リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of phase-encoding direction on group analysis of resting-state functional magnetic resonance imaging」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of phase-encoding direction on group analysis of resting-state functional magnetic resonance imaging

Mori, Yasuo 京都大学 DOI:10.14989/doctor.r13387

2021.01.25

概要

Aim: Echo-planar imaging is a common technique used in functional magnetic resonance imaging (fMRI); however, it suffers from image distortion and signal loss because of large susceptibility effects that are related to the phase-encoding direction of the scan. Despite this relation, the majority of neuroimaging studies has not considered the influence of phase-encoding direction. Here, we aimed to clarify how phase-encoding direction can affect the outcome of an fMRI connectivity study of schizophrenia (SCZ).

Methods: Resting-state fMRI using anterior to posterior (A–P) and posterior to anterior (P–A) directions was used to examine 25 patients with SCZ and 37 matched healthy controls (HC). We conducted a functional connectivity (FC) analysis using independent component analysis and performed three group comparisons: (i) A–P versus P–A (all participants); (ii) SCZ versus HC for the A–P and P–A datasets; and (iii) the interaction between phaseencoding direction and participant group.

Results: The estimated FC differed between the two phase-encoding directions in areas that were more extensive than those where signal loss has been reported. Although FC in the SCZ group was lower than that in the HC group for both directions, the A–P and P–A conditions did not exhibit the same specific pattern of differences. Further, we observed an interaction between participant group and the phase-encoding direction in the left temporoparietal junction and left fusiform gyrus.

Conclusion: Phase-encoding direction can influence the results of FC studies. Thus, appropriate selection and documentation of phase-encoding direction will be important in future resting-state fMRI studies.

参考文献

1. Mansfield P. Multi-planar image formation using NMR spin echoes. J. Phys. C: Solid State Phys. 1977; 10: L55–L58.

2. Stehling MK, Turner R, Mansfield P. Echo-planar imaging: Magnetic resonance imaging in a fraction of a second. Science 1991; 254: 43–50.

3. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn. Reson. Med. 1995; 34: 65–73.

4. Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 1997; 6: 156–167.

5. Lipschutz B, Friston KJ, Ashburner J, Turner R, Price CJ. Assessing study-specific regional variations in fMRI signal. Neuroimage 2001; 13: 392–398.

6. De Panfilis C, Schwarzbauer C. Positive or negative blips? The effect of phase encoding scheme on susceptibilityinduced signal losses in EPI. Neuroimage 2005; 25: 112–121.

7. Weiskopf N, Hutton C, Josephs O, Deichmann R. Optimal EPI parameters for reduction of susceptibilityinduced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T. Neuroimage 2006; 33: 493–504.

8. Arnone D, Cavanagh J, Gerber D, Lawrie SM, Ebmeier KP, McIntosh AM. Magnetic resonance imaging studies in bipolar disorder and schizophrenia: Meta-analysis. Br. J. Psychiatry 2009; 195: 194–201.

9. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch. Gen. Psychiatry 2009; 66: 811–822.

10. Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline activation and neural response data. Am. J. Psychiatry 2012; 169: 693–703.

11. Chen C-H, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011; 13: 1–15.

12. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessivecompulsive disorder: The orbitofronto-striatal model revisited. Neurosci. Biobehav. Rev. 2008; 32: 525–549.

13. Lynall M-E, Bassett DS, Kerwin R et al. Functional connectivity and brain networks in schizophrenia. J. Neurosci. 2010; 30: 9477–9487.

14. Argyelan M, Ikuta T, DeRosse P et al. Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophr. Bull. 2014; 40: 100–110.

15. Vercammen A, Knegtering H, den Boer JA, Liemburg EJ, Aleman A. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol. Psychiatry 2010; 67: 912–918.

16. Chang X, Shen H, Wang L et al. Altered default mode and fronto-parietal network subsystems in patients with schizophrenia and their unaffected siblings. Brain Res. 2014; 1562: 87–99.

17. Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant “default mode” functional connectivity in schizophrenia. Am. J. Psychiatry 2007; 164: 450–457.

18. Manoliu A, Riedl V, Zherdin A et al. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr. Bull. 2014; 40: 428–437.

19. Orliac F, Naveau M, Joliot M et al. Links among restingstate default-mode network, salience network, and symptomatology in schizophrenia. Schizophr. Res. 2013; 148: 74–80.

20. Son S, Miyata J, Mori Y et al. Lateralization of intrinsic frontoparietal network connectivity and symptoms in schizophrenia. Psychiatry Res. Neuroimaging 2017; 260: 23–28.

21. Dong D, Wang Y, Chang X, Luo C, Yao D. Dysfunction of large-scale brain networks in schizophrenia: A metaanalysis of resting-state functional connectivity. Schizophr. Bull. 2018; 44: 168–181.

22. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCID-I/P). Biometrics Research, New York State Psychiatric Institute, New York, 2002.

23. Kay SR, Fiszbein A, Opler LA. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr. Bull. 1987; 13: 261–276.

24. Lancon C, Aghababian V, Llorca PM, Auquier P. Factorial structure of the Positive and Negative Syndrome Scale (PANSS): A forced five-dimensional factor analysis. Acta Psychiatr. Scand. 1998; 98: 369–376.

25. Woolrich MW, Jbabdi S, Patenaude B et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage 2009; 45: S173–S186.

26. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 2009; 48: 63–72.

27. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 2001; 5: 143–156.

28. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825–841.

29. Andersson JL, Jenkinson M, Smith S. Non-linear registration, aka spatial normalisation (FMRIB Technical Report TR07JA2). FMRIB Analysis Group of the University of Oxford, Oxford, UK, 2007.

30. Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 2004; 23: 137–152.

31. Beckmann CF, Mackay CE, Filippini N, Smith SM. Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. Neuroimage 2009; 47: S148.

32. Filippini N, MacIntosh BJ, Hough MG et al. Distinct patterns of brain activity in young carriers of the APOEepsilon4 allele. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 7209–7214.

33. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage 2014; 92: 381–397.

34. Makris N, Goldstein JM, Kennedy D et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 2006; 83: 155–171.

35. Frazier JA, Chiu S, Breeze JL et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am. J. Psychiatry 2005; 162: 1256–1265.

36. Desikan RS, Ségonne F, Fischl B et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006; 31: 968–980.

37. Goldstein JM, Seidman LJ, Makris N et al. Hypothalamic abnormalities in schizophrenia: Sex effects and genetic vulnerability. Biol. Psychiatry 2007; 61: 935–945.

38. Hoffman RE, Boutros NN, Berman RM et al. Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting hallucinated “voices”. Biol. Psychiatry 1999; 46: 130–132.

39. Hoffman RE, Boutros NN, Hu S, Berman RM, Krystal JH, Charney DS. Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. Lancet 2000; 355: 1073–1075.

40. Hoffman RE, Hawkins KA, Gueorguieva R et al. Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch. Gen. Psychiatry 2003; 60: 49–56.

41. Mondino M, Jardri R, Suaud-Chagny M-F, Saoud M, Poulet E, Brunelin J. Effects of fronto-temporal transcranial direct current stimulation on auditory verbal hallucinations and resting-state functional connectivity of the left temporo-parietal junction in patients with schizophrenia. Schizophr. Bull. 2016; 42: 318–326.

42. Togo H, Rokicki J, Yoshinaga K et al. Effects of field-map distortion correction on resting state functional connectivity MRI. Front. Neurosci. 2017; 11: 656.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る