リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「腫瘍免疫逃避における可溶型CD155の役割」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

腫瘍免疫逃避における可溶型CD155の役割

奥村, 元紀 筑波大学 DOI:10.15068/0002000899

2021.08.03

概要

免疫とは、病原微生物やがん細胞などの様々な異物を排除しようとする生体防御反応である。免疫応答には、マクロファージや好中球による貪食機構や NK細胞による非特異的な攻撃を含む「自然免疫」と、自然免疫系の細胞から抗原提示を受け、抗原特異的な反応を示す T 細胞による攻撃や B 細胞による抗体産生を含む「獲得免疫」がある。これら免疫応答では、炎症促進性サイトカインや活性化受容体の下流シグナルなどにより免疫細胞は活性化される。しかし、炎症が終息せず、免疫細胞の活性化が持続した場合、異物だけでなく自己に対しても免疫応答が起きてしまう。その自己免疫応答を防ぐために、免疫抑制性サイトカインや抑制性受容体の下流シグナルによって免疫細胞の活性が抑制される。このように、生体内では免疫細胞の活性化と抑制のバランスが巧妙に調整されており、複雑な免疫システムを構築している。

参考文献

1. Wendel, M., et al., Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res, 2008. 68(20): p. 8437-45.

2. Voshtani, R., et al., Progranulin promotes melanoma progression by inhibiting natural killer cell recruitment to the tumor microenvironment. Cancer Lett, 2019. 465: p. 24-35.

3. Bottcher, J.P., et al., NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell, 2018. 172(5): p. 1022-1037 e14.

4. Bald, T., et al., The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat Immunol, 2020. 21(8): p. 835-847.

5. Franciszkiewicz, K., et al., Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res, 2012. 72(24): p. 6325-32.

6. Barber, D.F., M. Faure, and E.O. Long, LFA-1 contributes an early signal for NK cell cytotoxicity. J Immunol, 2004. 173(6): p. 3653-9.

7. Huntington, N.D., J. Cursons, and J. Rautela, The cancer-natural killer cell immunity cycle. Nat Rev Cancer, 2020. 20(8): p. 437-454.

8. Koch, J., et al., Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol, 2013. 34(4): p. 182-91.

9. Wu, Y., Z. Tian, and H. Wei, Developmental and Functional Control of Natural Killer Cells by Cytokines. Front Immunol, 2017. 8: p. 930.

10. Trapani, J.A. and M.J. Smyth, Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol, 2002. 2(10): p. 735-47.

11. Gras Navarro, A., A.T. Bjorklund, and M. Chekenya, Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol, 2015. 6: p. 202.

12. Derakhshan, A., Z. Chen, and C. Van Waes, Therapeutic Small Molecules Target Inhibitor of Apoptosis Proteins in Cancers with Deregulation of Extrinsic and Intrinsic Cell Death Pathways. Clin Cancer Res, 2017. 23(6): p. 1379-1387.

13. Dejardin, E., et al., Regulation of major histocompatibility complex class I expression by NF-kappaB-related proteins in breast cancer cells. Oncogene, 1998. 16(25): p. 3299-307.

14. Roberts, E.W., et al., Critical Role for CD103(+)/CD141(+) Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell, 2016. 30(2): p. 324-336.

15. Tay, R.E., E.K. Richardson, and H.C. Toh, Revisiting the role of CD4(+) T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther, 2020.

16. Melero, I., et al., Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clin Cancer Res, 2013. 19(5): p. 997-1008.

17. Sackstein, R., T. Schatton, and S.R. Barthel, T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab Invest, 2017. 97(6): p. 669- 697.

18. Lieberman, J., The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol, 2003. 3(5): p. 361-70.

19. Bauer, S., et al., Activation of NK cells and T cells by NKG2D, a receptor for stress- inducible MICA. Science, 1999. 285(5428): p. 727-9.

20. Jamieson, A.M., et al., The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity, 2002. 17(1): p. 19-29.

21. Amsen, D., et al., Tissue-resident memory T cells at the center of immunity to solid tumors. Nat Immunol, 2018. 19(6): p. 538-546.

22. Kaech, S.M. and W. Cui, Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol, 2012. 12(11): p. 749-61.

23. Dunn, G.P., L.J. Old, and R.D. Schreiber, The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2004. 21(2): p. 137-48.

24. O'Donnell, J.S., M.W.L. Teng, and M.J. Smyth, Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol, 2019. 16(3): p. 151-167.

25. Schreiber, R.D., L.J. Old, and M.J. Smyth, Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science, 2011. 331(6024): p. 1565-70.

26. Nirschl, C.J. and C.G. Drake, Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res, 2013. 19(18): p. 4917-24.

27. Li, X., et al., Emerging predictors of the response to the blockade of immune checkpoints in cancer therapy. Cell Mol Immunol, 2019. 16(1): p. 28-39.

28. Marin-Acevedo, J.A., et al., Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol, 2018. 11(1): p. 39.

29. Cassetta, L. and J.W. Pollard, Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov, 2018.

30. Chabanon, R.M., et al., Mutational Landscape and Sensitivity to Immune Checkpoint Blockers. Clin Cancer Res, 2016. 22(17): p. 4309-21.

31. Bruno, A., et al., Myeloid Derived Suppressor Cells Interactions With Natural Killer Cells and Pro-angiogenic Activities: Roles in Tumor Progression. Front Immunol, 2019. 10: p. 771.

32. Kobayashi, H., et al., Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol, 2019. 16(5): p. 282-295.

33. Togashi, Y., K. Shitara, and H. Nishikawa, Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol, 2019. 16(6): p. 356-371.

34. Jenkins, R.W., D.A. Barbie, and K.T. Flaherty, Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer, 2018. 118(1): p. 9-16.

35. Masson, D., et al., Overexpression of the CD155 gene in human colorectal carcinoma. Gut, 2001. 49(2): p. 236-40.

36. Nakai, R., et al., Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci, 2010. 101(5): p. 1326-30.

37. Bevelacqua, V., et al., Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget, 2012. 3(8): p. 882-92.

38. Nishiwada, S., et al., Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res, 2015. 35(4): p. 2287-97.

39. Tahara-Hanaoka, S., et al., Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood, 2006. 107(4): p. 1491-6.

40. Takai, Y., et al., Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol, 2008. 9(8): p. 603-15.

41. Tane, S., et al., The role of Necl-5 in the invasive activity of lung adenocarcinoma. Exp Mol Pathol, 2013. 94(2): p. 330-5.

42. Enloe, B.M. and D.G. Jay, Inhibition of Necl-5 (CD155/PVR) reduces glioblastoma dispersal and decreases MMP-2 expression and activity. J Neurooncol, 2011. 102(2): p. 225-35.

43. Shibuya, A., et al., DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity, 1996. 4(6): p. 573-81.

44. Tahara-Hanaoka, S., et al., Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol, 2004. 16: p. 533-8.

45. Bottino, C., et al., Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med, 2003. 198(4): p. 557-67.

46. Shibuya, K., et al., Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity, 1999. 11(5): p. 615-23.

47. Shibuya, K., et al., CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med, 2003. 198(12): p. 1829-39.

48. Iguchi-Manaka, A., et al., Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med, 2008. 205(13): p. 2959-64.

49. Zhang, Z., et al., DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med, 2015. 212(12): p. 2165-82.

50. Wang, B., et al., Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8(+) T cell dysfunction and maintain memory phenotype. Sci Immunol, 2018. 3(29).

51. Yu, X., et al., The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol, 2009. 10(1): p. 48- 57.

52. Johnston, R.J., et al., The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell, 2014. 26(6): p. 923-937.

53. Solomon, B.L. and I. Garrido-Laguna, TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother, 2018. 67(11): p. 1659-1667.

54. Guillerey, C., et al., TIGIT immune checkpoint blockade restores CD8(+) T-cell immunity against multiple myeloma. Blood, 2018. 132(16): p. 1689-1694.

55. Joller, N., et al., Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity, 2014. 40(4): p. 569-81.

56. Kurtulus, S., et al., TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest, 2015. 125(11): p. 4053-62.

57. Dixon, K.O., et al., Functional Anti-TIGIT Antibodies Regulate Development of Autoimmunity and Antitumor Immunity. J Immunol, 2018. 200(8): p. 3000-3007.

58. Tiragolumab Impresses in Multiple Trials. Cancer Discov, 2020. 10(8): p. 1086-1087.

59. Gramatzki, M., et al., Antibodies TC-12 ("unique") and TH-111 (CD96) characterize T- cell acute lymphoblastic leukemia and a subgroup of acute myeloid leukemia. Exp Hematol, 1998. 26(13): p. 1209-14.

60. Hosen, N., et al., CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A, 2007. 104(26): p. 11008-13.

61. Fuchs, A., et al., Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol, 2004. 172(7): p. 3994-8.

62. Blake, S.J., et al., Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy. Cancer Discov, 2016. 6(4): p. 446-59.

63. Chiang, E.Y., et al., CD96 functions as a co-stimulatory receptor to enhance CD8(+) T cell activation and effector responses. Eur J Immunol, 2020. 50(6): p. 891-902.

64. Georgiev, H., et al., Coming of Age: CD96 Emerges as Modulator of Immune Responses. Front Immunol, 2018. 9: p. 1072.

65. Martinet, L. and M.J. Smyth, Balancing natural killer cell activation through paired receptors. Nat Rev Immunol, 2015. 15(4): p. 243-54.

66. Baury, B., et al., Identification of secreted CD155 isoforms. Biochem Biophys Res Commun, 2003. 309(1): p. 175-82.

67. Iguchi-Manaka, A., et al., Increased Soluble CD155 in the Serum of Cancer Patients. PLoS One, 2016. 11(4): p. e0152982.

68. Cuff, S., et al., Antigen specificity determines the pro- or antitumoral nature of CD8+ T cells. J Immunol, 2010. 184(2): p. 607-14.

69. Martins, F., et al., Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol, 2019. 16(9): p. 563-580.

70. Gerhardt, T. and K. Ley, Monocyte trafficking across the vessel wall. Cardiovasc Res, 2015. 107(3): p. 321-30.

71. Justus, C.R., et al., In vitro cell migration and invasion assays. J Vis Exp, 2014(88).

72. Triki, H., et al., CD155 expression in human breast cancer: Clinical significance and relevance to natural killer cell infiltration. Life Sci, 2019: p. 116543.

73. Groh, V., et al., Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature, 2002. 419(6908): p. 734-8.

74. Schlecker, E., et al., Metalloprotease-Mediated Tumor Cell Shedding of B7-H6, the Ligand of the Natural Killer Cell-Activating Receptor NKp30. Cancer Research, 2014. 74(13): p. 3429-3440.

75. Pesce, S., et al., B7-H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. Oncoimmunology, 2015. 4(4).

76. Deng, W.W., et al., A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science, 2015. 348(6230): p. 136-139.

77. Jin, H.S., et al., CD226(hi)CD8(+) T Cells Are a Prerequisite for Anti-TIGIT Immunotherapy. Cancer Immunol Res, 2020. 8(7): p. 912-925.

78. Li, X.Y., et al., CD155 loss enhances tumor suppression via combined host and tumor- intrinsic mechanisms. J Clin Invest, 2018. 128(6): p. 2613-2625.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る