of EGFR is clathrin-mediated endocytosis (CME); the receptor is

removed from the surface as clathrin-coated pits and routed to the early endosome, then recycled

back to the cell surface at a low dose of EGF stimulation. On the other hand, once the receptor is

activated by a high dose of EGF, EGFR is internalized through clathrin-independent endocytosis

(CIE), which is regulated by the phosphorylation level at the C-terminal and ubiquitinylated; after

late endosomal vesicles are trafficked to lysosome to be degradated.

44

Fig. 4. Development of an HBV infection system using iPSC-derived hepatocytes

(A) procedure to induce iPS-hepatocytes. iPSCs were maintained in mono-layer culture on

Matrigel. To initiate definitive endoderm differentiation, iPSCs were cultured in RPMI media

containing B27 supplements and 100 ng/mL activin A. After 5 days of culture under 20%O2, cells

were next moved to 4%O2/5%CO2 in RPMI/B27 media supplemented with 20 ng/ML BMP4 and

20 ng/mL FGF2 for 5 days. The specified hepatic cells in RPMI/B27 supplemented with 20 ng/mL

HGF under 4% O2/5% CO2 were incubated for 5 days. For the final stage, hepatoblasts were

differentiated in HCM supplemented with 20 ng/mL OSM.

(B) Levels of HBsAg, HBV DNA and cccDNA in iPSC-derived hepatoblasts and iPSC-derived

hepatocytes. The results are shown as the mean ± SEM of 4 independent experiments. **p < 0.01.

45

Fig. 5. Isolation and characterization of fetal mouse LSECs and HSCs.

(A) Flow cytometric analysis of fetal mouse liver cells at E14.5.

(B) Primary culture of Stab2+ cells. Scale bar, 100 µm.

(C) Primary culture of Ngfr+ cells. Scale bar, 100 µm.

(D) Expression levels of LSEC markers in pre-sorting cells (pre-sort), Stab2+ cells (LSECs), and

Ngfr+ cells (HSCs). The results are shown as the mean ± SEM of 3 independent experiments. n =

3 in each group. ***p < 0.001.

(E) Expression levels of HSC markers in pre-sorting cells (pre-sort), Stab2+ cells (LSECs) and

Ngfr+ (HSCs) cells. The results are shown as the mean ± SEM of 3 independent experiments. ***p

< 0.001.

46

s, Carlsbad, CA, USA) supplemented with 10%

U ⁄ mL penicillin, 100 lg ⁄ mL streptomycin, and

non-essential amino acids (Life Technologies)

rwise described. Primary human hepatocytes

cells, isolated from urokinase-type plasminogen

nsgenic ⁄ SCID mice inoculated with PHH and

re purchased from PhoenixBio, Hiroshima, Japan

yoto, Japan respectively, and cultured under manprotocols. HepG2 ⁄ NTCP and HuH7 ⁄ NTCP cells

and HuH7-derived cell lines transduced by pCANand are susceptible to HBV infection.

We used a 1.2-fold HBV genome (isolate

enotype C, accession number AB246345) cloned

ndIII ⁄ EcoRI site of pUC19, termed pUC1.2x

e plasmid pUC1.2xHBV ⁄ NL was constructed by

nt (219–782) from the first codon of the HBV

ng frame and then inserting the NL gene (513 nt)

1 N1061 NLuc (Promega, Madison, WI, USA) by

n PCR cloning. Similarly, pUC1.2xHBV ⁄ NL+pol

cted by deleting 141 nt (295–436) from the first

e HBV preCore coding frame and then inserting

at the 178 nt position from the first codon of preby the In-Fusion method. The genome sizes of

d HBV ⁄ NL+pol were 3302 and 3731 nt, respecession of NL was designed to start from its own

pUC1.2xHBV-D, which produces all HBV proteins, has two

mutations in the encapsidation signal (CTGTGCC to

CTATGTC), and, thus, does not produce progeny virus. The

plasmid pUC1.2xHBV-D ⁄ MHD is mutated in the catalytic

domain, MDD, of HBV-D pol to MHD. The plasmid pCANNTCP-myc was constructed by inserting human NTCP cDNA

tagged with myc at the 30 -end into pCAN. The plasmid pX330

was obtained from Addgene (plasmid 42230; Cambridge, MA,

USA). Oligonucleotides designed for each target site were

inserted into the BbsI site of pX330.

Production of recombinant virus. The pUC1.2xHBV ⁄ NL,

pUC1.2xHBV ⁄ NL+pol, or pUC1.2xHBV ⁄ NL(-Met) plasmids

were cotransfected with pUCxHBV-D into HepG2 or HuH7

cells using Lipofectamine 3000 (Life Technologies). Medium

was harvested 3 or 4 days after transfection and the virus fraction prepared by precipitation with 13% PEG6000 (SigmaAldrich, St. Louis, MO, USA) containing 0.75 M NaCl. Virus

was further purified by precipitation through 20% sucrose in

TNE buffer (10 mM Tris [pH 7.6], 50 mM NaCl, 1 mM

EDTA) at 100 000 g for 3 h. Virus was then suspended in

Opti-MEM (Life Technologies) and stored at !80°C until use.

Infection and assay of NL activity. Cells were infected with

virus at a genome equivalent of 10–100 in the presence of 4%

PEG8000 and 2% DMSO overnight. Activity of NL and cell viability were then measured using the NL Luciferase Assay Kit

nomic structure of the reporter

uses (HBVs) and relative NanoLuc (NL)

ells infected by the viruses. (a)

of wild-type and reporter HBV, and

of the virus are shown. The indicated

of the pregenomes. A stretch of “A”s

ly A tail of the putative pregenomic

at rope with “E” indicates an

signal and “X” on that indicates

apsidation. The NL gene is inserted

ome so as to be translated from its

methionine. Virus was produced by

with

the

pUC1.2xHBV ⁄ NL,

NL+pol, or pUC1.2xHBV ⁄ NL(-Met) and

to HepG2 or HuH7 cells and the same

rus fractions was infected into PXB

cells were harvested 7 days

(A)after

Trans-well

d NL activity in cell lysates was

e NL activity in the cell lysates was

ean " SD; n = 3). The data shown are

endent experiments.

Fig. 6. Enhancement of HBV infection to iPSC-derived hepatocytes by fetal

mouse LSECs

co-culture system of iPSC-derived hepatocytes with fetal mouse NPCs.

(B) Schematic representation of the HBV-NL infection assay in iPSC-derived hepatocytes co-

ovember 2015 | vol. 106 | no. 11 | 1617

© 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd

on behalf of Japanese Cancer Association.

cultured with fetal mouse NPCs.

(C) Relative HBV-NL activities in iPSC-derived hepatocytes (-), iPSC-derived hepatocytes co-

cultured with fetal mouse LSECs (LSEC), and fetal mouse HSCs (HSC). The results are shown as

the mean ± SEM of 3 independent experiments. **p < 0.01.

(D) Pregenomic structure of the reporter hepatitis B viruses (HBVs) and relative NanoLuc (NL)

47

activity in cells infected by the viruses. (a) Pregenomes of wild-type and reporter HBV/NL are

shown. The indicated sizes (kb) are of the pregenomes. A stretch of “A”s indicates a poly A tail of

the putative pregenomic RNA. A lariat rope with “E” indicates an encapsidation signal and “X” on

that indicates defect of encapsidation. The NL gene is inserted into the genome so as to be translated

from its own initiator methionine. (Nishitsuji et al., 2015)

48

Fig. 7. Enhancement of HBV infection to iPSC-derived hepatocytes by iPSCderived LSECs

(A) Trans-well co-culture system of iPSC-derived hepatocytes with iPSC-derived NPCs.

(B) Schematic representation of the HBV-NL and wild type HBV infection assay in iPSC-derived

hepatocytes co-cultured with iPSC-derived NPCs.

(C) Relative HBV-NL activities in iPSC-derived hepatocytes (-), iPSC-derived hepatocytes co-

cultured with iPSC-derived LSECs (iLSEC), and iPSC-derived HSCs (iHSC). The results are shown

as the mean ± SEM of 5 independent experiments. **p < 0.01.

(D) Levels of HBsAg, cccDNA and HBV DNA in iPSC-derived hepatocytes (-), iPSC-derived

hepatocytes co-cultured with iPSC-derived LSECs (iLSEC), and iPSC-derived HSCs (iHSC). The

results are shown as the mean ± SEM of 4 independent experiments. **p < 0.01.

49

Fig. 8. HBV infection to HepG2-NTCP cells co-cultured with iPSC-derived

LSECs in the trans-well system.

(A) Experimental design of the trans-well co-culture system of HepG2-NTCP cells with iPSC-

derived LSECs.

(B) Experimental design of HBV infection using HBV/NL and wild type HBV in the trans-well co-

culture system

(C) Relative HBV-NL activities in HepG2-NTCP cells (-) and HepG2-NTCP cells co-cultured with

iPSC-derived LSECs (iLSEC). The result is shown as the mean ± SEM of 3 independent

experiments. **p < 0.01.

(D) Levels of HBsAg, cccDNA and HBV DNA in HepG2-NTCP cells (-) and HepG2-NTCP cells

co-cultured with iPSC-derived LSECs (iLSEC). The results are shown as the mean ± SEM of 3

independent experiments. *p < 0.05.

50

Fig. 9. Detection of EGF in the supernatant of iPSC-derived LSECs by human

cytokine array analysis

iPS-derived LSECs were suspended in NPC maintenance medium and seeded at the density of

40,000 cells/cm2 in the upper chamber of trans-well. HepG2-NTCP maintenance medium was added

to the lower chamber and changed to fresh medium every day. The samples were prepared from the

lower chamber at day 5. Human cytokine antibody array membrane was used to detect cytokines

and the data were analyzed by ImageJ quantitatively. Trans-well inserts without iPSC-derived

LSECs was used as the control. Normalized mean pixel density = mean pixel density on sample

array x positive control on sample array/ positive control on control array - mean pixel density on

control array.

51

HBV infection in HepG2-NTCP

2.0

✱✱✱

Relative HBV DNA

1.5

anti-EGF

(2.5 µg/mL)

✱✱✱

1.0

ns

✱✱

0.5

ns

✱✱✱

✱✱✱

0.0

10

50

EGF (ng/mL)

Fig. 10. Modulation of HBV infection by EGF in HepG2-NTCP cells.

(A) Relative HBV DNA levels in HepG2-NTCP cells at 2 ng/mL, 10 ng/ml and 50 ng/ml of EGF

with or without 2.5 µg/mL anti-EGF antibody. The result is shown as the mean ± SEM of 3

independent experiments. **p < 0.01, ***p < 0.001.

(B) Southern blot analysis of HBV DNA fractions obtained from HepG2-NTCP cells infected with

HBV at post-infection day7.

52

relative HBV DNA

HBV internalization in HepG2-NTCP

2.0

1.5

***

1.0

***

**

**

**

10

25

50

100

0.5

0.0

anti-EGF

EGF (ng/mL)

Fig. 11. Modulation of HBV infection by EGF

Relative HBV DNA levels in HepG2-NTCP cells at 0 ng/mL, 1 ng/mL, 2 ng/mL, 5 ng/mL, 10 ng/ml,

25 ng/mL, 50 ng/mL and 100 ng/ml of EGF in HBV internalization assay. The result is shown as

the mean ± SEM of 3 independent experiments. The result is shown as the mean ± SEM of 3

independent experiments. *p<0.05, **p < 0.01, ***p < 0.001.

53

Relative HBV DNA

HBV infection in primary human hepatocytes

2.5

**

2.0

1.5

1.0

**

**

***

0.5

0.0

10

25

50

100

EGF (ng/mL)

Fig. 12. Modulation of HBV infection by EGF in primary human hepatocytes.

Relative HBV DNA levels in primary human hepatocytes at 0 ng/mL, 1 ng/mL, 2 ng/mL, 5 ng/mL,

10 ng/ml, 25 ng/mL, 50 ng/mL and 100 ng/ml of EGF. The result is shown as the mean ± SEM of 3

samples in one experiment. *p<0.05, **p < 0.01, ***p < 0.001..

54

Relative HBsAg

HBV infection in iPS-hepatocytes

2.0

1.5

1.0

0.5

0.0

10

20

50

EGF (ng/mL)

Fig. 13. Modulation of HBV infection by EGF in iPS-hepatocytes.

Relative HBsAg level in iPS-hepatocytes at 0 ng/mL, 1 ng/mL, 2 ng/mL, 5 ng/mL, 10 ng/ml, 20

ng/mL, and 50 ng/ml of EGF in HBV infection assay. The results of 5 independent experiments are

shown.

55

Fig. 14. Attachment of HBV by stimulation of EGF

(A, B) Relative HBV attachment in HepG2-NTCP cells treated with 2 ng/ml and 50 ng/ml of EGF

at 37˚C (A) and 4˚C (B). The results are shown as the mean ± SEM of 3 independent experiments.

*p < 0.05. **p < 0.01.

56

Dimer

Monomer

Fig. 15. EGFR expression on cell surface is modulated by EGF

Western blot analysis of cell surface protein treated with cross-linker BS3 at 0 ng/mL, 2 ng/mL and

50 ng/mL. monomer: 175 kDa, dimer: 350 kDa.

57

Fig. 16. Localization of EGFR and LAMP2

Immunofluorescence staining for EGFR (green) and LAMP2 (red) in HepG2-NTCP cells at 50

ng/ml of EGF at 37˚C and 4˚C. Scale bar, 10 µm. EGFR and LAMP2 are colocalized at 4˚C but

not at 37˚C.

58

Relative HBV DNA

HBV attachment with EGFR kinase inhibitor

1.6

control

1.4

gefitinib

✱✱

1.2

1.0

0.8

EGF (ng/mL)

Fig. 17. The extracellular HBV attachment is increased by the formation of active

dimer EGFR

Relative HBV attachment in HepG2-NTCP cells treated with or without 10 µM gefitinib and 2

ng/mL EGF. The results are shown as the mean ± SEM of 3 independent experiments. **p < 0.01.

Immunofluorescence staining for EGFR (green) and NTCP (red) in Hepg2-NTCP cells treated

with/without gefitinib at 2 ng/ml of EGF at 37˚C and 4˚C.

59

Relative HBV DNA

HBV attachment in EGFR-KD cells

1.6

si-control

1.4

si-EGFR

1.2

EGFR

GAPDH

✱✱✱

tro

FR

sisi-

1.0

0.8

EGF (ng/mL)

Fig. 18. Knockdown of EGFR expression cancelled the enhanced HBV attachment

by EGF in HepG2-NTCP

Relative HBV attachment in EGFR knock down HepG2-NTCP cells treated with or without 2

ng/mL EGF. The results are shown as the mean ± SEM of 3 independent experiments. *p < 0.05.

N.S., not significant.

60

Fig. 19. Knockdown of EGFR expression cancelled the enhanced HBV attachment

by EGF in HepG2-NTCP and HepG2 cells

Relative HBV attachment in EGFR knock down HepG2-NTCP and HepG2 cells treated with or

without 2 ng/mL EGF. The results are shown as the mean ± SEM of 3 independent experiments.

*p < 0.05. N.S., not significant.

61

Fig. 20. HBV is internalized via the TK-independent CME pathways without EGF

stimulation

(A) Relative HBV internalization in EGFR knockdown HepG2-NTCP cells pretreated with 2 ng/ml

of EGF. The results are shown as the mean ± SEM of 3 independent experiments. *p < 0.05. **p

< 0.01. ***p < 0.001. N.S., not significant.

(B) Relative HBV infection levels in HepG2-NTCP cells (-), HepG2-NTCP cells treated with 10

µM gefitinib. The results are shown as the mean ± SEM of 3 independent experiments. *p < 0.05.

**p < 0.01. ***p < 0.001. N.S., not significant.

62

Fig. 21. Gefitinib inhibits EGFR endocytosis in the presence of EGF

Immunofluorescence staining for EGFR (green) and NTCP (red) in HepG2-NTCP cells treated with

or without 2 ng/ml of EGF and 10 µM gefitinib.

63

HBV infection with CME inhibitor

Relative HBV DNA

2.0

Control

IKA

1.5

✱✱✱

1.0

✱✱✱

ns

0.5

0.0

50

EGF (ng/mL)

Fig. 22. HBV is internalized via the CME pathways at low dose of EGF

(A) Relative HBV infection levels in HepG2-NTCP cells (-), HepG2-NTCP cells treated with

ikarugamycin (IKA). The results are shown as the mean ± SEM of 3 independent experiments. *p

< 0.05. **p < 0.01. ***p < 0.001. N.S., not significant.

64

Fig. 23. IKA inhibits EGFR internalization at a low dose of EGF

Immunofluorescence staining for EGFR (green) and NTCP (red) in HepG2-NTCP cells at 2 ng/ml

of EGF treated with or without 2 µM IKA. Scale bar, 10 µm.

65

HBV infection with CIE inhibitor

Relative HBV DNA

2.0

Control

FLP

1.5

1.0

✱✱✱

0.5

0.0

50

EGF (ng/mL)

Fig. 24. HBV is internalized via the CIE pathway at a high dose of EGF

Relative HBV infection levels in HepG2-NTCP cells (-), HepG2-NTCP cells treated with filipin

(FLP). The results are shown as the mean ± SEM of 3 independent experiments. *p < 0.05. **p <

0.01. ***p < 0.001. N.S., not significant.

66

Fig. 25. FLP inhibits EGFR internalization at a high dose of EGF

Immunofluorescence staining for EGFR (green) and LAMP2 (red) in HepG2-NTCP cells at 2 ng/ml

of EGF treated with or without 1 µM FLP. Scale bar, 10 µm.

67

HBV infection with lysosome inhibitor

Relative HBV DNA

2.0

Control

CQ

1.5

ns

1.0

ns

✱✱✱

0.5

0.0

50

EGF (ng/mL)

Fig. 26. HBV is degraded in the lysosome at a high dose of EGF

Relative HBV levels in HepG2-NTCP cells (-), HepG2-NTCP cells treated with chloroquine (CQ).

The results are shown as the mean ± SEM of 3 independent experiments. *p < 0.05. **p < 0.01.

***p < 0.001. N.S., not significant.

68

Fig. 27. CQ inhibits EGFR degradation at a high dose of EGF

Immunofluorescence staining for EGFR (green) and LAMP2 (red) in HepG2-NTCP cells at 2 ng/ml

and 50 ng/mL of EGF treated with 25 µM CQ. Scale bar, 10 µm.

69

Fig. 28. NTCP and EGFR are not colocalized after internalization

Immunofluorescence staining for EGFR (green) and NTCP (red) in HepG2-NTCP cells treated with

PreS1-TAMRA (white) and HBV at 2 ng/ml of EGF treated. Scale bar, 10 µm.

70

Fig. 29. Competition between HBV and PreS1 in cells with or without EGF

stimulation

Relative HBV attachment (A), relative HBV infection (B) in HepG2-NTCP cells treated with or

without 1µM PreS1 and 50 ng/mL EGF. Inhibition rate = (1- PreS1/control) x100%. The results

are shown as the mean ± SEM of 3 independent experiments. **p < 0.01. ***p < 0.001.

71

Fig. 30. Summary

72

Table 1. List of quantitative PCR primers for mouse genes

gene

Left Primer

Right Primer

Stab2

TGTCCAGACGGCTACATCAA

CCAGGGATATCCAGGACGTA

Lyve1

CCTCCAGCCAAAAGTTCAAA

TCCAACACGGGGTAAAATGT

Pecam1

CTGGTGCTCTATGCAAGCCT

AGTTGCTGCCCATTCATCAC

F8

TCATGTATAGCCTGGATGGGA

GATGAGTCCACATTGCCAAA

Ngfr

GTGTGCGAGGACACTGAGC

GGGGGTAGACCTTGTGATCC

Desmin

GTGAAGATGGCCTTGGATGT

CTCGGAAGTTGAGAGCAGAGA

Hgf

CCTGACACCACTTGGGAGTA

CTTCTCCTTGGCCTTGAATG

Actb

TTCTTTGCAGCTCCTTCGTT

ATGGAGGGGAATACAGCCC

73

Table 2. List of quantitative PCR primers and probes for HBV detection

Primer/Probe

HBSF2

CTTCATCCTGCTGCTATGCCT

HBSR2

AAAGCCCAGGATGATGGGAT

cccDNA F7

TCCCCGTCTGTGCCTTCTC

cccDNA R7

GCACAGCTTGGAGGCTTGA

cccDNA P7

FAM- CCGTGTGCACTTCG

74

Table 3. List of primary and secondary antibodies used for

immunocytochemistry analysis and FCM analysis of mouse and human cells

Primary Antibody

Supplier

LAMP2

abcam (ab25631)

EGFR

cell signaling (D38B1)

Myc

abcam (ab206486)

Stabilin2

Nonaka et al.

LNGFR

miltenyibiotec (REA648)

Secondary Antibody

Supplier

Alexa Fluor 488 anti-Rabbit IgG

Invitrogen (A32790)

Alexa Fluor 555 anti-Mouse IgG

Invitrogen (A21424)

Alexa Fluor 647 anti-Mouse IgG

Invitrogen (A28181)

75

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る