リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「耐環境コーティング用RE-シリケートの高温腐食及び自己治癒特性評価」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

耐環境コーティング用RE-シリケートの高温腐食及び自己治癒特性評価

金, 昇炫 KIM, SEUNGHYEON キム, スンヒョン 九州大学

2023.03.20

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Characterization of High-Temperature Corrosion
and Self-Healing of Rare Earth-Silicate for
Environmental Barrier Coatings
金, 昇炫

https://hdl.handle.net/2324/6787638
出版情報:Kyushu University, 2022, 博士(工学), 課程博士
バージョン:
権利関係:

(様式3)Form 3



名 : KIM SEUNG HYEON

Name

論 文 名 : Characterization of High-Temperature Corrosion and Self-Healing of Rare
Earth-Silicate for Environmental Barrier Coatings
(耐環境コーティング用 RE-シリケートの高温腐食及び自己治癒特性評価)
Title



分 : 甲

Category

論 文 内 容 の 要 旨
Thesis Summary
ガスタービン高温部材に適用される耐環境コーティング(EBCs)の機能低下は物理的原因および化学
的原因がある。物理的原因としては、高温の燃焼環境でガス残留物や粒子衝突の影響によって機械的疲
労と熱衝撃が発生し、EBCs の表面に亀裂が発生する。耐久性を向上するには、高温環境での亀裂を抑制
するために、EBCs に自己治癒特性を備えることが有効である。化学的原因としては、ガスタービン稼動
中に高温で吸入されて溶けるシリカ系粒子(砂、
火山灰)に対する高温耐食性が要求される。
したがって、
本研究では耐食性向上のために人工的に製作された腐食因子である CaO-MgO-Al 2O 3-SiO2 (CMAS)溶融物に
よる化学的安定性および腐食挙動を評価する。このような課題を解決するため、EBCs セラミックス材料
として高温耐熱性、
優れた化学的安定性および SiC に対する熱膨張係数(CTE)の差が少ない点などの長所
を持っている希土類(RE)シリケート(RE2 SiO5 および RE 2Si2 O7)材料を対象として研究を行った。
本研究の目的は、EBCs に適用するため、希土類(RE)シリケートの高温腐食挙動および自己治癒特性
を評価することである。このために CaO:SiO 2(火山灰および CMAS)比率、ディシリケート(RE2 Si 2O7 )とモ
ノシリケート(RE2 SiO5)、反応時間、希土類陽イオン半径による高温腐食反応層の比較、またナノ治癒剤
(SiC)を使用した RE ジシリケートの複合材を用い、時間および温度 SiC 含量によって自己治癒特性につ
いて議論した。
第 1 章では、本研究の序論として耐環境コーティング用材料の研究動向、耐環境コーティング高温
腐食挙動および自己治癒挙動に関する内容を含んでいる。また、本研究の動機と最終目標、各章の研究
目的を簡単に要約した。
第 2 章では、EBCs の有望素材である Gd2 SiO5 と火山灰の高温腐食挙動に対する反応時間が反応層形
成に及ぼす影響を調べることを主な目的とする。反応層で観察されている針状 Ca 2Gd8 (SiO 4) 6O2 粒子の形
成は再溶解され、
熱処理時間が増加するほど厚くなった。
Gd2SiO 5 と火山灰の Ca 成分は 1300℃で反応し、
Ca 2Gd 8(SiO4 )6O 2 の形成メカニズムを解明した。
第 3 章では、Gd2 SiO5 と CMAS の高温腐食挙動を通じて、CaO:SiO 2 比率に応じた反応層形成(2 章)を比
較することを目的とする。CMAS は 1243℃以上の温度で溶融して反応層を形成した。CMAS の主要腐食因

子である Ca は、Gd2SiO 5 と反応して Ca 2Gd8 (SiO 4)6 O2 を形成した。CMAS の場合 CaO:SiO 2 比率(0.73)値が火
山灰より高いため、火山灰の(0.11)値より反応層が厚く形成された(図 1)。
第 4 章では、Gd2 Si 2O 7 と CMAS の高温腐食挙動を通じて RE 2SiO 5(3 章)と RE2Si 2O7 の反応層形成を比較
することを主な目的とする。熱処理時間が長くなるほど反応層の厚さが増加した。同じ条件(CMAS 成分、
温度、時間)で反応層を比較した際、Gd 2SiO 5 より厚い反応層が形成された。

図 1. 火山灰と CMAS 熱処理後の反応層比較.

第 5 章では、
Er2 Si 2O7 と CMAS の高温腐食挙動を通じて希土類陽イオン半径(Er(1.004Å)、
Gd (1.107Å))
による反応層の厚さ(4 章)を比較することが目的である。 Er 2Si2O 7 と CMAS は化学的に反応して
Ca 2Er 8(SiO4 )6O 2 を形成することが観察された。同じ条件(CMAS 成分、温度、時間)で反応層を比較した結
果、Gd 2Si 2O 7(4 章)より薄い反応層の厚さが形成された。すなわち、希土類陽イオン半径が小さいほど
反応層形成厚さが薄くなることを解明した。
第 6 章では、2 種類の RE 2Si 2O 7(Gd 2Si 2O 7+Sc 2Si 2O 7)と CMAS の高温腐食挙動を通じて、単一 RE 2Si 2O 7
と CMAS(4 章および 5 章)間の反応層形成比較することが主な目的である。Gd 2Si 2O 7(70%)+Sc2 Si 2O7 (30%)
と CMAS の高温腐食の結果、
Sc 2Si 2O 7 は CMAS と反応せず、
Gd2Si2 O7 は CMAS の Ca と反応して Ca 2Gd 8(SiO4 ) 6 O 2
を形成した。単一 Gd2Si 2O7(100%)と CMAS の高温腐食反応層の厚さを比較すると 25%減少し、EBCs 耐久性
の向上が期待される。

図 2. 自己亀裂治癒メカニズムの模式図.

第 7 章では RE2Si2 O7 でナノサイズの治癒剤(SiC)を含む複合材料で時間と温度、SiC 含量による自己
治癒特性評価を主な目的とする。Sc 2Si2O 7/SiC10 vol.%ナノ複合体の高温酸化および自己治癒挙動は空
気中で 1300℃で 5 時間熱処理した後に発生した亀裂が 90%以上回復された。
しかし、
Yb2Si 2O7 /SiC20 vol.%
試料の場合、1300℃で 0.5 時間後に 90%以上亀裂の治癒が達成された。自己治癒メカニズムは SiC が酸
化によって高温で SiO 2 の体積膨張であることが分かった(図 2)。
本研究の各章の実験結果および結論は 8 章に要約されている。

この論文で使われている画像

参考文献

[1] H.D. Vu, M. Nanko, Crack-healing performance and oxidation behavior of SiC dispersed

yttrium silicate composites, J. Asian Ceram. Soc. 8 (2020) 298–308.

[2] J. Roy, S. Chandra, S. Das, S. Maitra, Oxidation behaviour of silicon carbide-a review, Rev.

Adv. Mater. Sci. 38 (2014) 29–39.

[3] S.T. Nguyen, T. Nakayama, H. Suematsu, T. Suzuki, L. He, H.B. Cho, K. Niihara, Strength

improvement and purification of Yb2Si2O7-SiC nanocomposites by surface oxidation

treatment, J. Am. Ceram. Soc. 100 (2017) 3122–3131.

[4] T. Osada, T. Hara, M. Mitome, S. Ozaki, T. Abe, K. Kamoda, T. Ohmura, Self-healing by

design: universal kinetic model of strength recovery in self-healing ceramics, Sci. Technol.

Adv. Mater. 21 (2020) 593–608.

[5] T. Osada, K. Kamoda, M. Mitome, T. Hara, T. Abe, Y. Tamagawa, W. Nakao, T. Ohmura,

A Novel Design Approach for Self-Crack-Healing Structural Ceramics with 3D Networks

of Healing Activator, Sci. Rep. 7 (2017) 17853.

[6] X. Chen, Y. Li, W. Zhou, P. Xiao, P. Chen, Y. Tong, M. Chen, Interaction of Yb2Si2O7

environmental barrier coating material with Calcium-Ferrum-Alumina-Silicate (CFAS) at

high temperature, Ceram. Int. 47 (2021) 31625–31637.

[7] E. Bakan, D. Marcano, D. Zhou, Y. J. Sohn, G. Mauer, R. Vaßen, Yb2Si2O7 Environmental

Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary

Comparative Study, J. Therm. Spray Technol. 26 (2017) 1011–1024.

[8] S.T. Nguyen, T. Nakayama, H. Suematsu, H, Iwasawa, T. Suzuki, Y. Otsuka, L. He, T.

Takahashi, K. Niihara, Self-healing behavior and strength recovery of ytterbium disilicate

ceramic reinforced with silicon carbide nanofillers, J. Eur. Ceram. Soc. 39 (2019) 3139–

3152.

182

[9] W. Kunz, H. Klemm, A. Michaelis, Crack-healing in ytterbium silicate filled with silicon

carbide particles, J. Eur. Ceram. Soc. 40 (2020) 5740–5748.

[10] L.R. Turcer, A.R. Krause, H.F. Garces, L. Zhang, N.P. Padture, Environmental-barrier

coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate

(CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7, J. Eur. Ceram. Soc. 38 (2018) 3914–

3924.

[11] J. Liu, L. Zhang, Q. Liu, L. Cheng, Y. Wang, Structure design and fabrication of

environmental barrier coatings for crack resistance, J. Eur. Ceram. Soc. 34 (2014) 2005–

2012.

[12] Y. Suzuki, P.E.D. Morgan, K. Niihara, Improvement in mechanical properties of powderprocessed MoSi2 by the addition of Sc2O3 and Y2O3, J. Am. Ceram. Soc. 81 (1998) 3141–

3149.

[13] A.J. Fernandez-Carrion, M. Allix, A.I. Becerro, Thermal expansion of rare-earth

pyrosilicates, J. Am. Ceram. Soc. 96 (2013) 2298–2305.

[14] Z. Li, R. C. Bradt, Thermal expansion of the cubic (3C) polytype of SiC, J. Mater. Sci. 21

(1986) 4366–4368.

[15] K. Niihara, A. Nakahira, T. Hirai, The effect of stoichiometry on mechanical properties of

boron carbide, J. Am. Ceram. Soc. 67 (1984) C-13.

[16] L.F. He, J. Shirahata, T. Nakayama, T. Suzuki, H. Suematsu, I. Ihara, Y.W. Bao, T.

Komatsu, K. Niihara, Mechanical properties of Y2Ti2O7, Scr. Mater. 64 (2011) 548–551.

[17] A. Okawa, S.T. Nguyen, J.P. Wiff, H.-W. Son, T. Nakayama, H. Hashimoto, T. Sekino,

T.M.D. Do, H. Suematsu, T. Suzuki, T. Goto, K. Niihara, Self-healing ability, strength

enhancement, and high-temperature oxidation behavior of silicon carbide-dispersed

ytterbium disilicate composite for environmental barrier coatings under isothermal heat

treatment, J. Eur. Ceram. Soc 42 (2022) 6170–6181.

183

[18] B.K. Jang, H. Matsubara, Influence of porosity on hardness and Young’s modulus of

nanoporous EB-PVD TBCs by nanoindentation, Mater. Lett. 59 (2005) 3462–3466.

[19] B.K. Jang, S.H. Kim, C.A.J. Fisher, H.T. Kim, Effect of isothermal heat treatment on

nanoindentation hardness and Young’s modulus of 4 mol% Y2O3-ZrO2 EB-PVD TBCs,

Mater. Today Commun. 31 (2022) 103330.

[20] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented

indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19

(2004) 3–20.

[21] M. Ojovan, Glass formation in amorphous SiO2 as a percolation phase transition in a

system of network defects, J. Exp. Theor. Phys. Lett. 79 (2004) 632–634.

[22] D. Maruoka, M. Nanko, Improved crack healing and high‐temperature oxidation

resistance of Ni/Al2O3 by Y or Si doping, J. Am. Ceram. Soc. 99 (2016) 2451–2457.

[23] M. Yuan, L. Liu, J. Wang, Q. Hu, H. Zhang, S. Zhang, X. Zhou, Crack-healing behaviour

of MoSi2 dispersed Yb2Si2O7 environmental barrier coatings, Ceram. Int. 48 (2022)

29919–29928.

[24] A. Okawa, S.T. Nguyen, J.P. Wiff, H.-W. Son, T. Nakayama, T.M.D. Do, H. Suematsu,

T. Suzuki, T. Goto, K. Niihara, Autonomous crack healing ability of SiC dispersed

Yb2Si2O7 by oxidations in air and water vapor, Ceram. Int. 47 (2021) 34802–34809.

[25] B. Chayasombat, T. Kato, T. Hirayama, T. Tokunaga, K. Sasaki, K. Kuroda, Oxidation

kinetics of single crystal silicon carbide using electron microscopy, J. Ceram. Soc. Jpn.

120 (2012) 181–185.

[26] C. Varadachari, R. Bhowmick, K. Ghosh, Thermodynamics and oxidation behaviour of

crystalline silicon carbide (3C) with atomic oxygen and ozone, ISRN Thermodyn. 2012

(2012) 1–8.

184

[27] S. Kitaoka, T. Matsudaira, M. Wada, T. Saito, M. Tanaka, Y. Kagawa, Control of oxygen

permeability in alumina under oxygen potential gradients at high temperature by dopant

configurations, J. Am. Ceram. Soc., 97 (2014) 2314–2322.

[28] S. Kitaoka, T. Matsudaira, M. Wada, T. Saito, M. Tanaka, Y. Kagawa, Effect of dopants

on the distribution of aluminum and oxygen fluxes in polycrystalline alumina under

oxygen potential gradients at high temperatures, J. Am. Ceram. Soc., 96 (2013) 3243–

3251.

[29] S. Kitaoka, T. Matsudaira, D. Yokoe, T. Kato, M. Takata, Oxygen permeation mechanism

in polycrystalline mullite at high temperatures, J. Am. Ceram. Soc., 100 (2017) 3217–3226.

[30] T. Matsudaira, B.K. Jang, S.D. Kim, S.K. Woo, Effect of water vapor on static fatigue

behavior of a nickel/yttria-stabilized zirconia composite, J. Ceram. Soc. Jpn., 125 (2017)

416–418.

[31] M. Wada, T. Matsudaira, N. Kawashima, M. Takeuchi, D. Yokoe, T. Ogawa, T. Kato, M.

Takata, S. Kitaoka, Effect of water vapor on mass transfer in polycrystalline Yb2Si2O7

under oxygen potential gradients at high temperatures, Acta Mater. 201 (2020) 373–385.

[32] M. Tanaka, T. Matsudaira, E. Kawai, N. Kawashima, U. Matsumoto, T. Ogawa, M.

Takeuchi, S. Kitaoka, Effect of chemical composition on mass transfer in Y2Ti2O7 under

oxygen potential gradient at high temperatures, J. Ceram. Soc. Jpn. 129 (2021) 22–31.

[33] T. Matsudaira, M. Wada, N. Kawashima, M. Takeuchi, D. Yokoe, T. Kato, M. Takata, S.

Kitaoka, Mass transfer in polycrystalline ytterbium monosilicate under oxygen potential

gradients at high temperatures, J. Eur. Ceram. Soc. 41 (2021) 3150–3160.

185

[34] M. Wada, T. Matsudaira, N. Kawashima, S. Kitaoka, M. Takata, Mass transfer in

polycrystalline ytterbium disilicate under oxygen potential gradients at high temperatures,

Acta Mater. 201 (2017) 372–381.

186

Chapter 8. Conclusions

This thesis addressed a successful conclusion on the chemical and physical factors

affecting the durability of EBCs. For the success of this study, a complete understanding of

RE-silicate and optimization of parameters affecting high-temperature corrosion behavior and

self-healing properties are required. RE-silicates exhibit many attractive properties such as high

temperature resistance, low coefficient of thermal expansion (CTE), good chemical stability

and good adhesion to SiC. In this study, according to the variables of CaO:SiO2 (volcanic ash

and CMAS), disilicate (RE2Si2O7) and monosilicate (RE2SiO5), ionic radius, time, and dual

disilicate which are major factors affecting the high-temperature corrosion behavior of REsilicate applied to EBCs, was evaluated. In addition, it was evaluated according to the variables

of time, temperature, and SiC vol%, which are major factors affecting the self-healing

characteristics. The main challenge was to improve the high-temperature corrosion and selfhealing properties of RE-silicates applied to EBCs. The following is a successful summary

conclusion of each chapter.

Chapter 2. High-Temperature Corrosion of Gd2SiO5 with Volcanic Ash for EBCs

The high-temperature corrosion behavior of sintered Gd2SiO5 produced by the SPS process

on volcanic ash was evaluated at 1400°C for 2, 12, and 48 h. As a result of this confirmed

through HT-XRD, it was confirmed that the volcanic ash was melted at 1300°C and reacted

with Gd2SiO5 to form a reaction layer. The elongated shape of Ca2Gd8(SiO4)6O2 particles

observed in the reaction layer became thicker as the heat treatment time increased as the

volcanic ash was dissolved. The reaction layer after heat treat times for 48 h was measured to

45 μm. A suitable reaction layer (Ca2Gd8(SiO4)6O2) formed by the reaction of Gd2SiO5 with

the volcanic ash acts as a protective layer against further attack by the molten volcanic ash.

187

Chapter 3. High-Temperature Corrosion of Gd2SiO5 with CMAS for EBCs

In this study, the high-temperature corrosion behavior of CMAS on sintered Gd2SiO5 was

performed at 1400°C for 2, 12, and 48 h. Attack of dissolved CMAS reacted with sintered

Gd2SiO5 to form a reaction layer. The vertically elongated needle shape of the

Ca2Gd8(SiO4)6O2 particles analyzed in the reaction layer became thicker as the heat treatment

time increased as the CMAS dissolved. As a result of HT-XRD analysis, it can be confirmed

that CMAS is dissolved at 1300°C and reacts with Gd2SiO5. Ca, a major corrosion factor in

CMAS, reacted with Gd2SiO5 to form Ca2Gd8(SiO4)6O2 phase. After reaction times of 48 h,

reaction layer was measured to 120 μm. Due to the higher CaO:SiO2 ratio (0.73) of CMAS

than that of volcanic ash (0.11) in chapter 2, a thicker reaction layer was formed than that of

volcanic ash.

Chapter 4. High-Temperature Corrosion of Gd2Si2O7 with CMAS for EBCs

In this study, high-temperature corrosion behavior of CMAS coated sintered Gd2Si2O7 was

investigated at 1400°C for 100 h to evaluate their suitability as EBC materials. The

Ca2Gd8(SiO4)6O2 (apatite) phase formed in the reaction between molten CMAS and Gd2Si2O7,

was analyzed using HT-XRD at 1300°C. As the heat-treatment time increased, the thickness

of the reaction layer increased because of the reaction between CMAS and sintered Gd2Si2O7,

and the reaction layer grew vertically at the Gd2Si2O7 interface. With the extension of the

reaction time from 0.5 to 100 h, the thickness of the reaction layer increased from

approximately 98 to 315 μm. The thickness of the reaction layer was found to increase in the

form of a parabola. The width of the apatite increased from 2.6 to 14.6 μm with increasing time

from 0.5 to 100 h, respectively. RE2Si2O7 reacts with CaO in the melt to form the apatite phase,

releasing SiO2, whereas RE2SiO5 reacts with both CaO and SiO2, with only the apatite phase

being produced. Therefore, Ca2+ is depleted more quickly and the amount of apatite formed

188

from the RE2SiO5 in chapter 3 is reduced, it was confirmed that the reaction layer was thicker

in RE2Si2O7 than in RE2SiO5.

Chapter 5. High-Temperature Corrosion of Er2Si2O7 with CMAS for EBCs

To evaluate their suitability as EBC materials, the high-temperature corrosion behavior of

Er2Si2O7 sintered with CMAS was investigated. The sintered Er2Si2O7 was exposed at 1400°C

for 48 h with CMAS. As a result of DSC analysis, the melting temperature of the mixed CMAS/

Er2Si2O7 powder mixture was 1258°C, confirming that the reaction between the two materials

occurred at a high temperature. The reaction between CMAS and Er2Si2O7 was also confirmed

by the results of HT-XRD, and the Ca2Er8(SiO4)6O2 apatite phase was observed above 1300℃

as a result of the reaction between molten CMAS and Er2Si2O7. Ca2Er8(SiO4)6O2 grew

vertically on the Er2Si2O7 surface as the heat treatment time increased. Compared to the

reaction layer of Gd2Si2O7 in chapter 4, Er (1.004 Å) has a small ionic radius and has a weak

affinity for Ca among CMAS components, forming a reaction layer thinner than Gd (1.107 Å).

Chapter 6. High-Temperature Corrosion of Gd2Si2O7/Sc2Si2O7 with CMAS for EBCs

In this study, the high-temperature corrosion behavior by CMAS of sintered composite

Gd2Si2O7(70%)+Sc2Si2O7(30%) as EBC material was investigated at 1400°C for 48 h. The

reaction layer produced at high temperature was classified into two layers. In the top region,

Ca2Gd8(SiO4)6O2 (apatite) grown in the form of elongated needles by reaction of a single

Gd2Si2O7 with CMAS was analyzed. In the lower region where Gd2Si2O7(70%)+Sc2Si2O7(30%)

components are mixed, Ca2Gd8(SiO4)6O2 was also analyzed. Gd2Si2O7 has a large ionic radius,

Gd (1.107 Å) showed a great affinity for Ca among CMAS components. However, Sc (0.870Å)

with small ionic radius does not form apatite and is controlled by the penetration of molten

CMAS along grain boundaries. Comparing the reaction layer for single Gd2Si2O7 in chapter 5

189

and CMAS, the thickness of the reaction layer of Gd2Si2O7 (70%)+Sc2Si2O7 (30%) was 20%

(306 → 238 μm) decreased.

Chapter 7. Self-Healing Behavior of RE2Si2O7/SiC Composites for EBCs

We investigated the self-healing behavior of Sc2Si2O7/10 vol.% SiC and Yb2Si2O7/20 vol.%

SiC composites as a function of temperature and time in an oxidizing environment to evaluate

their suitability for use as EBC materials. After artificially induced cracks, the specimens were

exposed to air at 1100 or 1300°C for 0.5, 2, 5 or 10 h. The cracks did not fully recover after 10

h at 1100°C, but fully recovered after 5 h at 1300°C in Sc2Si2O7/10 vol.% SiC. Crack recovery

after 2 h at 1100°C was about 10% , but at 1300°C a recovery of more than 90% was achieved

from 0.5 h in Yb2Si2O7/20 vol.% SiC. Exposure to air was found to create oxidized regions

within the composite at the exposed surfaces, with deeper oxidized regions formed at 1300°C

than at 1100°C after the same time. The growth of the oxidized region followed a parabolic

rate law with rate constants of 1.9×10-12 m2/s at 1100ºC and 6.2×10-11 m2/s at 1300ºC. We found

that self-healing causes surface cracks to close by increasing volume when SiC is oxidized to

SiO2.

The main result of this thesis is that the higher the CaO:SiO2 ratios (CMAS: 0.73, volcanic

ash: 0.11), the thicker the high-temperature corrosion reaction layer was formed in RE2Si2O7

(Gd2Si2O7) than in RE2SiO5 (Gd2SiO5). The larger the ionic radius (Gd: 1.107 Å, Er: 1.004 Å)

and the longer the reaction time, the thicker the reaction layer was formed. In addition, it is

possible to control the thickness of the reaction layer by double RE silicate, so the durability

of EBCs is expected to improve. As time (0.5 → 10 h), temperature (1100 → 1300°C), and

SiC vol% (10 → 20 vol.%) increased, the crack healing rate of RE-silicate improved,

demonstrating excellent results.

In the future, this study has academic value as it will contribute to the main parts of aircraft

190

engines and gas turbines for power generation and the field of defense by improving hightemperature corrosion behavior and self-healing due to the development of valuable EBCs

technology.

191

Research Achievements

1. List of published papers

[1] S.H. Kim, T. Osada, Y. Matsushita, T. Hiroto, Craig A.J. Fisher, B.K. Jang, “Corrosion

behavior

of

Gd2Si2O7/Sc2Si2O7

with

calcia-magnesia-alumina-silica

melts

for

environmental barrier coatings”, J. Eur. Ceram. Soc., (2023) in submission.

[2] S.H. Kim, Craig A.J. Fisher, N. Nagashima, Y. Matsushita, B.K. Jang, “Self-healing

behavior of Sc2Si2O7/SiC composites for environmental barrier coatings”, Ceram. Int.,

(2023) in press.

[3] S.H. Kim, N. Nagashima, Y. Matsushita, and B.K. Jang, “Interaction of Gd2Si2O7 with

CMAS melts for environmental barrier coatings”, J. Eur. Ceram. Soc., 43 (2023) 593–599.

[4] S.H. Kim, Craig A.J. Fisher, N. Nagashima, Y. Matsushita, B.K. Jang, “Reaction between

environmental barrier coatings material Er2Si2O7 and a calcia-magnesia-alumina-silica

melt”, Ceram. Int., 48 (2022) 17369–17375.

[5] S.H. Kim, N. Nagashima, Y. Matsushita, B.N. Kim, B.K. Jang, “Corrosion behavior of

calcium-magnesium-aluminosilicate (CMAS) on sintered Gd2SiO5 for environmental

barrier coatings”, J. Am. Ceram. Soc., 104 (2021) 3119–3129.

[6] S.H. Kim, B.N. Kim, N. Nagashima, Y. Matsushita, B.K. Jang, “High temperature

corrosion of spark plasma sintered Gd2SiO5 with volcanic ash for environmental barrier

coatings”, Eur. Ceram. Soc., 41 (2021) 3161–3166.

[7] B.K. Jang, S.H. Kim, Craig A.J. Fisher, H.T. Kim, “Effect of isothermal heat treatment on

nanoindentation hardness and Young’s modulus of 4 mol% Y2O3–ZrO2 EB-PVD TBCs”,

Mater. Today Commun., 31 (2022) 103330.

[8] S.H. Kim, E.R. Baek, B.K. Jang, “The effect of vanadium addition on the fracture and

wear resistance of indefinite chilled cast iron”, Mater. Today Commun., 26 (2021) 101819.

[9] S.H. Kim, Y. Matsushita, B.K. Jang, “Corrosion behavior of sintered YSZ with volcanic

ash for thermal barrier coatings”, Mater. Sci. Tech. Jpn, 57 (2020) 228–234.

- 解説

[1] 金 昇炫、松平

恒昭、張 炳國、“耐環境コーティング用自己亀裂治癒セラミック

スの研究開発動向”、材料の科学と工学、59 (2022) 158–161.

192

2. List of international academic conferences

[1] S.H. Kim, and B.K. Jang, “Self-healing behavior of Sc2Si2O7-SiC by surface oxidation

treatment”, KJMST 2022 (Korea-Japan International Symposium on Materials Science

and Technology 2022), Jeju, Republic of Korea, Poster Presentation, 11/09-11 (2022).

[Best Presentation Awards (Poster)]

[2] S.H. Kim, N. Nagashima, Y. Matsushita, and B.K. Jang, “Self-healing behavior of

Sc2Si2O7 with silicon carbide for environmental barrier coatings”, ICACC 2022 (46th

International Conference and Expo on Advanced Ceramics and Composites), Online

Conference, Oral Presentation, 01/23-28 (2022).

[3] S.H. Kim, and B.K. Jang, Reaction between environmental barrier coatings material

Er2Si2O7 and CMAS, 23rd CSS-EEST (23rd Cross Straits Symposium on Energy and

Environmental Science and Technology), Online Conference, Oral Presentation, 12/02-03

(2021).

[4] S.H. Kim, N. Nagashima, Y. Matsushita, C.A.J. Fisher, and B.K. Jang, “High-temperature

corrosion behavior of calcia-magnesia-alumina-silica on Er2Si2O7 for environmental

barrier coatings”, IEICES-2021 (International Exchange and Innovation Conference on

Engineering & Science), Online Conference, Oral Presentation, 10/21-22 (2021).

[5] S.H. Kim, N. Nagashima, Y. Matsushita, and B.K. Jang, “High-temperature corrosion of

sintered Er2Si2O7 with CMAS for environmental barrier coatings”, ICMCTF 2021 (47th

The International Conference on Metallurgical Coatings and Thin Films), Online

Conference, Oral Presentation, 04/26-30 (2021).

[6] S.H. Kim, B.N. Kim, B.K. Jang, “High temperature corrosion of spark plasma sintered

Gd2SiO5 with calcium-magnesium-aluminosilicate (CMAS) and volcanic ash”, ICC8 (8th

International Congress on Ceramics), Online Conference, Oral Presentation, 04/25-30

(2021).

[7] S.H. Kim, N. Nagashima, Y. Matsushita, and B.K. Jang, “Corrosion behavior of Gd2SiO5

by CMAS under isothermal heat treatment for environmental barrier coatings”, ICACC

2021 (45th International Conference and Expo on Advanced Ceramics and Composites),

Online Conference, Oral Presentation, 02/08-11 (2021).

[8] S.H. Kim, N. Nagashima, Y. Matsushita, and B.K. Jang, “High-temperature corrosion of

sintered Gd2SiO5 with CMAS for environmental barrier coatings”, 22nd CSS-EEST (22nd

Cross Straits Symposium on Energy and Environmental Science and Technology), Online

Conference, Oral Presentation, 12/02-03 (2020).

193

3. List of domestic academic conferences

[1]

金 昇炫、長島 伸夫、松下 能孝、張 炳國、“カルシア-マグネシア-アルミナ-シリ

カ(CMAS)に対するガドリニウムモノ及びデシリケ-トの抵抗性”、日本セラミ

ックス協会 第 35 回秋季シンポジウム、徳島大学 常三島キャンパス、09/14-16

(2022)。

[2]

金 昇 炫 、 長 島 伸 夫 、 松 下 能 孝 、 張 炳 國 、“High-Temperature Corrosion of

Gd2Si2O7 with CMAS for Environmental Barrier Coatings”、日本材料科学会、2022

年度学術講演大会、オンライン開催、05/18-19 (2022)。

[3]

金 昇炫、長島 伸夫、松下 能孝、張 炳國、“Interaction of gadolinium disilicate

environmental barrier coatings with calcium-magnesium-aluminosilicate melts”、日本

セラミックス協会 2022 年年会、オンライン開催、03/10-12 (2022)。

[4]

金 昇炫、長島 伸夫、松下 能孝、張 炳國、“表面酸化処理による Sc2Si2O7-SiC の

自己治癒挙動”、日本セラミックス協会 第 34 回秋季シンポジウム、オンライン

開催、09/01-03 (2021)。

[5]

金 昇炫、長島 伸夫、松下 能孝、張 炳國、“High Temperature Corrosion Behavior

of CMAS on Er2Si2O7 for Environmental Barrier Coatings”、日本材料科学会、2021

年度学術講演大会、オンライン開催、05/20-21 (2021)。

[6]

金 昇炫、長島 伸夫、松下 能孝、張 炳國、“High-temperature corrosion behavior of

calcium-magnesium-aluminosilicate (CMAS) on sintered Er2Si2O7 for environmental

barrier coatings”、日本セラミックス協会 2021 年年会、オンライン開催、03/2325 (2021)。

[7]

金 昇炫、長島 伸夫、松下 能孝、張 炳國、“CMAS に曝された環境バリアコーテ

ィング用の Gd2SiO5 焼結体の劣化メカニズム”、日本セラミックス協会九州支部

2020 年度秋季研究発表会、オンライン開催、11/14 (2020)。

[8]

金 昇 炫 、 金 炳 男 、 張 炳 國 、“High temperature corrosion behavior of sintered

Gd2SiO5 and YSZ”、日本セラミック協会 第 33 回秋季シンポジウム、オンライン

開催、09/02-04 (2020)。

[9]

金 昇 炫 、 金 炳 男 、 張 炳 國 、“Effect of high temperature corrosion of sintered

Gd2SiO5 with CMAS and volcanic ash”、日本材料科学会、2020 年度学術講演大会、

オンライン開催、07/16-17 (2020)。[The MSSJ Prize for the Presentation of an

194

Excellent Paper (Oral)]

[10] 金 昇炫、金 炳男、張 炳國、“High Temperature Corrosion of Sintered Gd2SiO5 with

CMAS and Volcanic Ash”、日本セラミック協会 2020 年年会、オンライン開催、

03/18-20 (2020)。

195

Acknowledgements

Above all, I would like to express my sincere gratitude to Prof. Byung-Koog Jang as

supervisor in Kyushu University. During my doctoral course, I was able to obtain valuable

results from Prof. Jang passionate guidance from the stage of actively and effectively planning

an experiment to writing a thesis. In addition, Prof. Jang gave me the opportunity to see and

learn from the research of many researchers around the world through participation in domestic

and international conferences. Prof. Jang was always busy, but when he was guiding the thesis,

he gave passionate guidance until late at night. I would like to thank Prof. Jang for guiding the

latest technology direction, experimental conditions, and originality for the high-temperature

corrosion behavior of EBCs, and for helping me to select additives for self-healing of EBCs

and to derive successful research results. Also, whenever there was a slump during the doctoral

course, Prof. Jang gave me a clear direction for the future and helped me reach my goal as a

doctoral student through character education. As a result, I was able to achieve excellent

research results and graduate with pride.

I would like to thank Prof. Satoshi Hata and Prof. Kengo Shimanoe for their meaningful

comments as thesis committee. The quality of my graduation thesis was able to improve thanks

to Prof. Satoshi Hata and Prof. Kengo Shimanoe generous teaching and detailed coaching on

writing the graduation thesis.

In the national institute for materials science (NIMS) dispatch research, Dr. Osada Toshio

and Dr. Nagashima Nobuo, who are the advisors for the research topic, gave a lot of help to

the successful dispatch research through in-depth discussions for experiments and thesis

writing on my research topic. I would like to thank Dr. Matsushita Yoshitaka for helping to

lead the research topic through a detailed discussion of HT-XRD analysis. Dr. Craig A.J. Fisher

from Japan Fine Ceramics Center (JFCC) learned a lot about drawing conclusions and overall

196

data analysis. In addition, Dr. Matsudaira Tsuneaki from JFCC helped me draw conclusions in

review paper.

In Chikushi campus life, thanks to teacher Ms. Rumiko Ide and Ms. Kyoko Nozoe, I

prepared and practiced school administration and schedule without problems. Also, thanks to

my lab colleagues Ji-Hwoan Lee, Ahrong Jeong. I am deeply grateful for being able to live a

stable life.

I am deeply grateful to my father (Dong-Woan Kim), mother (Hye-Yeon Jo), father-in-law

(Dong-Ryul Seo), and mother-in-law (Young-Soon Kang) for believing in me and supporting

me throughout the doctoral course. And I am always grateful and sorry to my younger sister

(Jae-Won Kim) and wife's brother (Won-Ik Seo) who protected my parents on behalf of me in

Korea. Lastly, I will always love and promise a happy future to my wife (Hwa-Jeong Seo),

who supported me with all of herself during the hardest and most difficult times.

For three years and six months, I was able to endure thanks to the people who have been

here. I will remember and not forget a everything. I will work harder to become a better person

in the future. I sincerely thank everyone for their consideration and kindness. I am very proud

to have graduated from Kyushu University's Chikushi Campus in my life. Lastly, I thank God

for the grace that made all of this possible.

January, 2023

金 昇炫

KIM SEUNG HYEON

197

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る