リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bone apatite anisotropic structure control: Via designing fibrous scaffolds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bone apatite anisotropic structure control: Via designing fibrous scaffolds

Lee, Sungho 大阪大学

2020.04.02

概要

Bone tissue has an anisotropic structure, associated with the collagen fibrils' orientation and the c-axis direction of the bone apatite crystal. The bone regeneration process comprises two main phases: bone mineral density restoration (bone quantity), and subsequent recovery of bone apatite c-axis orientation (bone quality). Bone quality is the determinant factor for mechanical properties of bone. Control of osteoblast alignment is one of the strategies for reconstructing bone quality since the collagen/apatite matrix orientation in calcified tissues is dependent on the osteoblast orientation. In this work, fibrous scaffolds designed for reconstruction of bone quality via cell alignment control was investigated. The fibrous scaffolds were fabricated using the electrospinning method with poly(lactic acid) at various fiber collecting speeds. The degree of fiber alignment in the prepared fibrous scaffolds increased with increasing fiber collecting speed, indicating that the fibers were oriented in a single direction. The alignment of osteoblasts on the fibrous scaffolds as well as the subsequent apatite c-axis orientation increased with increasing fiber collecting speed. We successfully controlled cell alignment and apatite c-axis orientation using the designed morphology of fibrous scaffolds. To the best of our knowledge, this is the first report demonstrating that adjusting the degree of fiber orientation for fibrous scaffolds can manipulate the regeneration of bone quality.

この論文で使われている画像

参考文献

1 S. Weiner and H. D. Wagner, Annu. Rev. Mater. Sci., 1998, 28, 271–298.

2 J. Seto, H. S. Gupta, P. Zaslansky, H. D. Wagner and P. Fratzl, Adv. Funct. Mater., 2008, 18, 1905–1911.

3 T. Nakano, K. Kaibara, Y. Tabata, N. Nagata, S. Enomoto, E. Marukawa and Y. Umakoshi, Bone, 2002, 31, 479–487.

4 V. Ziv, H. D. Wagner and S. Weiner, Bone, 1996, 18, 417–428.

5 H. R. Wenk and F. Heidelbach, Bone, 1999, 24, 361–369.

6 N. Sasaki and Y. Sudoh, Calcif. Tissue Int., 1997, 60, 361–367.

7 N. Sasaki, N. Matsushima, T. Ikawa, H. Yamamura and A. Fukuda, J. Biomech., 1989, 22, 157–164.

8 G. E. Bacon, P. J. Bacon and R. K. Griffiths, J. Anat., 1979, 128, 277–283.

9 R. Ozasa, M. Nakatsu, A. Moriguchi, K. Sasaki, T. Ishimoto, M. Okada, T. Matsumoto and T. Nakano, Mater. Trans., 2020, 61, 381–386.

10 T. Nakano, Y. Tabata and Y. Umakoshi, in Encyclopedia of Materials: Science and Technology, ed. K. H. J.Buschow, R. W.Cahn, M. C.Flemings, B.Ilschner, E. J.Kramer, S.Mahajan and P.Veyssi`ere, Elsevier, Oxford, 2005, pp. 1–8, DOI: 10.1016/B0-08-043152-6/02061-1.

11 T. Nakano, in Advances in Metallic Biomaterials: Tissues, Materials and Biological Reactions, ed. M.Niinomi, T.Narushima and M.Nakai, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 3–30, DOI: 10.1007/978-3-662- 46836-4_1.

12 T. Nakano, K. Kaibara, T. Ishimoto, Y. Tabata and Y. Umakoshi, Bone, 2012, 51, 741–747.

13 NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, JAMA, 2001, 285, 785– 795.

14 T. Ishimoto, T. Nakano, Y. Umakoshi, M. Yamamoto and Y. Tabata, J. Bone Miner. Res., 2013, 28, 1170–1179.

15 T. Kasuga, A. Obata, H. Maeda, Y. Ota, X. Yao and K. Oribe, J. Mater. Sci.: Mater. Med., 2012, 23, 2349–2357.

16 A. Obata, T. Hotta, T. Wakita, Y. Ota and T. Kasuga, Acta Biomater., 2010, 6, 1248–1257.

17 S. K. Madhurakkat Perikamana, J. Lee, T. Ahmad, Y. Jeong, D.-G. Kim, K. Kim and H. Shin, ACS Appl. Mater. Interfaces, 2015, 7, 8798–8808.

18 J.-h. Lee, Y. J. Lee, H.-j. Cho and H. Shin, Tissue Eng., Part A, 2013, 20, 2031–2042.

19 T. Fee, S. Surianarayanan, C. Downs, Y. Zhou and J. Berry, PLoS One, 2016, 11, e0154806.

20 X. Chen, X. Fu, J.-g. Shi and H. Wang, Nanomed. Nanotechnol. Biol. Med., 2013, 9, 1283–1292.

21 M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya and J. Tanaka, Biomaterials, 2001, 22, 1705–1711.

22 A. Matsugaki, Y. Isobe, T. Saku and T. Nakano, J. Biomed. Mater. Res., Part A, 2015, 103, 489–499.

23 A. Matsugaki, G. Aramoto, T. Ninomiya, H. Sawada, S. Hata and T. Nakano, Biomaterials, 2015, 37, 134–143.

24 S. Lee, A. Matsugaki, T. Kasuga and T. Nakano, J. Biomed. Mater. Res., Part A, 2019, 107, 1031–1041.

25 S. Lee, Y. Kiyokane, T. Kasuga and T. Nakano, J. Asian Ceram. Soc., 2019, 7, 228–237.

26 A. Matsugaki, N. Fujiwara and T. Nakano, Acta Biomater., 2013, 9, 7227–7235.

27 S. Lee, T. Nakano and T. Kasuga, J. Biomed. Mater. Res., Part A, 2017, 105, 3127–3135.

28 G. Wong and D. V. Cohn, Nature, 1974, 252, 713.

29 T. Ishimoto, B. Sato, J.-W. Lee and T. Nakano, Bone, 2017, 103, 216–223.

30 A. Matsugaki, T. Harada, Y. Kimura, A. Sekita and T. Nakano, Int. J. Mol. Sci., 2018, 19, 3474.

31 A. Umeno, H. Kotani, M. Iwasaka and S. Ueno, IEEE Trans. Magn., 2001, 37, 2909–2911.

32 D. H. Reneker and A. L. Yarin, Polymer, 2008, 49, 2387–2425.

33 T. Sun, D. Norton, R. J. McKean, J. W. Haycock, A. J. Ryan and S. MacNeil, Biotechnol. Bioeng., 2007, 97, 1318–1328.

参考文献をもっと見る