リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「In、Ga共ドープZnO系酸化物放電プラズマ焼結体の熱電特性評価」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

In、Ga共ドープZnO系酸化物放電プラズマ焼結体の熱電特性評価

ジョン, アロン JEONG, AHRONG 九州大学

2023.03.20

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Characterization and Fabrication of In and Ga
Dual-doped ZnO Thermoelectric Ceramics by Spark
Plasma Sintering
ジョン, アロン

https://hdl.handle.net/2324/6787642
出版情報:Kyushu University, 2022, 博士(工学), 課程博士
バージョン:
権利関係:

(様式3)Form 3



名 : JEONG AHRONG

Name

論 文 名 : Characterization and Fabrication of In and Ga Dual-doped ZnO Thermoelectric
Ceramics by Spark Plasma Sintering
(In、Ga 共ドープ ZnO 系酸化物放電プラズマ焼結体の熱電特性評価)
Title



分 :甲

Category

論 文 内 容 の 要 旨
Thesis Summary
酸化亜鉛(ZnO)系材料は太陽光、圧電、熱電などのエネルギー応用分野で注目されており、ZnO は熱
電材料として大きな Seebeck 係数、無毒性および優れた熱的安定性などの長所を持っている。ZnO は有望な
材料の一つであるが、高い熱伝導度を持つため、熱伝導度の低減によって熱電特性を向上することが重要で
ある。ZnO のような酸化物系熱電材料は、電場を利用した緻密化および短い焼結時間、微細構造の粗大化を
抑制できる放電プラズマ焼結(Spark Plasma Sintering、SPS)によって製造することが可能である。
本研究の目的は In と Ga ドープの ZnO セラミックスの作製、また、2 段階焼結 SPS 法(Two-step SPS、
TS-SPS)の条件を最適化し、熱電特性を向上させることである。ドープ(添加剤)してキャリア濃度を上げ、
導電率を稼ぐことで ZnO の低い固有導電率を増加させており、TS-SPS 法を用い、粒成長を抑制し、フォノ
ン散乱の向上を通じて熱伝導率を減少することによって、無次元性能指数(ZT)を増加させた。
1 章では、本研究の序論として熱電変換の基本原理、研究開発動向、代表的な酸化物系熱電材料および
SPS 法に関する内容を含めている。また、研究の動機と最終目標、各章の研究 目的を簡単に要約した。
第 2 章では、インジウム(In)とガリウム(Ga)がドープされた ZnO セラミックスの作製と結晶構造お
よび微細構造の分析を行い、ドーパントの溶解度を評価し、結晶相と多様な組成の関係を解明した。In の添
加が Ga の溶解度の増加に寄与し、In と Ga を共ドープした結果、In 0.5 at.%、Ga 2 at.%の条件で Ga のドープ
量が高くなり、最高出力因子 0.99 mW K-2 m-1(773℃)が得られた。
第 3 章では In 単独ドープと In と Ga 共ドープの効果を比較するため、それぞれの ZnO セラミックスを作
製した。微細構造および化学的組成を分析した結果、In 単独ドープの ZnO(In ≥ 2 at.%)と In と Ga 共ドー
プの ZnO(In 0.5、Ga ≥ 2 at.%)の条件の場合、Zn7In2O10 および ZnGa2O4 の第二相が形成されることが分か
った。ZnGa2O4 相は導電率を減少させる影響があったため、ZnGa2O4 相が存在していない In と Ga 共ドープ
試料(In 0.5、Ga 0.5 at.%)から比較的に熱電特性が向上した最高出力因子(1.05 mW K-2 m-1)とノンドープ
の ZnO の ZT(0.12)より高い ZT = 0.17(773℃)が得られた(図 1)


第 4 章ではノンドープの ZnO セラミックスを 1 段階また 2 段階放電プラズマ焼結(One/two-step SPS、
OS/TS-SPS)を用いて焼結した。焼結の条件(温度と時間)の組み合わせとして、臨界密度(75%以上の理
論密度)を達成するため、より高い温度(T1)に加熱し、粒成長を抑制しながら緻密化するため、より低い
温度(T2)で長時間焼結を行った。その後、後方散乱電子回折(Electron Backscatter Diffraction:EBSD)を用
いて粒子のサイズを測定した結果、TS-SPS 法で作製した TS-1100-120 試料において 56%(8.1 → 3.6 μm に
減少)の粒成長の抑制を達成した。従って、TS-SPS 法は最高出力因子 7.8×10–5 W K–2 m–1(第 3 章のノンド
ープの ZnO より高い)と ZT = 0.017(775℃)を得ることによって熱電特性の向上に効果的であることが分か
った。

図 1. In 単独ドープの ZnO と In と Ga 共ドープの ZnO の ZT.

第 5 章では TS-SPS 法を熱電特性への向上に寄与させるため、焼結の条件を変化させ、ノンドープ(添加
剤無)の ZnO および In ドープの ZnO セラミックスを作製した。EBSD で観察した粒子のサイズを測定した
結果、OS-SPS 試料に比べて、ノンドープと In ドープの TS-SPS 試料はそれぞれ 14.0%と 21.5%の粒成長が抑
制された(図 2)
。粒子のサイズは 7.8 μm(In ドープ-OS-1150)から 6.1 μm(In ドープ-TS-950)に減少し、In
ドープ-TS-950 試料で最高出力因子 1.0 mW K-2 m-1 と本研究の中で最も高い ZT = 0.19(773℃)を達成した。
出力因子は第 3 章の OS-SPS の In ドープの ZnO より高い値が得られたため、TS-SPS 法が出力因子を改善す
るための有効な手法であることが証明されており、従って、通常の SPS 法より熱電特性の向上を達成できる
新しい焼結法として期待される。

図 2. 逆極点図方位マップ (Inverse pole figure map:IPF マップ).
(a) ノンドープ-OS-1150, (b) ノンドープ-TS-950, (c) In ドープ-OS-1150, (d) In ドープ-TS-950.

本研究の各章の実験結果及び結論は 6 章に要約されている。

この論文で使われている画像

参考文献

[1]

T. Mori, S. Priya, Materials for energy harvesting: At the forefront of a new wave, MRS

Bull. 43 (2018) 176–180.

[2]

L.D. Zhao, B.P. Zhang, J.F. Li, H.L. Zhang, W.S. Liu, Enhanced thermoelectric and

mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering,

Solid State Sci. 10 (2008) 651–658.

[3]

K.H. Lee, S.W. Kim, Design and preparation of high-performance bulk thermoelectric

materials with defect structures, J. Korean Ceram. Soc. 54 (2017) 75–85.

[4]

P.Y. Deng, K.K. Wang, J.Y. Du, H.J. Wu, From dislocation to nano-precipitation:

evolution to low thermal conductivity and high thermoelectric performance in n-Type

PbTe, Adv. Funct. Mater. 30 (2020) 2005479.

[5]

I. Terasaki, R. Okazaki, H. Ohta, Search for non-equilibrium thermoelectrics, Scr. Mater.

111 (2016) 23–28.

[6]

A. Jeong, K. Suekuni, M. Ohtaki, B.K. Jang, Thermoelectric properties of In- and Gadoped spark plasma sintered ZnO ceramics, Ceram. Int. 47 (2021) 23927–23934.

[7]

A. Jeong, M. Ohtaki, B.K. Jang, Thermoelectric performance of In and Ga single/dualdoped ZnO ceramics fabricated by spark plasma sintering, Ceram. Int. 48 (2022)

14414–14423.

[8]

O.K.T. Le, A.T.T. Pham, N.K. Pham, T.H.C. Pham, T.H. Nguyen, D.V. Hoang, H.K.T.

Ta, D.C. Truong, H.T. Lai, T.D.T. Ung, V.C. Tran, T.B. Phan, Compensation of Zn

substitution and secondary phase controls effective mass and weighted mobility in In

and Ga co-doped ZnO material, J. Materiomics 7 (2021) 742–755.

[9]

H. Cheng, X.J. Xu, H.H. Hng, J. Ma, Characterization of Al-doped ZnO thermoelectric

materials prepared by RF plasma powder processing and hot press sintering, Ceram. Int.

35 (2009) 3067–3072.

135

[10]

N.J. Lóh, L. Simão, C.A. Faller, A. De Noni, O.R.K. Montedo, A review of two-step

sintering for ceramics, Ceram. Int. 42 (2016) 12556–12572.

[11]

L. An, A. Ito, T. Goto, Two-step pressure sintering of transparent lutetium oxide by

spark plasma sintering, J. Eur. Ceram. Soc. 31 (2011) 1597–1602.

[12]

M.Y. Chu, L.C. De Jonghe, M.K.F. Lin, F.J.T. Lin, Precoarsening to improve

microstructure and sintering of powder compacts, J. Am. Ceram. Soc. 74 (1991) 2902–

2911.

[13]

B.K. Jang, Y. Sakka, N. Yamaguchi, H. Matsubara, H.T. Kim, Thermal conductivity of

EB-PVD ZrO2-4mol% Y2O3 films using the laser flash method, J. Alloys Compd. 509

(2011) 1045–1049.

[14]

A. Jeong, M. Ohtaki, B.K. Jang, Characterization of ZnO thermoelectric ceramics and

their microstructures consolidated by two-step spark plasma sintering, J. Ceram. Soc.

Jpn. 130 (2022) 889–894.

[15]

L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, Rietveld refinement

guidelines, J. Appl. Crystallogr. 32 (1999) 36–50.

[16]

M. Doube, M.M. Klosowski, I. Arganda-Carreras, F.P. Cordelières, R.P. Dougherty, J.S.

Jackson, B. Schmid, J.R. Hutchinson, S.J. Shefelbine, BoneJ: Free and extensible bone

image analysis in ImageJ, Bone. 47 (2010) 1076–1079.

[17]

S.O. Yurchenko, K.A. Komarov, N.P. Kryuchkov, K.I. Zaytsev, V.V. Brazhkin, Bizarre

behavior of heat capacity in crystals due to interplay between two types of

anharmonicities, J. Chem. Phys. 148 (2018) 134508.

[18]

H.J. Cho, Y. Wu, Y.Q. Zhang, B. Feng, M. Mikami, W. Shin, Y. Ikuhara, Y.M. Sheu, K.

Saito, H. Ohta, Anomalously Low Heat Conduction in Single-Crystal Superlattice

Ceramics Lower Than Randomly Oriented Polycrystals, Adv. Mater. Interfaces 8 (2021)

1–8.

136

[19]

Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J.

Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys.

98 (2005) 041301.

[20]

S.J.L. Kang, Sintering: densification, grain growth, and microstructure, Elsevier

Butterworth-Heinemann (2005) Ch.1, pp. 6–7.

[21]

S. Mirzababaei, S. Pasebani, A review on binder jet additive manufacturing of 316L

stainless steel, J. Manuf. Mater. Process. 3 (2019) 82.

[22]

H. Yoshida, Fundamentals of sintering: ─theory and practice ─ II. densification kinetics,

Mater. Jpn. 58 (2019) 677–683.

[23]

B.N. Kim, T.S. Suzuki, K. Morita, H. Yoshida, J.G. Li, H. Matsubara, Theoretical

analysis of experimental densification kinetics in final sintering stage of nano-sized

zirconia, J. Eur. Ceram. Soc. 39 (2019) 1359–1365.

[24]

B.K. Jang, Microstructure of nano SiC dispersed Al2O3-ZrO2 composites, Mater. Chem.

Phys. 93 (2005) 337–341.

[25]

H.L. Zhuang, J. Pei, B. Cai, J. Dong, H. Hu, F.H. Sun, Y. Pan, G.J. Snyder, J.F. Li,

Thermoelectric performance enhancement in BiSbTe alloy by microstructure

modulation via cyclic spark plasma sintering with liquid phase, Adv. Funct. Mater. 31

(2021) 1–11.

[26]

M. Mazaheri, A.M. Zahedi, S.K. Sadrnezhaad, Two-step sintering of nanocrystalline

ZnO compacts: Effect of temperature on densification and grain growth, J. Am. Ceram.

Soc. 91 (2008) 56–63.

[27]

Z.R. Hesabi, M. Haghighatzadeh, M. Mazaheri, D. Galusek, S.K. Sadrnezhaad,

Suppression of grain growth in sub-micrometer alumina via two-step sintering method,

J. Eur. Ceram. Soc. 29 (2009) 1371–1377.

[28]

U. Czubayko, V.G. Sursaeva, G. Gottstein, L.S. Shvindlerman, Influence of triple

137

junctions on grain boundary motion, Acta Mater. 46 (1998) 5863–5871.

[29]

J. Androulakis, I. Todorov, D.Y. Chung, S. Ballikaya, G. Wang, C. Uher, M. Kanatzidis,

Thermoelectric enhancement in PbTe with K or Na codoping from tuning the

interaction of the light- and heavy-hole valence bands, Phys. Rev. B. 82 (2010) 115209.

[30]

R.V.R. Virtudazo, B. Srinivasan, Q. Guo, R. Wu, T. Takei, Y. Shimasaki, H. Wada, K.

Kuroda, S. Bernik, T. Mori, Improvement in the thermoelectric properties of porous

networked Al-doped ZnO nanostructured materials synthesized via an alternative

interfacial reaction and low-pressure SPS processing, Inorg. Chem. Front. 7 (2020)

4118–4132.

[31]

E. Guilmeau, P. Díaz-Chao, O.I. Lebedev, A. Rečnik, M.C. Schäfer, F. Delorme, F.

Giovannelli, M. Košir, S. Bernik, Inversion boundaries and phonon scattering in

Ga:ZnO thermoelectric compounds, Inorg. Chem. 56 (2017) 480–487.

138

Chapter 6. Conclusions

Advanced TE materials with excellent performance in various applications have been

constantly developed due to rapidly developing TE science and technology. It is found that

effective ZnO dopants can achieve higher electrical conductivity and lower thermal

conductivity. Therefore, the first objective is to investigate TE parameters such as electrical

conductivity, Seebeck coefficient, thermal conductivity, and ZT for the ZnO TE materials

before and after doping, and their relation with these parameters changing. The final objective

is to apply the new TS-SPS processes with achieving a critical density of > 75% theoretical

density at the first heating step and densification while preventing grain-growth at the second

heating step to improve PF, strongly suggesting that the carrier doping to TS-SPS ZnO

achieves much higher PF and, therefore, higher ZT values. The following are outlined

conclusions of each chapter.

Chapter 2. Thermoelectric Properties of In- and Ga-doped Spark Plasma Sintered ZnO

Ceramics

In- and Ga-doped consolidated ZnO, [Zn(1−x−y)GaxIny]O, ceramics were fabricated via SPS,

and the solubility of dopants and the correlation between crystal structure and various

compositions on the TE properties were investigated. Crystal structure and microstructural

analyses indicated the presence of a spinel secondary phase (ZnGa2O4) with a high relative

density, and ZnGa2O4 disappeared as In increased from y = 0 to 0.005. It can be concluded that

the addition of In contributed to the increase in the solubility of Ga because doping with In and

Ga (x = 0.02; y = 0.005) enabled higher doping of Ga. Consequently, doping with In and Ga

could achieve the highest PF of 0.99 mW K−2 m−1 at 773°C, and reduce the thermal

conductivity, attaining ZT = 0.003–0.015 from 67 to 257°C.

139

Chapter 3. Thermoelectric Performance of In and Ga Single/Dual-doped ZnO Ceramics

Fabricated by SPS

For the comparison of In single, and In and Ga dual doping effect on ZnO, the sintered

bodies of In single-doped, and In and Ga dual-doped ZnO ceramics were consolidated via

SPS. The microstructural and chemical composition analyses indicated that the secondary

phases of Zn7In2O10 and ZnGa2O4 existed in the single/dual doped ZnO. Through the TE

characterization, it was revealed that the segregation of ZnGa2O4 phase affected to decrease

electrical conductivity. Although the presence of secondary phases, the highest PF and the

lowest thermal conductivity were achieved for dual-doped ZnO. Hence, the substitution of Zn

by In and Ga is a promising approach to increase the values of PF of ZnO by tuning its carrier

concentration. Therefore, the In and Ga dual doping of ZnO was beneficial in improving its TE

performance.

Chapter 4. Characterization of ZnO Thermoelectric Ceramics and Their Microstructures

Consolidated by Two-Step Spark Plasma Sintering

To investigate the effect of control of grain sizes on TE properties, the density, grain size,

and TE performance of pure ZnO ceramics were studied by applying OS/TS-SPS processes

with temperature profiles. High relative densities of 91.4–94.9% were achieved except for OS1150 (85.6%). The TS-SPS process thus proved a significant advantage for increasing the

relative density. Moreover, a noticeable suppression of grain-growth (56%, reduced from 8.1

to 3.6 μm) for the TS-1100-120 sample proved the effect of fine-grained microstructures. The

value of PF, 7.8 × 10–5 W K−2 m−1 at 775°C (TS-1100-120) was higher than that of the OSSPS pure ZnO sample in chapter 3, indicating that the TS-SPS process is effective to improve

PF.

140

Chapter 5. Effects of Two-Step Spark Plasma Sintering on the Microstructures and

Thermoelectric Properties of Pure/In-doped ZnO

Pure and In-doped ZnO ceramics were successfully prepared by SPS with OS/TS

temperature profiles to optimize the TS-SPS process. High relative densities of 94.6–98.3%

were achieved without significant grain-growth. It was revealed that a noticeable suppression

of grain-growth (21.8%, reduced from 7.8 to 6.1 μm) in OS-SPS and TS-SPS samples with T1

= 1150°C and T2 = 950°C. The highest PF, 1.0 mW K−2 m−1, was achieved for the TS-SPS

sample, attaining an increased ZT (55.2%, from 0.125 to 0.194 compared with I-OS-1150) at

773°C. The ZT value was the highest value of In and Ga dual-doped ZnO in this thesis, proving

that the TS-SPS process is an effective strategy for improving PF, strongly suggesting that the

carrier doping to TS-SPS ZnO achieves much higher PF and, therefore, higher ZT values.

The main challenge was to improve the TE performance of In and Ga dual-doped ZnO.

Although the optimization of doping with In and Ga in ZnO was successfully conducted, the

reduction of thermal conductivity could not be significantly improved. As an alternative to the

fine-grained microstructure, TS-SPS processes were applied to non-doped and In-doped ZnO

for the first time. Through the temperature profiles, the TS-SPS process was divided into two

kinds of steps to achieve a high critical density and densification while preventing grain-growth

at the first and second heating steps, respectively. As a result, it was possible to achieve the

fine-grained microstructure that a noticeable suppression of grain-growth (21.8%, compared

with In-doped OS-SPS) with a relative density of 96%.

The meaningful enhancement of the ZnO TE ceramics in TE properties was achieved by

doping and applying the TS-SPS process. Consequently, it is expected that the new TS-SPS

strategy can provide a new opportunity for significant contribution to ZnO-based TE materials.

141

Research Achievements

1. List of published papers

[1] A. Jeong and B.K. Jang, “Effects of two-step spark plasma sintering on the microstructures

and thermoelectric properties of Pure/In-doped ZnO”, Materials Science and Technology

of Japan, 59 (2022) 33–39.

[2] A. Jeong, M. Ohtaki, and B.K. Jang, “Characterization of ZnO thermoelectric ceramics

and their microstructures consolidated by two-step spark plasma sintering”, Journal of the

Ceramic Society of Japan, 130 (2022) 889–894.

[3] A. Jeong, M. Ohtaki, and B.K. Jang, “Thermoelectric performance of In and Ga

single/dual-doped ZnO ceramics fabricated by spark plasma sintering”, Ceramics

International, 48 (2022) 14414–14423.

[4] A. Jeong, K. Suekuni, M. Ohtaki, and B.K. Jang, “Thermoelectric properties of In- and

Ga-doped spark plasma sintered ZnO ceramics”, Ceramics International, 47 (2021)

23927–23934.

- 解説

[1] ジョン アロン, 大瀧 倫卓, 張 炳國, “酸化物系熱電材料の研究開発動向”, 材料

の科学と工学, 58 (2021) 18–21.

142

2. List of international academic conferences

[1] A. Jeong, M. Ohtaki, and B.K. Jang, “Effect of Doping with Indium and Gallium on

Thermoelectric Properties in Zinc Oxide”, at the ICACC 2022 (The 46th International

Conference and Exposition on Advanced Ceramics Composites), Online conference,

01/23-28 (2022).

[2] A. Jeong and B.K. Jang, “Thermoelectric Performance of ZnO Ceramics Co-doped with

Ga and In Fabricated by Spark Plasma Sintering”, at the 23rd CSS-EEST (Cross Straits

Symposium on Energy and Environmental Science and Technology), Online conference,

12/02-03 (2021).

[3] A. Jeong and B.K. Jang, “Thermoelectric Properties and Microstructure of In- and Gadoped ZnO fabricated by Spark Plasma Sintering”, at the IEICES-2021 (International

Exchange and Innovation Conference on Engineering & Science), Online conference,

10/21-22 (2021).

3. List of domestic academic conferences

[1] ジョン アロン, 大瀧 倫卓, 張 炳國, “Thermoelectric Characterization of In and Ga

Single/Dual-doped ZnO Consolidated by Spark Plasma Sintering”, 日本熱電学会学術

講演会 (TSJ2022), アオーレ長岡, 長岡, 08/08-10 (2022).

[2] ジョン アロン, 大瀧 倫卓, 張 炳國, “Synthesis and Thermoelectric Characterization

of In and Ga co-doped ZnO by Spark Plasma Sintering”, 日本材料科学会, 2022 年度学

術講演大会, オンライン開催, 05/18-19 (2022).

[3] ジョン アロン, 大瀧 倫卓, 張 炳國, “Microstructure and Thermoelectric Properties

of In- and Ga-doped ZnO consolidated by Spark Plasma Sintering”, 日本セラミックス

協会 2022 年年会, オンライン開催, 03/10-12 (2022).

[4] ジョン アロン, 末國 晃一郎, 大瀧 倫卓, 張 炳國, “Effect of Doping Concentration

on the Thermoelectric Properties of In and Ga doped ZnO by Spark Plasma Sintering”, 日

本材料科学会, 2021 年度学術講演大会, オンライン開催, 05/20-21 (2021).

[5] ジョン アロン, 末國 晃一郎, 大瀧 倫卓, 張 炳國, “Thermoelectric Performance of

In and Ga Co-doped ZnO Fabricated by Spark Plasma Sintering”, 日本セラミックス協

会 2021 年年会, オンライン開催, 03/23-25 (2021).

143

Acknowledgments

I would like to appreciate my esteemed supervisor Prof. Byung-Koog Jang for his

invaluable supervision, full support, effort in research, and guidance of daily during the

doctoral course at Kyushu University. During the short term of two and a half years for the Ph.

D. course, he made me grow up through his outstanding guidance on the way how to set up

originality, research direction, experimental procedures, and methods of solving problems for

thermoelectric research. He gave me a roadmap on the TS-SPS process with doping on

thermoelectric materials. Based on the guidance, I learned how to be a self-directed learner and

to prepare academic papers professionally as the most important task so I would like to show

respect to Prof. Jang. His continuous supervision with plentiful experience has encouraged me

in all the time of my academic research. The guidance of my professor that I had never received

anywhere else, and it was by far the best. I have been extremely lucky to have a supervisor who

cared so much about my research. Consequently, I have achieved significant research

achievements, leading to a post-doctoral fellowship.

I am extremely grateful to Prof. Michitaka Ohtaki and Prof. Koichiro Suekuni for their

immense knowledge, experimental support, and academic discussion regarding thermoelectric

materials. I would like to express my gratitude to Prof. Michitaka Ohtaki, Prof. Koichiro

Suekuni, Prof. Ken Watanabe, and Prof. Koji Miyazaki for their informative comments and

guidance as the thesis committee, and Prof. Kiichi Hamamoto for dealing with the process of

the early graduation although their schedule is quite tight.

I would like to express appreciation to Prof. Kyuhyoung Lee during the research on the

preparation of sheet Al-doped ZnO by hydrothermal synthesis at Yonsei University. He helped

me to plan my research theme and gave me valuable discussion as a supervisor. Also, I am

grateful to Prof. Hiromichi Ohta during the research on thermoelectric performance of the

144

epitaxial thin films of In and Ga dual-doped ZnO at Hokkaido University. Thanks to the

opportunities, I learned a lot in the thermoelectric research field at different universities.

Moreover, I am tremendously appreciative of the sincere advice and mentorship of Prof. Jondo

Yun and Prof. Si-Young Choi and their encouragement helped me to endure a rough time

abroad.

On campus, I would like to thank Ms. Rumiko Ide and Ms. Kyoko Nozoe, staff of the

major office for their help with administrative processes without any problems during the Ph.D.

course. Also, my appreciation also goes out to our lab mates Ji-Hwoan Lee and Seung-Hyeon

Kim for team spirit. I could not have done it without our lab members. Particularly, I am really

grateful to my friends, Seungwon Lee, Kayoung Park, Hyungrok Jo, Taeyoung Kim, Kwangsu

Kim, Shoya Iwanami, Junyoung Heo, Katsuaki Hashikuni, Nhat Quang Minh Tran, Maneeyom

Sasikan, and Yuki Miwa. Thanks for having my back and helping for the research. My gratitude

extends to Rotary Yoneyama Memorial Foundation and Mr. Takayuki Yamada for the

scholarship opportunity to undertake my studies at Kyushu University.

First and foremost, I must express my very profound gratitude to my beloved parents for

their wholehearted support throughout my years of study, especially Ph. D. course. My parents

always suggested to me that I should do what I hope to do and achieve it without regret. I will

never forget their devoted care and trust. This accomplishment would not have been possible

without them. Thank you for always believing in me. I will remember forever what you have

guided me.

Finally, I am convinced that the valuable research and academic activities will be my

biggest asset during two and a half years on Chikushi Campus at Kyushu University. Thank

you for your goodness in my life.

January, 2023

ジョン

アロン

JEONG AHRONG

145

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る