リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Search for Supersymmetric Partners of the Top Quark with Leptonic Signatures」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Search for Supersymmetric Partners of the Top Quark with Leptonic Signatures

山﨑, 友寛 東京大学 DOI:10.15083/0002006236

2023.03.24

概要

論文審査の結果の要旨
氏名

山﨑

友寛

本論文は11章からなる。第1章はイントロダクションであり、本論文の主題である超対称性粒子
の探索、特にトップクォークの対となる超対称性粒子を探索する意義、および、本論文の構成が述べ
られている。第2章は、これまで実験によって検証されてきた素粒子の標準模型と、その問題点や残
された謎、そして、これら説明する有力候補である超対称性理論および、そこで予言される超対称性
粒子の持つ性質などが述べられている。第3章は、本論文で用いるデータを取得した実験について、
加速器や検出器などが述べられている。第4章は、本論文で用いたデータについて、その取得条件や
時期、その統計量などが説明されている。また、解析時、超対称性粒子が存在した場合に予想される
分布や、標準模型から予想される背景事象などの分布を生成するために用いるモンテカルロシミュレ
ーションプログラムについて述べられている。第5章は、検出器から得られたデータから粒子の飛跡
や生成点、粒子の種別、運動量を再構成する手法について述べられている。本章中では、本論文のデ
ータ解析で重要となるbクォークの同定方法について、観測される事象の特徴、ならびに ATLAS 実験
で標準的に用いられている識別方法も本節で説明されている。第6章では、本論文の主題であるトッ
プクォークの超対称性パートナー(stop)探索の戦略が述べられている。本論文では stop の崩壊から
生成した粒子の観測することで探索する。higgsino(ヒッグス粒子の超対称性パートナー)様粒子が
最も軽い超対称性粒子(LSP)であった場合を仮定、stop と higgsino の質量差が大きい場合と小さい場合
について探索している。stop の崩壊には複数の可能性があるため、どのような崩壊過程を仮定して解
析を行ったか、また、その仮定の正当性などが述べられている。また、これらの崩壊過程を探索する
場合に、標準模型から予測される背景事象についても述べられている。その後、事象探索において用
いるパラメータについて、解析において用いた背景事象数の推定方法、解析において考慮した系統誤
差、事象探索時のデータの統計的な取り扱い方法が述べられている。さらに本章の最後では、これま
での探索結果が述べられている。第7章では、stop と higgsino の質量差が大きい場合について、探索
している。この場合 stop の崩壊は単純化した模型で取り扱うことができる。予想される信号事象の
探索条件や背景事象評価を述べている。結果、有意な事象数超過はなく stop が最大で 800~900GeV の
領域までの可能性を排除した。第8章では、第9章の解析で用いる、運動量の小さい b-quark の同定
手法とその性能評価結果が述べられている。本同定手法は、本研究のために著者により新たに開発さ
れたものである。第9章では、stop と higgsino の質量差が小さい場合について探索している。第7章
と同様、データ解析の詳細が述べられている。やはり有意な事象数超過はなく、stop 質量は最大
600GeV 程度の領域まで可能性が排除された。第10章では、本解析の結果のまとめ、および、暗黒
物質の観測から与えられる超対称性粒子の質量に対する制限との関連性が述べられている。第11章
では、有意な事象数超過がなかったこと、そこから得られた質量の排除領域がまとめられている。
本論文に用いられた一部の解析手法は、ATLAS 実験で開発されたものが用いられているが、本論文
で最も重要な事象選択や系統誤差評価、また小運動量の b-quark 探索手法など、主要な解析手法の開
発は論文提出者が行っている。
したがって、博士(理学)の学位を授与できると認める。

この論文で使われている画像

参考文献

[1] ATLAS Collaboration, Search for top-squark pair production in final states with one

lepton, jets, and missing transverse momentum using 36 fb−1 of s = 13 TeV pp

collision data with the ATLAS detector, JHEP 06 (2018) 108, arXiv:1711.11520

[hep-ex].

[2] ATLAS Collaboration, Soft b-hadron tagging for compressed SUSY scenarios,

ATLAS-CONF-2019-027, 2019, https://cds.cern.ch/record/2682131.

[3] ATLAS Collaboration, Search for new phenomena with top quark pairs in final

states with one lepton, jets, and missing transverse momentum in pp collisions at

s = 13 TeV with the ATLAS detector, ATLAS-CONF-2020-003, 2020,

https://cds.cern.ch/record/2711489.

[4] T. Yamazaki, Aging studies on Micromegas detectors for the LHC-ATLAS upgrade,

https://www.icepp.s.u-tokyo.ac.jp/download/master/m2015_yamazaki.pdf,

2016.

[5] S. L. Glashow, Partial-symmetries of weak interactions, Nuclear Physics 22 (1961)

579 – 588.

[6] A. Salam, Weak and electromagnetic interactions, Elementary Particle Theory:

Relativistic Groups and Analyticity, in Proceedings of the Eighth Nobel Symposium,

Almquist & Wiksell, vol. 367. 1968.

[7] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264–1266.

[8] G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields,

Nuclear Physics B 44 (1972) 189 – 213.

[9] ATLAS Collaboration, Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012)

1, arXiv:1207.7214 [hep-ex].

145

[10] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30, arXiv:1207.7235 [hep-ex].

[11] G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. Bennett, J. Dunkley,

M. Nolta, M. Halpern, R. Hill, N. Odegard, et al., Nine-year Wilkinson Microwave

Anisotropy Probe (WMAP) observations: cosmological parameter results, The

Astrophysical Journal Supplement Series 208 (2013) 19.

[12] Planck Collaboration, Y. Akrami et al., Planck 2018 results. I. Overview and the

cosmological legacy of Planck, arXiv:1807.06205 [astro-ph.CO].

[13] V. Trimble, Existence and Nature of Dark Matter in the Universe, Annual Review of

Astronomy and Astrophysics 25 (1987) 425–472.

[14] G. Bertoni et al., Particle dark matter: evidence, candidates and constraints

FERMILAB-Pub-04/047-A, Physics Reports 405 (2005) 279 – 390.

[15] J. L. Feng, Dark matter candidates from particle physics and methods of detection,

Annual Review of Astronomy and Astrophysics 48 (2010) 495–545.

[16] Y. Fukuda, T. Hayakawa, E. Ichihara, K. Inoue, K. Ishihara, H. Ishino, Y. Itow,

T. Kajita, J. Kameda, S. Kasuga, et al., Evidence for oscillation of atmospheric

neutrinos, Physical Review Letters 81 (1998) 1562.

[17] Q. R. Ahmad, R. Allen, T. Andersen, J. Anglin, G. B¨

uhler, J. Barton, E. Beier,

M. Bercovitch, J. Bigu, S. Biller, et al., Measurement of the Rate of

νe + d → p + p + e− Interactions Produced by 8 B Solar Neutrinos at the Sudbury

Neutrino Observatory, Physical Review Letters 87 (2001) 071301.

[18] Q. R. Ahmad, R. Allen, T. Andersen, J. Anglin, J. Barton, E. Beier, M. Bercovitch,

J. Bigu, S. Biller, R. Black, et al., Direct evidence for neutrino flavor transformation

from neutral-current interactions in the Sudbury Neutrino Observatory, Physical

review letters 89 (2002) 011301.

[19] Y. Golfand and E. Likhtman, Extension of the Algebra of Poincare Group

Generators and Violation of P Invariance, JETP Lett. 13 (1971) 323.

[20] D. Volkov and V. Akulov, Is the neutrino a goldstone particle?, Phys. Lett. B 46

(1973) 109.

[21] J. Wess and B. Zumino, Supergauge transformations in four dimensions, Nucl. Phys.

B 70 (1974) 39.

146

[22] J. Wess and B. Zumino, Supergauge invariant extension of quantum electrodynamics,

Nucl. Phys. B 78 (1974) 1.

[23] S. Ferrara and B. Zumino, Supergauge invariant Yang-Mills theories, Nucl. Phys. B

79 (1974) 413.

[24] A. Salam and J. Strathdee, Super-symmetry and non-Abelian gauges, Phys. Lett. B

51 (1974) 353.

[25] S. P. Martin, A Supersymmetry Primer, Adv. Ser. Direct. High Energy Phys. 18

(1998) 1, arXiv:hep-ph/9709356.

[26] N. Sakai, Naturalness in supersymmetric GUTS, Z. Phys. C 11 (1981) 153.

[27] S. Dimopoulos, S. Raby, and F. Wilczek, Supersymmetry and the scale of

unification, Phys. Rev. D 24 (1981) 1681.

[28] L. E. Ib´

an

˜ez and G. G. Ross, Low-energy predictions in supersymmetric grand

unified theories, Phys. Lett. B 105 (1981) 439.

[29] S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys.

B 193 (1981) 150.

[30] R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl.

Phys. B 306 (1988) 63.

[31] B. de Carlos and J. Casas, One-loop analysis of the electroweak breaking in

supersymmetric models and the fine-tuning problem, Phys. Lett. B 309 (1993) 320,

arXiv:hep-ph/9303291.

[32] K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Aspects of Grand Unified

Models with Softly Broken Supersymmetry, Prog. Theor. Phys. 68 (1982) 927.

[33] J. R. Ellis and S. Rudaz, Search for supersymmetry in toponium decays, Phys. Lett.

B 128 (1983) 248.

[34] J. Alwall, M.-P. Le, M. Lisanti, and J. G. Wacker, Searching for directly decaying

gluinos at the Tevatron, Phys. Lett. B 666 (2008) 34, arXiv:0803.0019 [hep-ph].

[35] J. Alwall, P. Schuster, and N. Toro, Simplified models for a first characterization of

new physics at the LHC, Phys. Rev. D 79 (2009) 075020, arXiv:0810.3921

[hep-ph].

147

[36] D. Alves et al., Simplified models for LHC new physics searches, J. Phys. G 39

(2012) 105005, arXiv:1105.2838 [hep-ph].

[37] Particle Data Group Collaboration, P. D. Group, Review of Particle Physics, Phys.

Rev. D 98 (2018) 030001.

[38] E. Corbelli and P. Salucci, The extended rotation curve and the dark matter halo of

M33, Monthly Notices of the Royal Astronomical Society 311 (2000) 441–447.

[39] NASA, Bullet Cluster 1E 0657-56,

https://apod.nasa.gov/apod/image/1701/bulletcluster_comp_2048.jpg.

[40] P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions, Phys.

Lett. B 64 (1976) 159.

[41] P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic

and Strong Interactions, Phys. Lett. B 69 (1977) 489.

[42] P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for

the Electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104.

[43] G. R. Farrar and P. Fayet, Phenomenology of the production, decay, and detection of

new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575.

[44] A. H. Chamseddine, R. L. Arnowitt, and P. Nath, Locally Supersymmetric Grand

Unification, Phys. Rev. Lett. 49 (1982) 970.

[45] R. Barbieri, S. Ferrara, and C. A. Savoy, Gauge Models with Spontaneously Broken

Local Supersymmetry, Phys. Lett. B 119 (1982) 343.

[46] G. L. Kane, C. F. Kolda, L. Roszkowski, and J. D. Wells, Study of constrained

minimal supersymmetry, Phys. Rev. D 49 (1994) 6173, arXiv:hep-ph/9312272.

[47] M. Dine and W. Fischler, A Phenomenological Model of Particle Physics Based on

Supersymmetry, Phys. Lett. B 110 (1982) 227.

[48] L. Alvarez-Gaume, M. Claudson, and M. B. Wise, Low-Energy Supersymmetry,

Nucl. Phys. B 207 (1982) 96.

[49] C. R. Nappi and B. A. Ovrut, Supersymmetric Extension of the SU(3) x SU(2) x

U(1) Model, Phys. Lett. B 113 (1982) 175.

[50] L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys.

B557 (1999) 79–118, arXiv:hep-th/9810155 [hep-th].

148

[51] G. F. Giudice, M. A. Luty, H. Murayama, and R. Rattazzi, Gaugino mass without

singlets, JHEP 12 (1998) 027, arXiv:hep-ph/9810442 [hep-ph].

[52] M. Papucci, J. T. Ruderman, and A. Weiler, Natural SUSY Endures, JHEP 09

(2012) 035, arXiv:1110.6926 [hep-ph].

[53] R. Kitano and Y. Nomura, Supersymmetry, naturalness, and signatures at the LHC,

Phys. Rev. D73 (2006) 095004, arXiv:hep-ph/0602096 [hep-ph].

[54] A. Djouadi, J.-L. Kneur, and G. Moultaka, SuSpect: A Fortran code for the

supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun.

176 (2007) 426–455, arXiv:hep-ph/0211331 [hep-ph].

[55] S. Heinemeyer, W. Hollik, and G. Weiglein, FeynHiggs: A Program for the

calculation of the masses of the neutral CP even Higgs bosons in the MSSM,

Comput. Phys. Commun. 124 (2000) 76–89, arXiv:hep-ph/9812320 [hep-ph].

[56] L. J. Hall, D. Pinner, and J. T. Ruderman, A Natural SUSY Higgs Near 126 GeV,

JHEP 04 (2012) 131, arXiv:1112.2703 [hep-ph].

[57] F. Marcastel, CERN’s Accelerator Complex. La chaˆıne des acc´el´erateurs du CERN,

https://cds.cern.ch/record/1621583, General Photo.

[58] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron

Collider, JINST 3 (2008) S08003.

[59] The ATLAS TRT collaboration, The ATLAS Transition Radiation Tracker (TRT)

proportional drift tube: design and performance, Journal of Instrumentation 3 (2008)

P02013–P02013.

[60] ATLAS Collaboration, ATLAS Muon Spectrometer: Technical Design Report,

Atlas-tdr-10, 1997, https://cds.cern.ch/record/331068.

[61] G. Avoni et al., The new LUCID-2 detector for luminosity measurement and

monitoring in ATLAS, JINST 13 (2018) P07017.

[62] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur.

Phys. J. C 77 (2017) 317, arXiv:1611.09661 [hep-ex].

[63] ATLAS Collaboration, Luminosity determination in pp collisions at

s = 13 TeV

using the ATLAS detector at the LHC, ATLAS-CONF-2019-021, 2019,

https://cds.cern.ch/record/2677054.

149

[64] S. van der Meer, Calibration of the effective beam height in the ISR, Tech. Rep.

CERN-ISR-PO-68-31. ISR-PO-68-31, CERN, Geneva, 1968.

https://cds.cern.ch/record/296752.

[65] P. Grafstr¨

om and W. Kozanecki, Luminosity determination at proton colliders,

Prog. Part. Nucl. Phys. 81 (2015) 97–148.

[66] C. Barschel, Precision luminosity measurement at LHCb with beam-gas imaging,

2014. https://cds.cern.ch/record/1693671.

[67] A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept.

504 (2011) 145–233, arXiv:1101.2599 [hep-ph].

[68] NNPDF Collaboration, R. D. Ball et al., Parton distributions from high-precision

collider data, Eur. Phys. J. C77 (2017) 663, arXiv:1706.00428 [hep-ph].

[69] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, and

J. Winter, Event generation with SHERPA 1.1, JHEP 02 (2009) 007,

arXiv:0811.4622 [hep-ph].

[70] T. Sj¨

ostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics and Manual,

JHEP 05 (2006) 026, arXiv:hep-ph/0603175.

[71] T. Sj¨

ostrand, S. Mrenna, and P. Z. Skands, A Brief Introduction to PYTHIA 8.1,

Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820 [hep-ph].

[72] S. Catani, L. Cieri, G. Ferrera, D. de Florian, and M. Grazzini, Vector boson

production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys.

Rev. Lett. 103 (2009) 082001, arXiv:0903.2120 [hep-ph].

[73] S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour

dipole factorisation, JHEP 03 (2008) 038, arXiv:0709.1027 [hep-ph].

[74] T. Gleisberg and S. H¨

oche, Comix, a new matrix element generator, JHEP 12

(2008) 039, arXiv:0808.3674 [hep-ph].

[75] F. Cascioli, P. Maierhofer, and S. Pozzorini, Scattering Amplitudes with Open Loops,

Phys. Rev. Lett. 108 (2012) 111601, arXiv:1111.5206 [hep-ph].

[76] S. H¨

oche, F. Krauss, M. Sch¨

onherr, and F. Siegert, QCD matrix elements + parton

showers: The NLO case, JHEP 04 (2013) 027, arXiv:1207.5030 [hep-ph].

150

[77] P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk, Automatic spin-entangled

decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015,

arXiv:1212.3460 [hep-ph].

[78] P. Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev. D

82 (2010) 074018, arXiv:1005.3457 [hep-ph].

[79] ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data,

ATL-PHYS-PUB-2014-021, 2014, https://cds.cern.ch/record/1966419.

[80] GEANT4 Collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl.

Instrum. Meth. A 506 (2003) 250.

[81] ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70

(2010) 823, arXiv:1005.4568 [physics.ins-det].

[82] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing

NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06

(2010) 043, arXiv:1002.2581 [hep-ph].

[83] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C. P. Yuan,

New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024,

arXiv:1007.2241 [hep-ph].

[84] M. Czakon, P. Fiedler, and A. Mitov, Total Top-Quark Pair-Production Cross

Section at Hadron Colliders Through O(αS4 ), Phys. Rev. Lett. 110 (2013) 252004,

arXiv:1303.6254 [hep-ph].

[85] M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron

colliders: the quark-gluon reaction, JHEP 01 (2013) 080, arXiv:1210.6832

[hep-ph].

[86] M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron

colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054,

arXiv:1207.0236 [hep-ph].

[87] P. B¨

arnreuther, M. Czakon, and A. Mitov, Percent Level Precision Physics at the

Tevatron: First Genuine NNLO QCD Corrections to q q¯ → tt¯ + X, Phys. Rev. Lett.

109 (2012) 132001, arXiv:1204.5201 [hep-ph].

151

[88] M. Cacciari, M. Czakon, M. Mangano, A. Mitov, and P. Nason, Top-pair production

at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation,

Phys. Lett. B 710 (2012) 612, arXiv:1111.5869 [hep-ph].

[89] M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair

Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930,

arXiv:1112.5675 [hep-ph].

[90] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for

t-channel single top quark production, Phys. Rev. D 83 (2011) 091503,

arXiv:1103.2792 [hep-ph].

[91] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated

production with a W- or H-, Phys. Rev. D 82 (2010) 054018, arXiv:1005.4451

[hep-ph].

[92] N. Kidonakis, NNLL resummation for s-channel single top quark production, Phys.

Rev. D 81 (2010) 054028, arXiv:1001.5034 [hep-ph].

[93] NNPDF Collaboration, R. D. Ball et al., Parton distributions for the LHC Run II,

JHEP 04 (2015) 040, arXiv:1410.8849 [hep-ph].

[94] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244,

arXiv:1207.1303 [hep-ph].

[95] C. Borschensky, M. Kr¨

amer, A. Kulesza, M. Mangano, S. Padhi, T. Plehn, and

X. Portell, Squark and gluino production cross sections in pp collisions at

s = 13, 14, 33 and 100 TeV, Eur. Phys. J. C 74 (2014) 3174, arXiv:1407.5066

[hep-ph].

[96] M. Beneke, M. Czakon, P. Falgari, A. Mitov, and C. Schwinn, Threshold expansion

¯ + X cross section at O(α4 ), Phys. Lett. B 690 (2010) 483,

of the gg(q q¯) → QQ

arXiv:0911.5166 [hep-ph].

[97] W. Beenakker, C. Borschensky, M. Kr¨amer, A. Kulesza, and E. Laenen, NNLL-fast:

predictions for coloured supersymmetric particle production at the LHC with

threshold and Coulomb resummation, JHEP 12 (2016) 133, arXiv:1607.07741

[hep-ph].

[98] ATLAS Collaboration, Performance of the ATLAS track reconstruction algorithms

in dense environments in LHC Run 2, Eur. Phys. J. C 77 (2017) 673,

arXiv:1704.07983 [hep-ex].

152

[99] R. E. Kalman, A new approach to linear filtering and prediction problems, 1960.

[100] R. Fr¨

uhwirth, Application of Kalman filtering to track and vertex fitting, Nuclear

Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment 262 (1987) 444–450.

[101] ATLAS Collaboration, Reconstruction of primary vertices at the ATLAS experiment

in Run 1 proton–proton collisions at the LHC, Eur. Phys. J. C 77 (2017) 332,

arXiv:1611.10235 [hep-ex].

[102] ATLAS Collaboration, Vertex Reconstruction Performance of the ATLAS Detector

at s = 13 TeV, ATL-PHYS-PUB-2015-026, 2015,

https://cds.cern.ch/record/2037717.

[103] W. Waltenberger, R. Fr¨

uhwirth, and P. Vanlaer, Adaptive vertex fitting, Journal of

Physics G: Nuclear and Particle Physics 34 (2007) N343–N356,

https://doi.org/10.1088%2F0954-3899%2F34%2F12%2Fn01.

[104] ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its

performance in LHC Run 1, Eur. Phys. J. C 77 (2017) 490, arXiv:1603.02934

[hep-ex].

[105] ATLAS Collaboration, Jet energy measurement with the ATLAS detector in

proton–proton collisions at s = 7 TeV, Eur. Phys. J. C 73 (2013) 2304,

arXiv:1112.6426 [hep-ex].

[106] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm, JHEP

04 (2008) 063, arXiv:0802.1189 [hep-ph].

[107] M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72

(2012) 1896, arXiv:1111.6097 [hep-ph].

[108] ATLAS Collaboration, Jet energy scale measurements and their systematic

uncertainties in proton–proton collisions at s = 13 TeV with the ATLAS detector,

Phys. Rev. D 96 (2017) 072002, arXiv:1703.09665 [hep-ex].

[109] ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp

collisions at s = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581,

arXiv:1510.03823 [hep-ex].

153

[110] A. Collaboration, Determination of jet calibration and energy resolution in

proton-proton collisions at s = 8 TeV using the ATLAS detector,

arXiv:1910.04482 [hep-ex].

[111] ATLAS Collaboration, Selection of jets produced in 13 TeV proton–proton collisions

with the ATLAS detector, ATLAS-CONF-2015-029, 2015,

https://cds.cern.ch/record/2037702.

[112] ATLAS Collaboration, ATLAS b-jet identification performance and efficiency

measurement with tt¯ events in pp collisions at s = 13 TeV, arXiv:1907.05120

[hep-ex].

[113] ATLAS Collaboration, Optimisation and performance studies of the ATLAS

b-tagging algorithms for the 2017-18 LHC run, ATL-PHYS-PUB-2017-013, 2017,

https://cds.cern.ch/record/2273281.

[114] M. Cacciari, G. P. Salam, and G. Soyez, The Catchment Area of Jets, JHEP 04

(2008) 005, arXiv:0802.1188 [hep-ph].

[115] ATLAS Collaboration, Secondary vertex finding for jet flavour identification with the

ATLAS detector, ATL-PHYS-PUB-2017-011, 2017,

https://cds.cern.ch/record/2270366.

[116] ATLAS Collaboration, Optimisation of the ATLAS b-tagging performance for the

2016 LHC Run, ATL-PHYS-PUB-2016-012, 2016,

https://cds.cern.ch/record/2160731.

[117] ATLAS Collaboration Collaboration, G. Aad et al., Expected Performance of the

ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [hep-ex].

[118] ATLAS Collaboration, Measurements of b-jet tagging efficiency with the ATLAS

detector using tt¯ events at s = 13 TeV, JHEP 08 (2018) 089, arXiv:1805.01845

[hep-ex].

[119] ATLAS Collaboration, Measurement of b-tagging efficiency of c-jets in tt¯ events

using a likelihood approach with the ATLAS detector, ATLAS-CONF-2018-001,

2018, https://cds.cern.ch/record/2306649.

[120] J. Erdmann, S. Guindon, K. Kroeninger, B. Lemmer, O. Nackenhorst, A. Quadt,

and P. Stolte, A likelihood-based reconstruction algorithm for top-quark pairs and the

KLFitter framework, Nucl. Instrum. Meth. A 748 (2014) 18–25, arXiv:1312.5595

[hep-ex].

154

[121] ATLAS Collaboration, Calibration of light-flavour b-jet mistagging rates using

ATLAS proton–proton collision data at s = 13 TeV, ATLAS-CONF-2018-006,

2018, https://cds.cern.ch/record/2314418.

[122] ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in

proton–proton collision data at s = 13 TeV, Eur. Phys. J. C 76 (2016) 292,

arXiv:1603.05598 [hep-ex].

[123] ATLAS Collaboration, Electron reconstruction and identification in the ATLAS

experiment using the 2015 and 2016 LHC proton–proton collision data at

s = 13 TeV, Eur. Phys. J. C 79 (2019) 639, arXiv:1902.04655 [hep-ex].

[124] ATLAS Collaboration, Electron and photon performance measurements with the

ATLAS detector using the 2015-2017 LHC proton–proton collision data,

arXiv:1908.00005 [hep-ex].

[125] ATLAS Collaboration, Improved electron reconstruction in ATLAS using the

Gaussian Sum Filter-based model for bremsstrahlung, ATLAS-CONF-2012-047,

2012, https://cds.cern.ch/record/1449796.

[126] ATLAS Collaboration, Performance of missing transverse momentum reconstruction

with the ATLAS detector using proton–proton collisions at s = 13 TeV, Eur. Phys.

J. C 78 (2018) 903, arXiv:1802.08168 [hep-ex].

[127] LHC SUSY Cross Section Working Group,

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections.

[128] W. Beenakker, M. Kramer, T. Plehn, M. Spira, and P. M. Zerwas, Stop production at

hadron colliders, Nucl. Phys. B515 (1998) 3–14, arXiv:hep-ph/9710451 [hep-ph].

[129] W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen, and I. Niessen,

Supersymmetric top and bottom squark production at hadron colliders, JHEP 08

(2010) 098, arXiv:1006.4771 [hep-ph].

[130] W. Beenakker, C. Borschensky, R. Heger, M. Kr¨amer, A. Kulesza, and E. Laenen,

NNLL resummation for stop pair-production at the LHC, JHEP 05 (2016) 153,

arXiv:1601.02954 [hep-ph].

[131] ATLAS Collaboration, Standard Model Summary Plots Summer 2019,

ATL-PHYS-PUB-2019-024, 2019, http://cds.cern.ch/record/2682186.

155

[132] ATLAS Collaboration, Measurement of the tt¯ production cross-section using eµ

events with b-tagged jets in pp collisions at s = 13 TeV with the ATLAS detector,

Phys. Lett. B 761 (2016) 136, arXiv:1606.02699 [hep-ex].

[133] ATLAS Collaboration, Measurement of W ± and Z-boson production cross sections

in pp collisions at s = 13 TeV with the ATLAS detector, Phys. Lett. B 759 (2016)

601, arXiv:1603.09222 [hep-ex].

[134] ATLAS Collaboration, Measurement of the cross-section for producing a W boson in

association with a single top quark in pp collisions at s = 13 TeV with ATLAS,

JHEP 01 (2018) 063, arXiv:1612.07231 [hep-ex].

[135] C. G. Lester and D. J. Summers, Measuring masses of semiinvisibly decaying

particles pair produced at hadron colliders, Phys. Lett. B463 (1999) 99–103,

arXiv:hep-ph/9906349 [hep-ph].

[136] Y. Bai, H.-C. Cheng, J. Gallicchio, and J. Gu, Stop the Top Background of the Stop

Search, JHEP 07 (2012) 110, arXiv:1203.4813 [hep-ph].

[137] A. J. Barr, B. Gripaios, and C. G. Lester, Transverse masses and kinematic

constraints: from the boundary to the crease, JHEP 11 (2009) 096,

arXiv:0908.3779 [hep-ph].

[138] P. Konar, K. Kong, K. T. Matchev, and M. Park, Dark Matter Particle Spectroscopy

at the LHC: Generalizing M(T2) to Asymmetric Event Topologies, JHEP 04 (2010)

086, arXiv:0911.4126 [hep-ph].

[139] S. Frixione, E. Laenen, P. Motylinski, B. R. Webber, and C. D. White, Single-top

hadroproduction in association with a W boson, JHEP 07 (2008) 029,

arXiv:0805.3067 [hep-ph].

[140] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for

likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554.

[141] A. L. Read, Presentation of search results: The CL(s) technique, J. Phys. G28

(2002) 2693–2704.

[142] ATLAS Collaboration, ATLAS Run 1 searches for direct pair production of

third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C 75 (2015)

510, arXiv:1506.08616 [hep-ex].

156

[143] ATLAS Collaboration, Search for a scalar partner of the top quark in the jets plus

missing transverse momentum final state at s = 13 TeV with the ATLAS detector,

JHEP 12 (2017) 085, arXiv:1709.04183 [hep-ex].

[144] ATLAS Collaboration, Search for direct top squark pair production in final states

with two leptons in s = 13 TeV pp collisions with the ATLAS detector, Eur. Phys.

J. C 77 (2017) 898, arXiv:1708.03247 [hep-ex].

[145] ATLAS Collaboration, Search for dark matter and other new phenomena in events

with an energetic jet and large missing transverse momentum using the ATLAS

detector, JHEP 01 (2018) 126, arXiv:1711.03301 [hep-ex].

[146] ATLAS Collaboration, Search for top squarks in final states with one isolated lepton,

jets, and missing transverse momentum in s = 13 TeV pp collisions with the

ATLAS detector, Phys. Rev. D 94 (2016) 052009, arXiv:1606.03903 [hep-ex].

[147] ATLAS Collaboration, Search for top squark pair production in final states with one

isolated lepton, jets, and missing transverse momentum in s = 8 TeV pp collisions

with the ATLAS detector, JHEP 11 (2014) 118, arXiv:1407.0583 [hep-ex].

[148] ATLAS Collaboration, Search for direct pair production of the top squark in

all-hadronic final states in proton–proton collisions at s = 8 TeV with the ATLAS

detector, JHEP 09 (2014) 015, arXiv:1406.1122 [hep-ex].

[149] ATLAS Collaboration, Search for direct top-squark pair production in final states

with two leptons in pp collisions at s = 8 TeV with the ATLAS detector, JHEP 06

(2014) 124, arXiv:1403.4853 [hep-ex].

[150] ATLAS Collaboration, Search for a heavy top-quark partner in final states with two

leptons with the ATLAS detector at the LHC, JHEP 11 (2012) 094,

arXiv:1209.4186 [hep-ex].

[151] ATLAS Collaboration, Search for direct top squark pair production in final states

with one isolated lepton, jets, and missing transverse momentum in s = 7 TeV pp

collisions using 4.7 fb−1 of ATLAS data, Phys. Rev. Lett. 109 (2012) 211803,

arXiv:1208.2590 [hep-ex].

[152] ATLAS Collaboration, Search for a supersymmetric partner to the top quark in final

states with jets and missing transverse momentum at s = 7 TeV with the ATLAS

detector, Phys. Rev. Lett. 109 (2012) 211802, arXiv:1208.1447 [hep-ex].

157

[153] CMS Collaboration, Search for direct production of supersymmetric partners of the

top quark in the all-jets final state in proton–proton collisions at s = 13 TeV,

JHEP 10 (2017) 005, arXiv:1707.03316 [hep-ex].

[154] CMS Collaboration, Search for top squark pair production in pp collisions at

s = 13 TeV using single lepton events, JHEP 10 (2017) 019, arXiv:1706.04402

[hep-ex].

[155] CMS Collaboration, Search for top squarks and dark matter particles in

opposite-charge dilepton final states at s = 13 TeV, Phys. Rev. D 97 (2018)

032009, arXiv:1711.00752 [hep-ex].

[156] CMS Collaboration, Search for top squarks decaying via four-body or

chargino-mediated modes in single-lepton final states in proton–proton collisions at

s = 13 TeV, JHEP 09 (2018) 065, arXiv:1805.05784 [hep-ex].

[157] CMS Collaboration, Search for top-squark pair production in the single-lepton final

state in pp collisions at s = 8 TeV, Eur. Phys. J. C 73 (2013) 2677,

arXiv:1308.1586 [hep-ex].

[158] CMS Collaboration, Search for direct pair production of supersymmetric top quarks

decaying to all-hadronic final states in pp collisions at s = 8 TeV, Eur. Phys. J. C

76 (2016) 460, arXiv:1603.00765 [hep-ex].

[159] CMS Collaboration, Search for direct pair production of scalar top quarks in the

single- and dilepton channels in proton–proton collisions at s = 8 TeV, JHEP 07

(2016) 027, arXiv:1602.03169 [hep-ex].

[160] CMS Collaboration, Searches for third-generation squark production in fully

hadronic final states in proton–proton collisions at s = 8 TeV, JHEP 06 (2015)

116, arXiv:1503.08037 [hep-ex].

[161] CMS Collaboration, Search for supersymmetry in events with soft leptons, low jet

multiplicity, and missing transverse energy in proton–proton collisions at

s = 8 TeV, Phys. Lett. B 759 (2016) 9, arXiv:1512.08002 [hep-ex].

[162] CMS Collaboration, Search for supersymmetry in final states with missing

transverse energy and 0, 1, 2, or ≥ 3 b-quark jets in 7 TeV pp collisions using the

variable αT , JHEP 01 (2013) 077, arXiv:1210.8115 [hep-ex].

158

[163] CMS Collaboration, Inclusive search for supersymmetry using razor variables in pp

collisions at s = 7 TeV, Phys. Rev. Lett. 111 (2013) 081802, arXiv:1212.6961

[hep-ex].

[164] Summary plots from the ATLAS Supersymmetry physics group, https://atlas.

web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/index.html.

[165] ATLAS Collaboration, Search for supersymmetry in final states with charm jets and

missing transverse momentum in 13 TeV pp collisions with the ATLAS detector,

JHEP 09 (2018) 050, arXiv:1805.01649 [hep-ex].

[166] ATLAS Collaboration, Probing the Quantum Interference between Singly and Doubly

Resonant Top-Quark Production in pp Collisions at s = 13 TeV with the ATLAS

Detector, Phys. Rev. Lett. 121 (2018) 152002, arXiv:1806.04667 [hep-ex].

[167] ATLAS Collaboration, Athena, 2020. https://gitlab.cern.ch/atlas/athena.

[168] V. Kostyukhin, VKalVrt - package for vertex reconstruction in ATLAS., Tech. Rep.

ATL-PHYS-2003-031, CERN, Geneva, Aug, 2003.

https://cds.cern.ch/record/685551.

[169] ATLAS Collaboration, Performance of vertex reconstruction algorithms for detection

of new long-lived particle decays within the ATLAS inner detector,

ATL-PHYS-PUB-2019-013, 2019, https://cds.cern.ch/record/2669425.

[170] ATLAS Collaboration, Search for direct top squark pair production in the 3-body

decay mode with a final state containing one lepton, jets, and missing transverse

momentum in s = 13 TeV pp collision data with the ATLAS detector,

ATLAS-CONF-2019-017, 2019, https://cds.cern.ch/record/2676594.

[171] Planck Collaboration, P. A. R. Ade et al., Planck 2013 results. XVII. Gravitational

lensing by large-scale structure, Astron. Astrophys. 571 (2014) A17,

arXiv:1303.5077 [astro-ph.CO].

[172] ATLAS Collaboration, Summary of the ATLAS experiment’s sensitivity to

supersymmetry after LHC Run 1 — interpreted in the phenomenological MSSM,

JHEP 10 (2015) 134, arXiv:1508.06608 [hep-ex].

[173] N. Arkani-Hamed, A. Delgado, and G. F. Giudice, The Well-tempered neutralino,

Nucl. Phys. B741 (2006) 108–130, arXiv:hep-ph/0601041 [hep-ph].

159

[174] CMS Supersymmetry Physics Results,

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS.

[175] ATLAS Collaboration, Searches for electroweak production of supersymmetric

particles with compressed mass spectra in s = 13 TeV pp collisions with the

ATLAS detector, Phys. Rev. D 101 (2020) 052005, arXiv:1911.12606 [hep-ex].

[176] ATLAS Collaboration, Search for long-lived charginos based on a disappearing-track

signature in pp collisions at s = 13 TeV with the ATLAS detector, JHEP 06 (2018)

022, arXiv:1712 ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る