リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Zwitterionic polymers and microfabricated culture devices for hair regenerative medicine」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Zwitterionic polymers and microfabricated culture devices for hair regenerative medicine

鈴木 康平 横浜国立大学 DOI:info:doi/10.18880/00014821

2022.11.24

概要

再生医療とは、幹細胞等を用いて、臓器や組織の欠損や機能障害・不全に対し、それらの臓器や組織を再生し、失われた人体機能の回復を目指す医療である。既存の医薬品では治療が難しいものや、治療法が確立されていない疾患に対して新たな治療法となる可能性が期待されている[1]。

 なかでもiPS細胞やES細胞などの多能性幹細胞や、間葉系幹細胞や造血幹細胞などの体性幹細胞を用いた研究開発、実用化が進められている。表1-1に示すようにジャパン・ティッシュ・エンジニアリング社の皮膚再生シートのジェイスを初めとし、国内で様々な再生医療等製品が承認されている(令和2年9月時点)[2]。

 ここで再生医療等製品を作製するための1つの流れとして図1-1に示すように『幹細胞の増殖⇒目的細胞への分化誘導⇒三次元組織の形成⇒移植』が挙げられる。

 この中で三次元組織化が1つのポイントとされる。シングル細胞を移植した場合、細胞は移植部位への生着率が低いことが課題とされる。一方でシングル細胞が三次元組織化した細胞シートや細胞凝集塊を用いた場合、移植時の組織への生着率が向上することが知られている[3]。その他にも三次元組織は二次元組織と比較し、細胞の増殖が促進され、治療能力や、生存率、薬物代謝性がin vivoの細胞機能と近くなることが示されている(図1-2)[4]。そのためがん研究、薬剤スクリーニング、組織構築などの幅広い分野で盛んに応用されている。

この論文で使われている画像

参考文献

第一章

[1] 株式会社ヘリオス HP https://www.healios.co.jp

[2] 2020 年度 第 1 回ライフサイエンス・ビジネスセミナー『医療機器・再生医療等製品における承認審査の現状と規制動向』厚生労働省 医薬・生活衛生局 渡利彰浩

[3] 株式会社Heartseed HP https://heartseed.jp/technology.html

[4] Miyamoto, Y.; Ikeuchi, M.; Kawano, N. Trends from 2D culture to 3D culture -Historical transition of cell culture technology. Organ Biology, 2020, 27, 37-52.

[5] 尾上 弘晃, 竹内 昌治. ボトムアップ組織工学 (特集 マイクロバイオ技術の潮流と展望 : 動物細胞の培養・計測・評価技術への応用), 生物工学会誌 2014, 92(4), 161-165.

[6] Takahashi, H.; Shimizu, T.; Nakayama, M.; Yamato, M.; Okano, T. The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue. Biomaterials, 2013, 34, 7372-7380.

[7] 東京女子医科大学 先端生命医科学研究所 HP https://www.twmu.ac.jp/ABMES/research-content/cell-sheet-engineering/

[8] 岡本康司. 臨床がんのスフェロイド培養法. 患者由来がんモデルを用いたがん研究実践ガイド:編集 佐々木博己. 羊土社(実験医学別冊), 2019, 52-55.

[9] Takezawa T, Yamazaki M, Mori Y, Yonaha T, Yoshizato K. Morphological and immuno- cytochemical characterization of a hetero-spheroid composed of fibroblasts and hepatocytes. Journal of Cell Science, 1991, 101, 495-501.

[10] Unsworth BR, Lelkes PI. Growing tissues in microgravity. Nature Medicine, 1998, 4, 901-907.

[11] Willyard C. The boom in mini stomachs, brains, breasts, kidneys and more. Nature. 2013, 523, 520-522.

[12] 日本触媒 HP https://www.shokubai.co.jp/ja/news/news0521.html

[13] 慶應大学プレスリリース https://www.keio.ac.jp/ja/press-releases/2020/2/6/28-67426/

[14] Itoh, M.; Mukae, Y.; Kitsuka, T.; Arai, K.; Nakamura, A.; Uchihashi, K.; Toda, S.; Matsubayashi, K.; Oyama, J.; Node, K.; Kami, D.; Gojo, S.; Morita, S.; Nishida, T.; Nakayama, K.; Kobayashi, E. Development of an immunodeficient pig model allowing long- term accommodation of artificial human vascular tubes. Nature communications, 2019, 10, 1- 8.

[15] Velasco, V., Shariati, S.A. & Esfandyarpour, R. Microtechnology-based methods for organoid models. Microsystems & Nanoengineering 2020, 6, 76-88.

[16] Liu, D., Chen, S. & Win Naing, M. A review of manufacturing capabilities of cell spheroid generation technologies and future development. Biotechnology & Bioengineering 2021, 118, 542-554.

[17] Prestigiacomo, V.;Weston, A.; Dick, L.S. Rat multicellular 3D liver microtissues to explore TGF-β1 induced effects, Journal of Pharmacological and Toxicological Methods, 2020, 101, 106650.

[18] Kumar, A.: Starly, B. Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes. Biofabrication,2015, 7, 44103.

[19] Wang, Y., Kim, M. H., Tabaei, S. R., Park, J. H., Na, K., Chung, S.,Zhdanov, V. P., Cho, N. J. Spheroid formation of hepatocarcinoma cells in microwells: Experiments and Monte Carlo simulations. PLOS One, 2016, 11, e0161915.

[20] S.E. Millar, Molecular mechanisms regulating hair follicle development., Journal of Investigative Dermatology, 2002, 118, 216–225.

[21] 景山達斗, 毛髪再生医療を目指した毛包原基の大量調製に関する研究. (2017).

[22] Stenn, K.S.; Paus, R. Controls of hair follicle cycling. Physiological Reviews, 2001, 81, 449-494.

[23] Relevant Research, Inc., International Society of Hair Restoration Surgery: 2015 Practice Census Results

[24] Ehama, R.; Ishimatsu-Tsuji, Y.; Iriyama, S.; Ideta, R.; Soma, T.; Yano, K.; Kawasaki, C.; Suzuki, S.; Shirakata, Y.; Hashimoto, K. Hair follicle regeneration using grafted rodent and human cells. Journal of Investigative Dermatology 2007, 127 (9), 2106-2115.

[25] Ohyama, M.; Veraitch, O. Strategies to enhance epithelial–mesenchymal interactions for human hair follicle bioengineering. Journal of Dermatological Science 2013, 70 (2), 78-87.

[26] Toyoshima, K.-e.; Asakawa, K.; Ishibashi, N.; Toki, H.; Ogawa, M.; Hasegawa, T.; Irié, T.; Tachikawa, T.; Sato, A.; Takeda, A. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nature communications 2012, 3 (1), 1-12.

[27] Kageyama, T.; Yoshimura, C.; Myasnikova, D.; Kataoka, K.; Nittami, T.; Maruo, S.; Fukuda, J. Spontaneous hair follicle germ (HFG) formation in vitro, enabling the large-scale production of HFGs for regenerative medicine. Biomaterials 2018, 154, 291-300.

[28] Spriano, S.; Chandra, V. S.; Cochis, A.; Uberti, F.; Rimondini, L.; Bertone, E.; Vitale, A.; Scolaro, C.; Ferrari, M.; Cirisano, F. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Materials Science and Engineering: C 2017, 74, 542-555.

[29] Kakegawa, T., Mochizuki, N., Sadr, N., Suzuki, H. & Fukuda, J. Cell-adhesive and cell- repulsive zwitterionic oligopeptides for micropatterning and rapid electrochemical detachment of cells. Tissue Engineering Part A 2013, 19, 290-298

[30] Lowe, S., O'Brien-Simpson, N. M. & Connal, L. A. Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polymer Chemistry 2015, 6, 198-212.

[31] Tugulu, S., Silacci, P., Stergiopulos, N. & Klok, H. A. RGD - Functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells. Biomaterials 2007, 28, 2536-2546.

[32] Rodriguez‐Emmenegger, C., Houska, M., Alles, A. B. & Brynda, E. Surfaces resistant to fouling from biological fluids: towards bioactive surfaces for real applications Macromolecular Bioscience 2012, 12, 1413-1422.

[33] Li, M., Zhuang, B. & Yu, J. Functional zwitterionic polymers on surface: structures and applications. Chemistry: An Asian Journal 2020, 15, 2060-2075.

[34] Leng, C., Gibney, K. A., Liu, Y., Tew, G. N. & Chen, Z. In situ probing the surface restructuring of antibiofouling amphiphilic polybetaines in water. ACS Macro Letters 2013, 2, 1011-1015.

[35] Fujiwara, N. et al. 2-Methacryloyloxyethyl phosphorylcholine (MPC)-polymer suppresses an increase of oral bacteria: a single-blind, crossover clinical trial. Clinical Oral Investigations 2019, 23, 739-746.

[36] Magin, C. M., Cooper, S. P. & Brennan, A. B. Non-toxic antifouling strategies. Materials. Today 2010, 13, 36-44.

[37] Khlyustova, A., Cheng, Y. F. & Yang, R. Vapor-deposited functional polymer thin films in biological applications. Journal of Materials Chemistry B2020, 8, 6588-6609.

[38] Hong, D. et al. Achieving ultralow fouling under ambient conditions via surface-initiated ARGET ATRP of carboxybetaine. ACS Applied Materials & Interfaces 2017, 9, 9255-9259.

[39] Rhodes, C. P., Long, J. W., Doescher, M. S., Fontanella, J. J. & Rolison, D. R. Nanoscale polymer electrolytes: ultrathin electrodeposited poly (phenylene oxide) with solid- state ionic conductivity. The Journal of Physical Chemistry B 2004, 108, 13079-13087.

[40] Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self- assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews 2005, 105, 1103-1169. Tu, T. Y., Wang, Z., Bai, J., Sun, W., Peng, W. K., Huang, R. Y., Thiery, J. P., and Kamm, R. D. Rapid prototyping of concave microwells for the formation of 3D multicellular cancer aggregates for drug screening. Advanced Healthcare Materials 2014, 3, 609–616.

第二章

[1] Zhao, C., Li, L., Wang, Q., Yu, Q. & Zheng, J. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir 2011, 27, 4906-4913,

[2] Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N. Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials 1998, 39, 323-330.

[3] Hiroi, Y., Otani, A., Kishioka, T., Nishino, T. & Ozawa, T. Ion complex material having function of inhibiting adhesion of biological substance and method for manufacturing the same. United States patent US20160122576A1 (2014).

[4] Spriano, S.; Chandra, V. S.; Cochis, A.; Uberti, F.; Rimondini, L.; Bertone, E.; Vitale, A.; Scolaro, C.; Ferrari, M.; Cirisano, F. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Materials Science and Engineering: C 2017, 74, 542-555.

[5] Wilson, C. J.; Clegg, R. E.; Leavesley, D. I.; Pearcy, M. J. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue engineering 2005, 11, 1-18.

[6] Ishihara, K.; Ishikawa, E.; Iwasaki, Y.; Nakabayashi, N. Inhibition of fibroblast cell adhesion on substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers. Journal of Biomaterials Science, Polymer Edition 1999, 10, 1047-1061.

[7] Ishihara, K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir 2019, 35, 1778-1787.

第三章

[1] Joubert, L.-M.; McDonald, K. SEM visualization of biological samples using Hitachi Ionic Liquid HILEM® IL 1000: a comparative study. Microscopy and Microanalysis 2016, 22, 1170-1171.

[2] Kageyama, T.; Yoshimura, C.; Myasnikova, D.; Kataoka, K.; Nittami, T.; Maruo, S.; Fukuda, J. Spontaneous hair follicle germ (HFG) formation in vitro, enabling the large-scale production of HFGs for regenerative medicine. Biomaterials 2018, 154, 291-300.

[3] 再生毛包原基の集合体の製造方法、毛包組織含有シート、及び毛包組織含有シートの製造方法 JP2016/081747 (2016).

[4] 景山達斗, 毛髪再生医療を目指した毛包原基の大量調製に関する研究. (2017).

[5] Hoffecker, I. T.; Iwata, H. Manipulation of cell sorting within mesenchymal stromal cell- islet cell multicellular spheroids. Tissue Engineering Part A 2014, 20, 1643-1653.

[6] Kishimoto, J.; Ehama, R.; Wu, L.; Jiang, S.; Jiang, N.; Burgeson, R. E. Selective activation of the versican promoter by Epithelial-mesenchymal interactions during hair follicle development. Proceedings of the National Academy of Sciences 1999, 96, 7336-7341.

[7] Kageyama, T.; Yan, L.; Shimizu, A.; Maruo, S.; Fukuda, J. Preparation of hair beads and hair follicle germs for regenerative medicine Biomaterials 2019, 212, 55-63.

[8] Matsuzaki, T. Technologies for Hiair Reconstruction and Their Applicability for Pharmaceutical Research Yakugaku ZASSHI 2008, 128, 11-20.

[9] Weinberg, W. C.; Goodman, L. V.; George, C.; Morgan, D. L.; Ledbetter, S.; Yuspa, S. H.; Lichti, U. Reconstitution of Hair Follicle Development In Vivo: Determination of Follicle Formation, Hair Growth, and Hair Quality by Dermal Cells. Journal of Investigative Dermatology 1993, 100, 229-236.

[10] Zheng, Y.; Du, X.; Wang, W.; Boucher, M.; Parimoo, S.; Stenn, K. S. Organogenesis From Dissociated Cells: Generation of Mature Cycling Hair Follicles From Skin-Derived Cells Journal of Investigative Dermatology, 2005, 124, 867-876.

[11] Nakajima, R., Tate, Y., Yan, L., Kageyama, T. & Fukuda, J. Impact of adipose-derived stem cells on engineering hair follicle germ-like tissue grafts for hair regenerative medicine. Journal of Bioscience and Bioengineering. 2021, 131, 679-685.

第四章

[1] Breslin, S.; O’Driscoll, L. Three-dimensional cell culture: the missing link in drug discovery. Drug discovery today 2013, 18, 240-249.

参考文献をもっと見る